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Abstract

Given that granulocyte macrophage colony-stimulating factor (GM-CSF) is identified as the

key factor to endow auto-reactive Th cells with the potential to induce neuroinflammation in

experimental autoimmune encephalomyelitis (EAE) models, the frequency and phenotype

of GM-CSF-producing (GM-CSF+) Th cells in draining lymph nodes (dLNs) and spinal cord

(SC) of Albino Oxford (AO) and Dark Agouti (DA) rats immunized for EAE were examined.

The generation of neuroantigen-specific GM-CSF+ Th lymphocytes was impaired in dLNs

of AO rats (relatively resistant to EAE induction) compared with their DA counterparts (sus-

ceptible to EAE) reflecting impaired CD4+ lymphocyte proliferation and less supportive of

GM-CSF+ Th cell differentiation dLN cytokine microenvironment. Immunophenotyping of

GM-CSF+ Th cells showed their phenotypic heterogeneity in both strains and revealed

lower frequency of IL-17+IFN-γ+, IL-17+IFN-γ-, and IL-17-IFN-γ+ cells accompanied by

higher frequency of IL-17-IFN-γ- cells among them in AO than in DA rats. Compared with

DA, in AO rats was also found (i) slightly lower surface density of CCR2 (drives accumula-

tion of highly pathogenic GM-CSF+IFN-γ+ Th17 cells in SC) on GM-CSF+IFN-γ+ Th17 lym-

phocytes from dLNs, and (ii) diminished CCL2 mRNA expression in SC tissue, suggesting

their impaired migration into the SC. Moreover, dLN and SC cytokine environments in AO

rats were shown to be less supportive of GM-CSF+IFN-γ+ Th17 cell differentiation (judging

by lower expression of mRNAs for IL-1β, IL-6 and IL-23/p19). In accordance with the (i)

lower frequency of GM-CSF+ Th cells in dLNs and SC of AO rats and their lower GM-CSF

production, and (ii) impaired CCL2 expression in the SC tissue, the proportion of proinflam-

matory monocytes among peripheral blood cells and their progeny (CD45hi cells) among the

SC CD11b+ cells were reduced in AO compared with DA rats. Collectively, the results indi-

cate that the strain specificities in efficacy of several mechanisms controlling (auto)reactive

CD4+ lymphocyte expansion/differentiation into the cells with pathogenic phenotype and

migration of the latter to the SC contribute to AO rat resistance to EAE.
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Introduction

Experimental autoimmune encephalomyelitis (EAE) is the most frequently used model system

for studying multiple sclerosis (MS) in laboratory animals. Rather than a single model, EAE is

a family of models in which central nervous system (CNS) inflammation occurs after immuni-

zation of susceptible animal strains with nervous tissue or myelin peptides, such as myelin

basic protein (MBP) and proteolipid protein in adjuvant [1]. The specific pathological and

clinical features vary dramatically dependent on the animal species, genetic (sub)strain, induc-

tion protocol, and autoantigen used, replicating different aspects of MS [2–6]. Depending on

the model, EAE may develop in highly distinct forms such as acute, relapsing-remitting, and

primary or even secondary progressive [7]. It has been clearly proven that CD4+ T lympho-

cytes are the major driver of the disease when rodents are immunized by CNS antigen(s) in

complete Freund’s adjuvant (CFA) [8]. Consequently, this EAE model is used as a prototype

for CD4+ T lymphocyte-mediated autoimmune diseases [9]. Although Th1 and Th17 cells

have been implicated in development of EAE [10–12], an accumulating body of evidence indi-

cates that neither IFN-γ nor IL-17 (Th1 and Th17 signature cytokines, respectively) is indis-

pensable in its pathogenesis [13–16]. Furthermore, active immunization of donor Csf2–/–mice

elicited neuroantigen specific T cells that secreted IFN-γ and IL-17, but these T cells did not

mediate the adoptive transfer of EAE, suggesting that they are not sufficient to secure EAE

development [17,18]. However, adoptive transfer of granulocyte macrophage colony-stimulat-

ing factor (GM-CSF) sufficient effector T cells that were deficient in both IFN-γ and IL-17

caused severe EAE commensurate with wild type T cells. Based on these observations,

GM-CSF is widely considered to be the signature cytokine of pathogenic effector T cells in

EAE, and therefore one of the few cytokines critical for EAE [17–20]. Consequently, Th lym-

phocyte-derived GM-CSF was suggested to be of pivotal importance for susceptibility of dis-

tinct mouse strains to EAE [18]. Additionally, GM-CSF has attracted substantial attention as a

result of the potential for antibody-mediated clinical intervention [21]. Considering all the

aforementioned, it is understandable that driving factors and mechanisms underlying differen-

tiation of GM-CSF-producing (GM-CSF+) Th lymphocytes and its role in the development of

autoimmune diseases are gaining increasing attention.

All conventional Th cell subsets in mice and humans produce GM-CSF [19,22]. However,

IL-7/STAT5 signalling axis-induced CD4+ T lymphocytes are shown to be the main source of

GM-CSF in autoimmune neuroinflammation in mice [19]. They most probably represent a

new Th lymphocyte subset [19]. This subset characterized by a distinct differentiation program

and cytokine production profile (as it does not produce Th1, Th2, Th17 signature cytokines) is

designated as Th-GM subset [19]. A similar Th cell subset, but with distinct developmental

requirements, has also been identified in humans [22]. GM-CSF is shown to accelerate the

release of bone marrow precursors and their recruitment into the CNS parenchyma, where

they differentiate into inflammatory macrophages and dendritic cells [23]. These cells, in turn,

promote: (i) re-activation/differentiation of GM-CSF+ Th lymphocytes infiltrating the CNS

and (ii) nervous tissue destruction through release of various damaging molecules [24–26].

The contribution of distinct GM-CSF+ Th cell subsets (Th17, Th1, Th-GM) to autoimmune

neuroinflammation has yet not been defined. However, it has been shown that the pathogenic-

ity of autoreactive Th17 cells in mice and, possibly in rats is linked with their production of

GM-CSF [17,18,27]. Given that Th17 lymphocyte response is promoted in CFA-induced mod-

els of autoimmunity [12], and that more severe EAE in the rat is associated with higher fre-

quency of Th17 cells co-producing IFN-γ and IL-17 in spinal cord (SC) [27,28], multi-
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cytokine producing Th17 lymphocytes are worthy of special attention in studies of rat suscep-

tibility to EAE.

Differentiation of Th cell subsets is accompanied by sequential expression of selectins,

integrins, and chemokine receptors responsible for their recruitment to and extravasation at

inflammation sites [29]. Consistently, their expression has a significant impact on develop-

ment of autoimmune diseases, including MS and EAE [30–32]. It has been suggested that the

chemokine CCL20 and its receptor CCR6, a common marker of Th17 cells [33] and certain tis-

sue-homing T regulatory (Treg) cells [34,35] are involved in pathogenesis of MS and EAE

[31,32,36]. Recently published data indicate that CCR2, but not CCR6, is the key driver of

encephalitogenic Th17 cell recruitment into the CNS [37]. Furthermore, in mouse EAE

model, highly pathogenic GM-CSF/IFN-γ-producing Th17 cells are identified as cells bearing

a CCR6−CCR2+ phenotype [37].

Having all the aforementioned in mind, as well as that there is no data on the role of

GM-CSF+ Th cells in rat strains sensitive and resistant to EAE induction, the study was

designed to assess the putative differences in draining lymph node (dLN) generation of

GM-CSF+ Th cells, particularly Th17 cells co-producing IFN-γ and GM-CSF, and their infil-

tration into SC between relatively resistant to EAE induction Albino Oxford (AO) and suscep-

tible to the disease Dark Agouti (DA) rats [38–40]. We chose AO rats considering that the

increase in their sensitivity to EAE induction with aging coincides with the increase in enceph-

alitogenic GM-CSF+ Th-cell generation in dLNs/SC and higher frequency of GM-CSF+ Th

cells infiltrating the SC [28].

Materials and Methods

Experimental animals

Female young (4-5-month-old) AO (192±3.7 g) and DA (155±5.8 g) rats from a breeding col-

ony of the Immunology Research Center “Branislav Janković” in Belgrade were used in the

present study. The animal facilities were accredited by Ministry of Agriculture and Enviro-

mental Protection of the Republic of Serbia (Veterinary Department). Animals were bred and

housed (3 rats/polyethylene cage containing sterilized wood shavings, under controlled

humidity, temperature and lighting conditions) according to EU directive 2010/63/EU and the

governmental regulations (Law on Animal Welfare, “Official Gazette of RS”, no. 14/2009). All

animals received routine care, including feeding standard diets, providing fresh water ad libi-
tum, and changing cages and bedding. Animal health monitoring was performed on a daily

basis by animal care staff and a veterinarian.

Induction and clinical evaluation of EAE

To induce active EAE, anesthetized rats (48 in each of two independent experiments) received

injections of 100 μl of an emulsion made of equal volumes of rat SC homogenate in phos-

phate-buffered saline (PBS) and CFA containing 1 mg/ml of heat-killed and dried Mycobacte-
rium tuberculosis H37Ra (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) into the left

hind foot pad, and 0.25 ml of saline suspension of 5x108 Bordetella pertussis (Institute of Virol-

ogy, Vaccines and Sera "Torlak", Belgrade, Serbia) subcutaneously into the dorsum of the same

paw [27,41]. To minimize stress, pain and injury, rats were anesthetized with an intraperito-

neal injection of ketamine (Ketamidor, Richter Pharma AG, Wels, Austria; 100 mg/ml)/xyla-

zine (Xylased, Bioveta, Ivanovice na Hané, Czech Republic; 20 mg/ml) anesthetizing cocktail

[50 mg/kg body weight (BW) of ketamine/5 mg/kg BW xylazine]. In DA rats, this immuniza-

tion protocol induces acute monophasic disease followed by full recovery of all animals

[27,41]. Consistently, none of DA rats died at any time before experimental endpoints.
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Immunized rats were monitored starting at the 1st day post-immunization (d.p.i.) twice daily.

Neurological scores (0, no clinical signs; 0.5, distal tail atony; 1, complete tail atony; 2, parapar-

esis; 3, paraplegia; 4, tetraplegia or moribund state) and animal weight were recorded daily by

two independent experienced observers. The activity of animals was monitored over 5 min-

utes. None of the rats reached moribundity during the studies. For animals that developed

neurological signs of EAE mashed food and water were positioned lower to facilitate access to

food and hydration and thereby to improve welfare assistance and clinical status. Only one DA

rat progressed to tetraplegia (score 4) on the 13th d.p.i. None of rats experienced reduction in

body weight greater than 15%. Animals were sacrificed either in the inductive phase of EAE,

on the 7th d.p.i. or on the 13th d.p.i., when the disease in DA rats reaches peak [27,41], through

transcardial perfusion. Prior to transcardial perfusion the animals were deeply anesthetized

with an intraperitoneal injection of ketamine/xylazine anesthetizing cocktail (80 mg/kg BW/8

mg/kg BW). All animals were handled and treated in complete compliance with the Directive

2010/63/EU of the European Parliament and of the Council on the protection of animals used

for scientific purposes and Institutional guidelines were approved by the Animal Care and Use

Committee of the Faculty of Pharmacy (permit number 6/12).

Antibodies and immunoconjugates

Monoclonal antibodies (mAbs) to rat CD4, CD8, CD134, CD45, CD11b, TCRαβ, IFN-γ, IL-

17A, RT1B (MHC II), CD40, CD45RA, CD62L, CD32, IL-4, secondary reagents and isotype

controls were obtained from BD Biosciences Pharmingen (Mountain View, CA, USA). Addi-

tional mAbs to rat CD11b (Serotec, Oxford, UK), CD25 and IL-17A (eBioscience, San Diego,

CA, USA), TCRαβ and CD43 (BioLegend, San Diego, CA, USA), CCR2 and CCR6 (R&D Sys-

tems, Inc., Minneapolis, MN, USA), and GM-CSF (Novus Biologicals, Littleton, CO, USA)

were also used. Polyclonal Abs to CX3CR1 and CCR7 were acquired from Abcam (Cambridge,

UK).

Isolation of mononuclear cells

Following transcardial perfusion with PBS, rat SCs and dLNs were carefully removed, grinded

on 70 μm nylon cell strainer (BD Biosciences, Erembodegem, Belgium) to retrieve mononu-

clear cells. Thereby obtained mononuclear cells were collected in Petri dishes containing either

PBS supplemented with 2% fetal calf serum (FCS, Gibco, Grand Island, NY, USA) and 0.01%

NaN3 (Sigma-Aldrich Chemie GmbH) (FACS buffer) or RPMI 1640 medium (Sigma-Aldrich

Chemie GmbH) supplemented with 5% FCS (SC mononuclear cells). SC cells were fractioned

on a discontinuous 40/70% Percoll (Sigma-Aldrich Chemie GmbH) gradient at 1000xg for 50

min and mononuclear cells from the interphase were collected. Blood samples were taken (on

the 7th d.p.i.) prior to the perfusion by cardiac puncture and subjected to NH4Cl lyses to

remove red blood cells. Thereby obtained blood cells, as well as dLN cells and mononuclear SC

cells, were counted in 0.2% trypan blue solution using an improved Neubauer hemacytometer.

Separation of CD4+ T cells

To purify CD4+ T cells from mononuclear SC and dLN cell suspensions a two-step magnetic-

activated cell sorting (MACS) procedure, using the equipment and reagents supplied by Milte-

nyi Biotec (Gladbach, Germany), was applied [28]. The cells were labeled using rat CD8a

microbeads and loaded onto LS column, placed in the magnetic field of the Quadro MACS

separator, for negative selection. Thereby obtained CD8- cell fraction was incubated with rat

pan T-cell microbeads and positively selected for T lymphocytes. The positive fractions,
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containing 90–95% of CD4+ T cells, as shown by flow cytometry analysis (FCA), were col-

lected for further analyses.

Stimulation of SC and dLN mononuclear cells for analyses of cytokine

production

Purified CD4+ T cells from SCs and dLNs were cultured in complete RPMI 1640 culture

medium supplemented with 200 ng/ml phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich

Chemie GmbH) and 400 ng/ml ionomycine (Sigma-Aldrich Chemie GmbH) in a 5% CO2

humidified atmosphere for 4 h at 37˚C. For intracellular staining of cytokines 3 μg/ml of bre-

feldin A (eBioscience) was added 2 h before the end of the assay. From SC cell cultures without

brefeldin A supernatants were collected for cytokine ELISA.

Cultivation of dLN cells for analyses of cytokine production and cell

proliferation

Cells from dLNs were cultured for 72 h without or with 2.5 μg/ml of Concanavalin A (ConA,

Sigma-Aldrich Chemie GmbH) or 20 μg/ml of MBP (Sigma-Aldrich Chemie GmbH) in a 5%

CO2 humidified air atmosphere at 37˚C. Supernatants were harvested and assayed for IL-17

and GM-CSF by ELISA, while the cells were processed for cell cycle analysis or restimulated

with PMA and ionomycine for intracellular cytokine immunostaining.

RT-qPCR

Spinal cord and dLN cell and tissue samples were collected using Nucleic Acid Purification

Lysis Solution (Applied Biosystems, Foster City, CA, USA) and immediately stored at -70˚C

until RNA purification. Total RNA from cell and tissue samples was extracted using ABI

Prism 6100 Nucleic Acid PrepStation system (Applied Biosystems) and Total RNA Chemistry

Starter Kit (Applied Biosystems), including DNAse (Absolute RNA Wash Solution, Applied

Biosystems) treatment to ensure that no genomic DNA contamination was present. cDNA

was synthesized using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems),

in 20-μl reactions with the thermal cycler conditions set as follows: 10 min at 25˚C, 120 min at

37˚C and 5 sec at 85˚C.

RT-qPCR reaction mixtures contained 5 μl of cDNA template, 1x TaqMan Gene Expression

Master Mix with Uracil-DNA glycosylase (UDG) (Applied Biosystems) and 1x mix of premade

primer and hydrolysis probe sets (TaqMan Gene Expression Assays, Applied Biosystems) in a

total volume of 25 μl. The triplicate RT-qPCR reactions were performed using Applied Biosys-

tems 7500 Real-Time PCR System under pre-optimized conditions: 2 min at 50˚C (UDG incu-

bation), 10 min at 95˚C (AmpliTaq Gold DNA Polymerase activation), and 40 cycles

including 15 sec at 95˚C (template denaturation) and 1 min at 60˚C (primer annealing/

extension).

All the procedures were performed according to the manufacturer’s instructions. TaqMan

Gene Expression Assays used in the study are listed in S1 Table. Target mRNA levels were

quantified by the 2-ΔΔCt method with SDS v1.4.0. software (Applied Biosystems), using β-actin

as a normalizer, as it has been previously suggested [28,41].

FCA

For immunostaining, all incubation steps were performed at 4˚C, unless stated otherwise.

Samples were acquired on FACSCalibur or FACSVerse flow cytometer (Becton Dickinson,

Mountain View, CA, USA). The data were analyzed for percentage of marker positive cells
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and/or mean fluorescence intensity (MFI) using FlowJo software version 7.8. (TreeStar Inc,

Ashland, OR, USA). IgG isotype-matched controls were used for each fluorochrome type and

fluorescence minus one controls were applied to settle gating boundaries, as previously shown

[41].

Surface antigen immunostaining. Cells were incubated with saturating concentrations of

either fluorochrome-labeled mAbs or biotin-conjugated/unconjugated Abs for 30 min and

washed in FACS buffer. When biotin-conjugated/unconjugated Abs were applied, cells were

incubated with appropriate second-step reagents for additional 30 min, washed and collected

for FCA.

Intracellular antigen immunostaining. Following stimulation with PMA and ionomy-

cine, MACS-separated SC and dLN CD4+ T cells and surface-stained SC and cultivated dLN

mononuclear cells were fixed/permeabilized overnight at 4˚C, using the fixation/permeabiliza-

tion buffer kit (eBioscience), according to the manufacturer’s instructions (eBioscience; http://

www.ebioscience.com/resources/best-protocols/flow-cytometry-protocols.htm). For intracel-

lular cytokine content assessment, washed cells were stained with fluorochrome-conjugated

mAbs to IL-17, IFN-γ and GM-CSF for 30 min at room temperature in the dark, washed again

and collected for FCA.

For detection of CD4+CD25+ Treg lymphocytes, dLN cells were surface-stained for CD4

and CD25, fixed/permeabilized using the reagents from the Foxp3 Staining Set (eBioscience),

and stained with FITC-conjugated anti-FoxP3 mAb, as suggested by the manufacturer.

CD4+ dLN cell proliferation in vitro

The proliferating cells among CD4+ dLN lymphocytes were identified combining CD4/CD8

surface antigen labeling with 7-AAD DNA staining. Briefly, cultured dLN cells were incubated

with a cocktail of fluorochrome-conjugated anti-CD4 and anti-CD8 mAbs for 30 min in the

dark at 4˚C, and then washed in cold PBS. The pellet was resuspended in 150 μl of 50% FCS in

PBS, and the cells were fixed/permeabilized by 450 μl of cold 70% ethanol in double distilled

H2O. Next, the cells were washed twice with cold PBS to remove the ethanol and the precipi-

tated proteins and incubated with 7-AAD (BD Pharmingen, 10 μl) for 30 min at 4˚C. Doublets

were excluded by analyzing the correlated area against the width signals of 7-AAD fluores-

cence on doublet discrimination module (DDM) dot plot. The frequency of proliferating cells

was determined using Dean-Jet-Fox model of the cell cycle platform generated by FlowJo soft-

ware version 7.8. (TreeStar Inc, Ashland, OR, USA).

ELISA

Commercial ELISA kits were used for measuring IL-17 (BioLegend; 8 pg/ml detection limit)

and GM-CSF (Elabscience Biotechnology Co., Ltd, Wuhan, China; 9.375 pg/ml detection

limit) concentrations.

Statistical analysis

Group mean comparisons were performed with GraphPad Prism 5 software (GraphPad Soft-

ware, Inc., La Jolla, CA, USA), using unpaired Student’s t-test or One-way ANOVA followed

by Tukey’s post-test. Values of p�0.05 were considered significant.

Results

As previously shown [28,39], although minimal single cell infiltrate is regularly seen (indepen-

dently on immunization protocol) in SC of young AO rats [39], they did not develop
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neurological signs of EAE. On the contrary, DA rats developed clinically manifested disease.

As expected [41], the disease in DA rat exhibited monophasic paralytical course with the peak

on the 13th d.p.i. and spontaneous recovery (S1 Fig).

Strain differences in phenotypic characteristics of CD4+ dLN T

lymphocytes isolated on the 7th d.p.i. from rats immunized for EAE

Strain differences in the number of activated rat CD4+ dLN T lymphocytes. In accor-

dance with the previous study [40], on the 7th d.p.i. fewer (p�0.001) mononuclear cells were

retrieved from dLNs of AO than DA rats (Fig 1A). Additionally, the frequency of CD4+

TCRαβ+ cells (T lymphocytes) among these cells and their number were lower (p�0.001) in

AO compared with DA rats (Fig 1B). Given that the frequency of activated CD134+ cells

among CD4+ T lymphocytes was comparable in AO and DA rats, their number was lower

(p�0.001) in AO rats (Fig 1B).

To explain this disparity, dLN cells were examined for the frequency of MHC II-expressing

CD11b+CD45RA- cells (presumably dendritic cells and macrophages). The frequency of

MHC II+ cells among CD11b+CD45RA- cells and MHC II surface density was comparable in

AO and DA rats, but their number was lower (p�0.001) in AO than in DA rats (S2 Fig). On

the contrary, more (p�0.001) cells expressing the costimulatory protein CD40 were found

among CD11b+CD45RA- cells from AO than DA rats (Fig 1C). Additionally, CD40 density

(judging by MFI) was higher (p�0.01) on CD40+CD11b+CD45RA- cells from AO compared

with DA rats (Fig 1C).

In both basal (RPMI cultures) and ConA- or MBP-supplemented (ConA or MBP cultures)

dLN cell cultures, the frequency of proliferating cells (cells in S+G2/M phases of cell cycle) was

lower (p�0.001) among CD4+ lymphocytes from AO when compared with those cells from

DA rats (Fig 2, S3 Fig).

The frequency of CD25+FoxP3+ Treg cells was comparable among CD4+ cells from AO

and DA rats (S4 Fig), so the previous findings were not related to differences in their

frequency.

Strain differences in the frequency and phenotypic characteristics of GM-CSF+ and IL-

17+ cells among rat CD4+ dLN T lymphocytes. Next, PMA- and ionomycine-stimulated

CD4+ dLN T lymphocytes were examined for the production of GM-CSF. The frequency of

GM-CSF+ cells was lower (p�0.05) within this subpopulation from AO compared with DA

rats (Fig 3A). The analysis of GM-CSF+CD4+ T lymphocytes for co-production of IFN-γ and

IL-17 also revealed strain differences (Fig 3A). The frequencies of IL-17+IFN-γ+ (p�0.05), IL-

17-IFN-γ+ (p�0.01) and IL-17+IFN-γ-cells (p�0.01) were lower in GM-CSF+ CD4+ T-lym-

phocyte subpopulation from AO rats (Fig 3A). On the contrary, the frequency of IL-17-IFN-γ-

cells was higher (p�0.01) among these cells from AO rats (Fig 3A). Irrespective of the strain,

we failed to detect IL-4 production in dLN T lymphocytes (S5 Fig). Thus, it may be assumed

that IL-17-IFN-γ- cells belonged to the Th-GM CD4+ T lymphocyte subset [19]. Next, CD4+

T lymphocytes were analyzed for the expression of mRNA for IL-3, the cytokine produced by

Th-GM cells in mice [19] and possibly rats [28]. Given that the frequency of all GM-CSF+ cells

among CD4+ T lymphocytes was lower in AO rats, despite the higher frequency of IL-17-IFN-

γ- cells among them, CD4+ T lymphocytes from AO rats contained less (p�0.001) amount of

IL-3 mRNA than those from DA rats (Fig 3B).

In accordance with the previous findings, the frequency of GM-CSF+ cells among CD4+

lymphocytes in both RPMI and MBP cultures from AO rats was lower (p�0.001) than in the

corresponding cultures from DA rats (Fig 4A). Additionally, in MBP cultures from both rat

strains the frequency of GM-CSF+ cells within CD4+ lymphocytes was greater (p�0.01) than

GM-CSF+ Th Cells and Rat Sensitivity to EAE

PLOS ONE | DOI:10.1371/journal.pone.0166498 November 10, 2016 7 / 28



Fig 1. Fewer activated CD4+TCRαβ+ cells in draining lymph nodes of AO rats immunizated for EAE

compared with their DA counterparts. (A) Bar graph indicates the number of mononuclear cells (MNC) retrieved

from draining lymph nodes (dLNs) of DA and AO rats on the 7th d.p.i. (B) Flow cytometry dot plots show the

frequency of (lower) CD134+ cells within (upper) CD4+TCRαβ+ lymphocytes from dLNs of DA and AO rats on the

7th d.p.i. The bar graphs indicate number of (upper) CD4+TCRαβ+ and (lower) CD134+CD4+TCRαβ+ lymphocytes

in dLNs from DA and AO rats on the 7th d.p.i. (C) Flow cytometry density plots show the frequency of CD11b+CD40

GM-CSF+ Th Cells and Rat Sensitivity to EAE
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in RPMI cultures (Fig 4A). Consistently, the concentration of GM-CSF was lower (p�0.05) in

RPMI and MBP cultures from AO than in the corresponding cultures from DA rats (Fig 4B).

It is noteworthy that in rats of both strains GM-CSF concentration was higher (p�0.001) in

MBP than in RPMI cultures (Fig 4B).

Given that the Th17 response is promoted in CFA-induced models of autoimmunity [12],

PMA- and ionomycine-stimulated CD4+ dLN T lymphocytes were also examined for the fre-

quency of IL-17+ cells. Their frequency was lower (p�0.001) among CD4+ dLN T lympho-

cytes from AO than DA rats (Fig 5A). Besides, the frequency of IFN-γ co-producing cells was

lower (p�0.01) among IL-17+CD4+ dLN T lymphocytes from AO compared with DA rats

(Fig 5A). These cells produce GM-CSF and are highly pathogenic in rodent models of EAE

[17,18].

+ cells within CD11b+CD45RA- cells (gated as depicted in S2 Fig) and CD40 mean fluorescence intensity (MFI) on

CD11b+CD40+ cells. Data (mean ± SEM) are representative of two experiments (n = 6). ** p�0.01; *** p�0.001.

doi:10.1371/journal.pone.0166498.g001

Fig 2. CD4+ draining lymph node cells from AO rats immunized for EAE exhibit lower proliferation in

culture than those cells from their DA counterparts. The frequency of proliferating cells (cells in S+G2/M

phases of cell cycle) within CD4+ draining lymph node (dLN) lymphocytes retrieved on the 7th d.p.i. from AO and DA

rats and cultivated in RPMI alone or in RPMI supplemented with ConA or MBP. The flow cytometry profiles

depicting 7-ADD staining of CD4+ dLN lymphocytes are shown in S3 Fig. Data (mean ± SEM) are representative of

two experiments (n = 6). *** p�0.001; ### p�0.001. * vs DA rats; # vs RPMI.

doi:10.1371/journal.pone.0166498.g002
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Fig 3. Lower frequency of GM-CSF+ cells within CD4+TCRαβ+ lymphocytes from draining lymph

nodes of AO than DA rats immunized for EAE. (A) Flow cytometry dot plots show the frequency of (upper)

GM-CSF+ cells within CD4+TCRαβ+ draining lymph node (dLN) cells of DA and AO rats on the 7th d.p.i. and

(lower) the frequency of their distinct subsets delineated according to IL-17/IFN-γ expression. Table shows

the frequency of cells in the indicated region (R). CD4+TCRαβ+ dLN lymphocytes were separated using

magnetic-activated cell sorting (MACS) as described in Materials and Methods. The gating strategy is shown

in S6 Fig. (B) Fold change in IL-3 mRNA expression in CD4+TCRαβ+ dLN cells from AO rats relative to those

cells from DA rats. Data (mean ± SEM) are representative of two experiments (n = 6). * p�0.05; ** p�0.01;

*** p�0.001.

doi:10.1371/journal.pone.0166498.g003

Fig 4. Lower frequency of GM-CSF+ cells within CD4+ lymphocytes from draining lymph node cell cultures

of AO than DA rats immunized for EAE. (A) Flow cytometry dot plots show the frequency of GM-CSF+ cells

within CD4+ draining lymph node (dLN) lymphocytes retrieved from DA and AO rats on the 7th d.p.i. and cultured in

RPMI alone or in RPMI supplemented with MBP. Only live cells were gated. (B) Concentration of GM-CSF in

supernatants of dLN cells from DA and AO rats cultured in RPMI alone or in the presence of MBP. Data

(mean ± SEM) are representative of two experiments (n = 6). * p�0.05; *** p�0.001; ## p�0.01; ### p�0.001.

* vs DA rats; # vs RPMI.

doi:10.1371/journal.pone.0166498.g004
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Chemokine receptor expression. The migratory properties of effector Th cells are

imprinted during differentiation with induction of chemokine receptors that enables their differ-

ential trafficking to the inflammatory lesions [37]. Having that in mind, IL-17+ CD4+ T lympho-

cytes were investigated for the expression of CCR6, a homing receptor shared by Th17 and Tregs

[37] and CCR2, a key driver of encephalitogenic IL-17+IFN-γ+ Th cell recruitment into the CNS

[37,42]. In both rat strains, almost all IL-17+IFN-γ+ CD4+ T lymphocytes expressed CCR2, but

its surface density was slightly lower (p�0.05) in AO rats (Fig 5B). The frequency of CCR6+ cells

among IL-17+ CD4+ T lymphocytes (75±2.23% in DA rats vs 84.32±4.23% in AO rats) and its

surface density (judging by MFI) were comparable in AO (384±27) and DA rats (432±22).

In accordance with the previous findings, in both RPMI and MBP cultures from AO rats

the frequency of IL-17+ cells among CD4+ lymphocytes was lower (p�0.001) than in the cor-

responding cultures from DA rats (Fig 6A). Besides, in MBP cultures from both AO and DA

rats the frequency of IL-17+ cells among CD4+ lymphocytes was higher (p�0.05) than in

strain-matched RPMI cultures (Fig 6A). Furthermore, the concentration of IL-17 was lower

(p�0.05) in both RPMI and MBP dLN cell cultures from AO compared with DA rats, but

higher (p�0.05) in MBP than in strain-matched RPMI dLN cell cultures (Fig 6B).

Expression of cytokines driving CD4+ T-cell polarization. Next, the expression of cyto-

kines driving IL-17 and GM-CSF expression in CD4+ T lymphocytes was investigated. The

expression of mRNA for IL-1β (p�0.001), IL-6 (p�0.001) and IL-23/p19 (p�0.05), the cytokines

driving differentiation of Th17 cells [43–45], including highly pathogenic multi-cytokine-pro-

ducing Th17 cells [17,18], was decreased in dLN cells from AO compared with DA rats (Fig 7).

Additionally, despite the higher frequency of IL-17-IFN-γ- cells among GM-CSF+CD4+

dLN T lymphocytes from AO rats, the expression of mRNA for IL-7, the cytokine suggested to

drive Th-GM cell differentiation in mice and possibly rats [19,28] was diminished (p�0.001)

in dLN tissue from AO (0.63±0.004) compared with DA rats (1.00±0.042). This could be

linked with the lower number of dLN cells and lower (p�0.01) frequency of IL-17-IFN-γ-

GM-CSF+CD4+ T lymphocytes among them in AO (7.89±0.23%) compared with DA rats

(9.53±0.31%).

Different frequency of inflammatory monocytes among peripheral blood

cells from AO and DA rats on the 7th d.p.i.

Given that GM-CSF accelerates the release of bone marrow myeloid cells, which infiltrate the

CNS and ultimately differentiate into inflammatory macrophages and dendritic cells [23], the

frequency of large inflammatory monocytes exhibiting CD43lowCCR2+CX3CR1- phenotype

[46,47] was explored. The frequencies of large CD43low cells among peripheral blood cells, and

CCR2+CX3CR1- cells among them were lower (p�0.001) in AO than in DA rats (Fig 8).

Differently from classical CD43high monocytes, rat inflammatory CD43low monocytes also

express CD11b at high levels (CD11bhi) and CD32, as well as CD62L and CCR7 [46,47]. In

agreement with the previous finding, the frequency of CD11bhi cells, as well those of CD32

+ and CCR7+CD62L+ cells among them were also lower (p�0.01) in peripheral blood from

AO rats (S8 Fig).

Different phenotypic profile of CD4+ T lymphocytes and CD11b+ non-

lymphoid cells from AO and DA rat SC on the 7th d.p.i.

CD4+ T lymphocytes. Although similar number of mononuclear cells was retrieved from

SC of AO and DA rats, lower (p�0.001) number of CD4+ T lymphocytes was found among

them in AO compared with DA rats (S9 Fig). Besides, the frequency of IL-17+ cells in PMA-

and ionomycine-stimulated CD4+ T lymphocytes from AO rat SC was lower (p�0.001) than

GM-CSF+ Th Cells and Rat Sensitivity to EAE

PLOS ONE | DOI:10.1371/journal.pone.0166498 November 10, 2016 11 / 28



GM-CSF+ Th Cells and Rat Sensitivity to EAE

PLOS ONE | DOI:10.1371/journal.pone.0166498 November 10, 2016 12 / 28



in those cells from DA rat SC (Fig 9A). Moreover, compared with DA, in AO rats the fre-

quency of IL-17+IFN-γ+ cells was lower (p�0.001) among IL-17+ CD4+ T lymphocytes (Fig

9A). Consistently, the amount of GM-CSF mRNA was markedly diminished (p�0.001) in

mononuclear SC cells from AO compared with DA rats (Fig 9B). The lower frequency of all

IL-17+ in CD4+ T lymphocytes and of IL-17+IFN-γ+ cells among them was consistent with

the lower (p�0.001) expression of CCL2 and CCL20 mRNA in SC from AO compared with

DA rats (Fig 9C).

CD11b+ non-lymphoid cells. Given that the inflammatory monocyte migration into the

CNS is regulated by production of CCL2 by CNS cells [48], the frequency of monocyte-derived

cells was examined. Differential CD45 staining intensity coupled with CD11b staining has

been used to distinguish between infiltrating inflammatory monocytes progeny, activated and

non-activated microglia [49,50]. The monocyte-derived cells have been suggested to predomi-

nantly express CD45 at high levels (CD45hi cells) [50]. Setting the boundaries between CD11b

+ cells expressing intermediate (CD45int cells; mainly activated microglial cells, although some

monocyte derived cells also exhibit this phenotype) and high levels of CD45 as previously

described [41], we found that the frequency of CD45hi cells was considerably lower (p�0.001)

in the CD11b+ population retrieved from AO than DA rat SC (Fig 10). Additionally, the fre-

quency of CD45int cells was lower (p�0.001) among CD11b+ cells from AO than DA rat SC

(Fig 10).

Different phenotypic profile of CD4+ T lymphocytes and CD11b+ non-

lymphoid cells from AO and DA rat SC on the 13th d.p.i.

CD4+ lymphocytes. To discern any differences in infiltrating CD4+ T lymphocyte com-

position on the 13th d.p.i., FCA on SC mononuclear cells was performed. Compared with DA

rats, dramatically fewer (p�0.001) mononuclear cells were retrieved from AO rat SC, and they

contained fewer (p�0.001) CD4+ T lymphocytes (S10 Fig). The immunophenotyping results

showed lower (p�0.001) frequency of GM-CSF+ cells among PMA- and ionomycine-stimu-

lated CD4+ T lymphocytes from AO rats in respect to DA rats (Fig 11A). Consistently, CD4

+ T lymphocytes from AO rats contained less (p�0.001) amount of GM-CSF mRNA than

those from DA rats (Fig 11Ba). Besides, the concentration of GM-CSF was lower (p�0.001) in

PMA-and ionomycine-stimulated CD4+ T lymphocyte cultures from AO than DA rat SC (Fig

11Bb). The immunophenotyping of GM-CSF+ CD4+ T lymphocytes infiltrating SC showed

higher (p�0.001) frequency of IL-17-IFN-γ- cells, but lower (p�0.001) frequencies of IL-

17-IFN-γ+, IL-17+IFN-γ- and IL-17+IFN-γ+ cells in AO compared with DA rats (Fig 11A).

However, as in dLNs, given that the frequency of IL-17-IFN-γ-GM-CSF+ cells among CD4+ T

lymphocytes was lower (p�0.001) in AO (8.64±0.20%) than in DA rat SC infiltrate (19.98

±0.52%), less (p�0.001) amount of IL-3 mRNA was detected in CD4+ T lymphocytes from

AO rats (Fig 11Bc).

Fig 5. Lower frequency of IL-17+ cells within CD4+TCRαβ+ lymphocytes from draining lymph nodes

of AO than DA rats immunized for EAE. (A) Flow cytometry density plots show the frequency of (upper) IL-

17+ cells within CD4+TCRαβ+ draining lymph node (dLN) lymphocytes retrieved from DA and AO rats on the

7th d.p.i., and (lower) the frequency of IFN-γ-co-producing (IL-17+IFN-γ+) cells within them. (B) Flow

cytometry density plots indicate the frequency of CCR2+ cells within IL-17+IFN-γ+CD4+TCRαβ+ dLN

lymphocytes retrieved from DA and AO rats on the 7th d.p.i. CD4+TCRαβ+ lymphocytes were separated using

magnetic-activated cell sorting (MACS) as described in Materials and Methods. The gating strategy is shown

in S7 Fig. The numbers in flow cytometry density plots indicate CCR2 mean fluorescence intensity (MFI) on

CCR2+ cells. Bar graph shows fold change in CCR2 MFI on CCR2+IL-17+IFN-γ+CD4+TCRαβ+ dLN cells of

AO relative to DA rats. Data (mean ± SEM) are representative of two experiments (n = 6). * p�0.05; **
p�0.01; *** p�0.001.

doi:10.1371/journal.pone.0166498.g005
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Fig 6. Lower frequency of IL-17+ cells within CD4+ lymphocytes from draining lymph node cell cultures of

AO than DA rats immunized for EAE. (A) Flow cytometry dot plots show the frequency of IL-17+ cells within CD4

+ draining lymph node (dLN) lymphocytes retrieved from DA and AO rats on the 7th d.p.i. and cultured in RPMI

alone or in RPMI supplemented with MBP. Only live cells were gated. (B) Concentration of IL-17 in supernatants of
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Among PMA- and ionomycine-stimulated CD4+ T lymphocytes from AO rat SC, lower

(p�0.001) frequency of IL-17+ cells was also found when compared with DA rats (Fig 12A).

Besides, the frequency of IL-17+IFN-γ+ cells was also lower (p�0.001) among IL-17+ CD4+ T

lymphocytes from AO than DA rat SC (Fig 12A). Furthermore, the concentration of IL-17 was

lower (p�0.001) in PMA- and ionomycine-stimulated mononuclear SC cells from AO than

DA rats (Fig 12B).

Consistently, CCL2 and CCL20 mRNA expression were lower (p�0.001) in AO than DA

rat SC (Fig 13A). Next, SC expression of mRNAs for the key cytokines coordinating differenti-

ation of Th17 cells from naive precursors and their acquisition of IL-17+IFN-γ+ phenotype

was examined. The expression of mRNAs for IL-1β (p�0.05), IL-6 (p�0.05) and IL-23/p19

(p�0.01) was lower in mononuclear SC cells from AO compared with DA rats (Fig 13B).

TGF-β mRNA expression did not differ between these cells from AO (0.96±0.143) and DA

rats (1.00±0.011).

The expression of mRNA for IL-7, the cytokine suggested to drive generation of Th-GM

cells in rodents [19,28] was also examined. The lower (p�0.001) IL-7 mRNA expression in AO

(0.47±0.019) than DA rat (1.00±0.073) was consistent with the lower number of CD4+ T lym-

phocytes and the frequency of IL-17-IFN-γ-GM-CSF+ cells among them in AO rat compared

with DA rat SC.

CD11b+ non-lymphoid cells. Furthermore, on the 13th d.p.i., CD11b+ cells from SC were

immunophenotyped. Compared with DA rats, in AO rats was found lower (p�0.001) frequency

of CD45hi cells, which are supposed to represent mainly monocyte-derived cells [50] (Fig 14).

Besides, among CD11b+ cells the frequency of CD45int cells, corresponding mainly to activated

microglial cells [50], was also lower (p�0.001) in AO compared with DA rats (Fig 14).

Discussion

The study showed diminished and qualitatively altered response of CD4+ dLN T lymphocytes

to the inoculation of emulsion of SC tissue homogenate and CFA in AO rats compared with

dLN cells from DA and AO rats cultured in RPMI alone or in the presence of MBP. Data (mean ± SEM) are

representative of two experiments (n = 6). * p�0.05; *** p�0.001; # p�0.05; ## p�0.01; ### p�0.001. * vs DA

rats; # vs RPMI.

doi:10.1371/journal.pone.0166498.g006

Fig 7. Lower expression of the cytokines driving Th17 cell differentiation in draining lymph node cells from

AO compared with DA rats immunized for EAE. Fold change in IL-1β, IL-6 and IL-23/p19 mRNA expression in

draining lymph node (dLN) cells from AO rats immunized for EAE relative to those cells from their DA counterparts.

Data (mean ± SEM) are representative of two experiments (n = 6). * p�0.05; *** p�0.001.

doi:10.1371/journal.pone.0166498.g007

GM-CSF+ Th Cells and Rat Sensitivity to EAE

PLOS ONE | DOI:10.1371/journal.pone.0166498 November 10, 2016 15 / 28



DA ones. Specifically, fewer activated CD134+CD4+ T lymphocytes were retrieved from AO

than DA rat dLNs. Given that, judging by CD40 MFI [51], antigen presenting CD40+CD11b+-

CD45RA- cells from AO rats exhibited stronger activation than those from DA rats, and that

CD4+ T:CD40+CD11b+CD45RA- cell ratio was shifted towards the antigen presenting cells

in AO rats (56.1±1.21 in AO rats vs 81.25±5.46 in DA rats), whereas the frequency of CD25

+FoxP3+ cells among CD4+ T lymphocytes was comparable between these two rat strains, the

strain-specific differences in CD4+ lymphocyte proliferative capacity may be assumed. In

favor of this assumption are data from previous studies indicating diminished production of

IL-2 by dLN lymphocytes from AO compared with DA rats [52].

Fig 8. Lower frequency of CCR2+CX3CR1- cells within large CD43low monocytes in peripheral blood of AO

compared with DA rats immunized for EAE. Flow cytometry dot plots show the frequency of (lower) CCR2

+CX3CR1- cells within (upper) large CD43low peripheral blood monocytes retrieved from DA and AO rats on the 7th

d.p.i. Data (mean ± SEM) are representative of two experiments (n = 6). *** p�0.001.

doi:10.1371/journal.pone.0166498.g008
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In addition to lower generation of neuroantigen-specific CD4+ T lymphocytes in AO rat

dLNs, the present study suggests impaired polarization of CD4+ T lymphocytes towards

GM-CSF+ Th cells, as their frequency was reduced among both PMA/ionomycine- and MBP-

stimulated CD4+ T lymphocytes from AO compared with DA rats. Consistently, the concen-

tration of GM-CSF was lower in MBP-stimulated dLN cell cultures from AO rats. GM-CSF is

necessary to render CD4+ T lymphocytes pathogenic in mouse models of EAE [17,18], so

GM-CSF−/− mice are resistant to EAE [53]. Thus, it may be assumed that the diminished fre-

quency of GM-CSF+ cells among neuroantigen-specific CD4+ T lymphocytes additionally

contributed to AO rat resistance to EAE induction. To corroborate this notion is our previous

study indicating that in AO rats the age-related increase in susceptibility to EAE coincides

with the augmented generation of neuroantigen-specific GM-CSF+ Th cells in dLNs and their

greater frequency in the SC [28]. In the same line is higher concentration of GM-CSF in MBP-

stimulated dLN cell cultures and in cultures of PMA/ionomycine-stimulated CD4+ T cells

from SC of aged (24-26-month-old) AO rats immunized for EAE compared with the corre-

sponding cultures from their younger (2-3-month-old) counterparts (S12 Fig). On the con-

trary, the lower concentration of this cytokine was found in PMA/ionomycine-stimulated SC

mononuclear cell cultures from aged DA rats immunized for EAE (21.31±0.21 pg/ml) than in

those from their young counterparts (48.01±0.31 pg/ml) exhibiting markedly higher EAE inci-

dence and greater neurological deficit, further supporting a putative role of GM-CSF in rat

susceptibility to clinical EAE.

The immunophenotyping of GM-CSF+CD4+ T lymphocytes confirmed their phenotypic

heterogeneity [28]. It has recently been shown that the autoimmune inflammation in mice can

be driven by phenotypically distinct GM-CSF+ Th cell subsets belonging to separate cell

Fig 9. Lower frequency of all IL-17+ cells within CD4+TCRαβ+ lymphocytes and IFN-γ-producing cells within them

in spinal cord of AO than DA rats immunized for EAE. (A) Flow cytometry density plots show the frequency of (upper)

IL-17+ cells within CD4+TCRαβ+ lymphocytes and (lower) IFN-γ-co-producing (IL-17+IFN-γ+) cells within IL-17+CD4

+TCRαβ+ lymphocytes retrieved from spinal cord (SC) of DA and AO rats on the 7th d.p.i. (B) Fold change in GM-CSF

mRNA expression in SC cells of AO rats relative to those cells from their DA counterparts. (C) Fold change in CCL2 and

CCL20 mRNA expression in SC tissue retrieved from AO rats on the 7th d.p.i. relative to SC tissue from their DA

counterparts. Data (mean ± SEM) are representative of two experiments (n = 6). *** p�0.001.

doi:10.1371/journal.pone.0166498.g009
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lineages [54–56]. Specifically, Th-GM cells, belonging to separate lineage [19] are suggested to

cooperate with IL-17+IFN-γ+ Th17 and/or Th1 cells to induce autoimmune (neuro)inflam-

mation in mice [55–57]. Our results suggest that compared with DA rats, in AO rats Th-GM

lymphocyte differentiation in dLNs was favored on the account of differentiation of multi-

cytokine-producing highly pathogenic GM-CSF+ IFN-γ+ Th17 cells. The diminished expres-

sion of mRNAs for not only IL-6 and IL-23/p19, as previously shown [58], but also IL-1β, i.e.

the cytokines driving their differentiation [43–45] in dLN cells from AO rats additionally cor-

roborates the previous notion. These findings are also in agreement with those obtained in our

previous study indicating differential polarization capacity of splenic dendritic cells from AO

and DA rats [59]. The lower frequency of IFN-γ+ cells among GM-CSF+ CD4+ T lymphocytes

Fig 10. Lower frequency of CD45hi and CD45int cells within CD11b+ cells in spinal cord of AO compared

with DA rats immunized for EAE. Flow cytometry density plots represent CD45 staining of CD11b+ spinal cord

(SC) cells retrieved from DA and AO rats on the 7th d.p.i. Table indicates the frequency of cells and CD45 mean

fluorescence intensity (MFI) on CD45+ CD11b+ SC cells in the indicated region (R). Data (mean ± SEM) are

representative of two experiments (n = 6). *** p�0.001.

doi:10.1371/journal.pone.0166498.g010
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could also support the diminished differentiation of their IL-17+IFN-γ+ predecessors, as they

are shown to represent Th17 cells that lost IL-17 expression, i.e. ex-Th17 cells [55,56]. How-

ever, it should be pointed that they may also belong to a separate cell lineage [54].

In agreement with the lower production of GM-CSF by CD4+ dLN T lymphocytes, lower

frequency of inflammatory monocytes [25,26] was found in peripheral blood from AO com-

pared with DA rats. Given that their enrichment in the circulating pool is associated with an

earlier onset and increased severity of clinical EAE [25], this finding is also consistent with the

resistance of AO rats to EAE.

Given that the factors influencing pathogenic Th cell homing into the CNS also influence

EAE development [37], Th17 cells and their IL-17+IFN-γ+ subset were examined for the

expression of CCR6 and CCR2. The expression of these chemokine receptors is temporally

regulated during CD4+ lymphocyte priming, so that the appearance of earliest classical Th17

cells, predominantly expressing CCR6, is followed by later emergence of pathogenic GM-CSF

+IFN-γ+ CCR6-CCR2+ Th cells [37]. In rats, as in mice [37,42], almost all IL-17+IFN-γ
+ Th17 cells exhibited surface expression of CCR2, but its density was slightly lower on the

multi-cytokine producing Th17 cells from AO rats. Differently, in agreement with data

obtained in mice [37], CCR6 was observed on great majority of IL-17+ cells and the frequency

of CCR6-expressing cells among IL-17+ CD4+ T cells and CCR6 surface density on these cells

were comparable in AO and DA rats. These findings, coupled with the markedly lower expres-

sion of CCL2 and CCL20 in SC from AO compared with DA rats suggest impaired homing of

conventional and highly pathogenic multi-cytokine-producing Th17 cells into the SC of AO

rats. Besides, the lower frequency of all IL-17+ cells among CD4+ T lymphocytes, and IL-17

Fig 11. Lower frequency of GM-CSF+ cells within CD4+TCRαβ+ lymphocytes in spinal cord of AO compared with DA rats

immunized for EAE. (A) Flow cytometry dot plots show the frequency of (upper) GM-CSF+ cells within CD4+TCRαβ+ lymphocytes

and (lower) the frequency of their distinct subsets delineated according to IL-17/IFN-γ expression in spinal cord (SC) of DA and AO

rats on the 13th d.p.i. CD4+TCRαβ+ lymphocytes were separated using magnetic-activated cell sorting (MACS) as described in

Materials and Methods. The gating strategy is displayed in S11 Fig. Table indicates frequency of cells in the indicated region (R). (B)

Fold change in GM-CSF mRNA expression in CD4+TCRαβ+ SC cells retrieved from AO rats on the 13th d.p.i. relative to those cells

from DA rats (a). Concentration of GM-CSF in supernatants of PMA/ionomycine stimulated CD4+TCRαβ+ lymphocytes retrieved from

SC of DA and AO rats on the 13th d.p.i. (b). Fold change in IL-3 mRNA expression in CD4+TCRαβ+ lymphocytes retrieved from SC of

AO rats on the 13th d.p.i. relative to those cells from their DA counterparts (c). Data (mean ± SEM) are representative of two

experiments (n = 6). *** p�0.001.

doi:10.1371/journal.pone.0166498.g011
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+IFN-γ+ cells among them, in SC of AO compared with DA rats, could be associated with the

reduced expression of mRNAs for the major cytokines driving their differentiation, i.e. IL-1β,

IL-6 and IL-23/p19. Comparable expression of TGF-β mRNA in mononuclear SC cells from

AO and DA rats is consistent with data indicating that in mouse EAE models, independently

of TGF-β, IL-6, IL-1β and IL-23 not only efficiently generate Th17 cells from their naïve pre-

cursors, but also promote generation of the pathogenic cells co-expressing IL-17 and IFN-γ

Fig 12. Lower frequency of IL-17+ cells within CD4+TCRαβ+ lymphocytes in spinal cord of AO compared

with DA rats immunized for EAE. (A) Flow cytometry dot plots show the frequency of (upper) IL-17+ cells within

CD4+TCRαβ+ lymphocytes and (lower) the frequency of IL-17+IFN-γ+ cells within them in spinal cord (SC) of DA

and AO rats on the 13th d.p.i. (B) Concentration of IL-17 in supernatants of PMA/ionomycine-stimulated CD4

+TCRαβ+ lymphocytes retrieved from SC of DA and AO rats on the 13th d.p.i. Data (mean ± SEM) are

representative of two experiments (n = 6). *** p�0.001.

doi:10.1371/journal.pone.0166498.g012

Fig 13. Lower expression of chemokines and cytokines in spinal cord of AO than DA rats immunized for EAE. (A) Fold change in CCL2 and

CCL20 mRNA expression in spinal cord tissue of AO rats on the 13th d.p.i. relative to spinal cord (SC) tissue of their DA counterparts. (B) Fold

change in IL-1β, IL-6 and IL-23/p19 mRNA expression in SC cells retrieved from AO rats on the 13th d.p.i. relative to those cells from their DA

counterparts. Data (mean ± SEM) are representative of two experiments (n = 6). * p�0.05; ** p�0.01; *** p�0.001.

doi:10.1371/journal.pone.0166498.g013
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[45]. The frequency of the latter cells was also reduced among GM-CSF+ CD4+ T lymphocytes

from AO rats. Given that elegant fate-mapping studies showed that IL-17-IFN-γ+ GM-CSF+

cells correspond to the cells which ultimately extinguish IL-17 expression [55,56], their lower

frequency among GM-CSF+ CD4+ T lymphocytes from AO compared with DA rat SC is con-

sistent with the lower frequency of IL-17+IFN-γ+ cells (supposed to be their predecessors)

within this subpopulation from AO rats. However, the contribution of GM-CSF+IFN-γ+ cells

belonging to separate cell lineage [54] to the lower frequency of IL-17-IFN-γ+ cells among

GM-CSF+ CD4+ T lymphocytes could also not be ruled out. Moreover, higher frequency of IL-

17-IFN-γ- cells among GM-CSF+CD4+T lymphocytes infiltrating AO rat SC, additionally sup-

ports the differential regulation of CD4+ T lymphocyte differentiation in AO and DA rats SC.

Consistent with the diminished frequency of inflammatory monocytes among peripheral

blood cells in AO compared with DA rats, and the lower production of GM-CSF by CD4+ T

Fig 14. Lower frequency of CD45hi and CD45int cells within spinal cord CD11b+ cells from AO than DA rats

immunized for EAE. Flow cytometry density plots indicate CD45 staining of CD11b+ spinal cord (SC) cells

retrieved from DA and AO rats on the 13th d.p.i. Table indicates the frequency of cells and CD45 mean fluorescence

intensity (MFI) on CD45+ CD11b+ SC cells in the indicated region (R). Data (mean ± SEM) are representative of

two experiments (n = 6). ** p�0.01; *** p�0.001.

doi:10.1371/journal.pone.0166498.g014
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lymphocytes infiltrating AO rat SC (reflecting the lower frequency of GM-CSF+ cells among

them), diminished frequency of CD11b+CD45hi cells, corresponding mainly to monocyte-

derived inflammatory macrophages and dendritic cells [50] was found in mononuclear SC cell

suspensions from AO rats. Several data indicate that this correlation is not coincidental, but

causal. Firstly, in the mouse, circulating CCR2+Ly6Chi monocytes, which correspond to rat

CD43lowCCR2+CX3CR1- cells [46,47], traffic across the blood-brain barrier, up-regulate

proinflammatory molecules, and differentiate into macrophages and dendritic cells with high

damaging capacity [25,26]. Secondly, GM-CSF not only accelerates the release of bone marrow

precursors, which in EAE ultimately differentiate into CNS-infiltrating inflammatory macro-

phages and dendritic cells [23], but also controls the expression of a pathogenic signature in

CCR2+Ly6Chi monocytes and their progeny, which is essential for tissue damage [25,26].

However, to the impaired inflammatory monocyte infiltration into the SC of AO compared

with DA rats, apart from their diminished release from bone marrow due to the lower

GM-CSF production, the reduced CCL2 mRNA expression in AO rat SC could also contribute

[23]. Using a combination of parabiosis and myeloablation to replace circulating progenitors

without affecting CNS-resident microglia, a strong correlation between monocyte infiltration

and progression to the paralytic stage of EAE was found [60]. Additionally, it has been shown

that CCR2–/–mice do not develop clinical EAE or CNS histopathology [61].

Moreover, given that GM-CSF is shown to be the major stimulator of microglia prolifera-

tion and activation [62,63], the lower frequency of CD11b+CD45int cells, mainly belonging to

activated microglia [50] on the 13th d.p.i. was consistent with the lower production of

GM-CSF from Th cells infiltrating AO than DA rat SC.

In conclusion, the study advances our understanding of immunological differences between

AO and DA rats [39,58] indicating that the resistance of AO rats to EAE could be related to: i)

lower generation of highly pathogenic neuroantigen-specific GM-CSF+ Th cells in their dLNs

(most likely due to intrinsic defect in their proliferative capacity and the diminished microen-

vironment ability to support differentiation of highly pathogenic multi-cytokine-producing

GM-CSF+IFN-γ+ Th17 cells) when compared with DA rats sensitive to EAE induction, and

ii) impaired SC expression of chemokines driving migration of neuroantigen-specific conven-

tional and the multi-cytokine producing GM-CSF+IFN-γ+ Th17 cells (i.e. CCL20 and CCL2

respectively) into the SC, whose microenvironment is also less supportive of differentiation of

pathogenic multi-cytokine-producing Th17 cells. Thus, the study further promotes: i) role of

Th-cell-derived GM-CSF and SC cell-derived chemokines in development of autoimmune

neuroinflammation, and ii) these molecules as putative targets in therapy of MS, and most

likely some other autoimmune inflammatory diseases. In addition, it indicates that multiple

rather than single genetically-determined immunological difference underlie strain differences

in susceptibility to clinical EAE and possibly individual variations in clinical presentation of

MS, and thereby provides scientific basis for understanding almost axiomatic individual varia-

tions in responses to MS therapies, particularly those targeting single molecule/mechanism

[64].

Supporting Information

S1 Fig. Strain differences in neurological signs of EAE. (A) Line graph illustrates the mono-

phasic EAE course in DA rats and the absence of neurological signs of the disease in AO rats

immunized with spinal cord homogenate in in phosphate-buffered saline supplemented with

complete Freund’s adjuvant and injected with for EAE. Rats were examined for neurological

signs of the disease daily, from the 7th day post-immunization (d.p.i.) until the 21st d.p.i.. Data

(mean ± SEM) were obtained from preliminary experiment which included 10 rats per group.
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Note that none of rats reached score 4 (tetraplegia or moribund state). (B) Line graph indicates

daily clinical score of EAE in DA and AO rats from the 7th to the 13th d.p.i. (C) Scatter plot

indicates maximal clinical sign of EAE until the 13th d.p.i. The incidence of EAE in DA rats

was 100% whereas none of AO rats exhibited neurological signs of the disease. Data

(mean ± SEM) are representative of two experiments (n = 12).

(TIF)

S2 Fig. Lower expression of MHC II on CD11b+CD45RA- cells retrieved from draining

lymph nodes of AO than DA rats immunized for EAE. Lower flow cytometry dot plots show

the frequency of MHC II+ cells within CD11b+CD45RA- cells gated on draining lymph node

(dLN) cells retrieved from of DA and AO rats on the 7th day post-immunization (d.p.i.) as

shown in the upper flow cytometry dot plots. This gating strategy was used for CD11b+

CD45RA- cells in Fig 1. Numbers in the flow cytometry dot plots indicate the frequency of

(upper) CD11b+CD45RA- cells and (lower) MHC II+ cells within them and MHCII mean

fluorescence density (MFI) on MHC II+ cells. Bar graph represents the number of CD11b+

CD45RA-MHC II+ cells retrieved from dLNs of DA and AO rats on the 7th d.p.i. Data

(mean ± SEM) are representative of two experiments (n = 6). �� p�0.001; ��� p�0.001.

(TIF)

S3 Fig. Gating strategy for flow cytometry analysis of in vitro proliferating CD4+ lympho-

cytes from draining lymph nodes of DA and AO rats immunized for EAE. (A) Flow cytom-

etry dot plots indicate gating strategy for cultivated CD4+ draining lymph node (dLN)

lymphocytes retrieved from DA and AO rats on the 7th day post-immunization (d.p.i.) (B)

Flow cytometry histograms indicate 7-AAD staining of CD4+ lymphocytes retrieved from DA

and AO rat dLNs on the 7th d.p.i. and cultured (upper) in RPMI alone or in RPMI supple-

mented with (middle) ConA or (lower) MBP. The frequency of proliferating cells (cells in S

+G2/M phases of cell cycle) was determined using the Dean-Jet-Fox model of the cell cycle

platform generated by FlowJo software and displayed in Fig 2.

(TIF)

S4 Fig. Comparable frequencies of CD25+FoxP3+ cells within CD4+ cells in draining

lymph nodes of DA and AO rats immunized for EAE. Flow cytometry dot plots represent

CD25 vs FoxP3 staining of CD4+ draining lymph node lymphocytes retrieved from DA and

AO rats on the 7th day post-immunization. Numbers in the flow cytometry dot plots indicate

the frequency of CD25+FoxP3+ cells within CD4+ lymphocytes. Data (mean ± SEM) are rep-

resentative of two experiments (n = 6).

(TIF)

S5 Fig. IL-4 production inTCRαβ+ lymphocytes from draining lymph node of DA and AO

rats immunized for EAE. Flow cytometry dot plots represent IL-4 vs TCRαβ staining of

draining lymph node cells retrieved from DA and AO rats on the 7th day post immunization

and in vitro stimulated with PMA and ionomycine (as described in Materials and Methods).

Note the absence of IL-4 staining in TCRαβ+ lymphocytes from rats of both strains. Data

(mean ± SEM) are representative of two experiments (n = 6).

(TIF)

S6 Fig. Fluorescence minus one controls for flow cytometry analyses of GM-CSF/IL-17/

IFN-γ staining of CD4+TCRαβ+ lymphocytes retrieved from draining lymph nodes of rats

immunized for EAE. The gating strategy for distinct subsets (delineated according to IL-17/

IFN-γ expression) of GM-CSF+ CD4+TCRαβ+ lymphocytes retrieved from draining lymph

nodes of rats on the 7th day post-immunization (shown in D) is based upon fluorescence
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minus one controls: (A) minus GM-CSF, (B) minus IL-17 and (C) minus IFN-γ. CD4

+TCRαβ+ lymphocytes were separated using magnetic-activated cell sorting (MACS) as

described in Materials and Methods. This gating strategy was used in Fig 3.

(TIF)

S7 Fig. Gating strategy and fluorescence minus one controls for flow cytometry analysis of

CCR2/IL-17/IFN-γ staining of CD4+TCRαβ+ lymphocytes from draining lymph nodes

retrieved from DA and AO rats immunized for EAE. The gating strategy for CCR2-expres-

sing IL-17+IFN-γ+ CD4+TCRαβ+ lymphocytes retrieved from draining lymph nodes of rats

on the 7th day post-immunization (shown in D) is based upon fluorescence minus one con-

trols: (A) minus IL-17, (B) minus IFN-γ and (C) minus CCR2. CD4+TCRαβ+ lymphocytes

were separated using magnetic-activated cell sorting (MACS) as described in Materials and

Methods. This gating strategy was used in Fig 5.

(TIF)

S8 Fig. Lower frequency of CD32+ cells and CCR7+CD62L+ cells within large CD11bhi

monocytes in peripheral blood of AO than DA rats immunized for EAE. (A) Lower flow

cytometry dot plots represent CD11b vs CD32 staining of CD11bhi peripheral blood (PB) cells

retrieved from DA and AO rats on the 7th day post-immunization. The large CD11bhi PB cells

are gated as shown in the upper flow cytometry dot plots. Numbers in the flow cytometry dot

plots indicate the frequency of (upper) large CD11bhi cells within PB cells and (lower) CD32+

cells within CD11bhi cells. (B) Flow cytometry dot plots indicate CD62L vs CCR7 staining of

CD11bhi PB cells of DA and AO rats. Numbers in the flow cytometry dot plots indicate the fre-

quency of CCR7+CD62L+ cells within large CD11bhi PB cells gated as indicated (A). Data

(mean ± SEM) are representative of two experiments (n = 6). �� p�0.01; ��� p�0.001.

(TIF)

S9 Fig. Lower number of CD4+TCRαβ+ lymphocytes retrieved from spinal cord of AO

than DA rats immunized for EAE on the 7th day post-immunization. Bar graphs represent

the number of (a) mononuclear cells (MNC) and (b) CD4+TCRαβ+ lymphocytes retrieved

from spinal cord of DA and AO rats on the 7th day post-immunization (d.p.i.). Data

(mean ± SEM) are representative of two experiments (n = 6). ��� p�0.001.

(TIF)

S10 Fig. Lower number of total mononuclear cells and CD4+TCRαβ+ lymphocytes

retrieved from spinal cord of AO than DA rats immunized for EAE on the 13th day post-

immunization. Bar graphs represent the number of (a) mononuclear cells (MNC) and (b)

CD4+TCRαβ+ lymphocytes from spinal cord of DA and AO rat immunized for EAE on the

13th day post-immunization (d.p.i.). Data (mean ± SEM) are representative of two experiments

(n = 6). ��� p�0.001.

(TIF)

S11 Fig. Fluorescence minus one controls for flow cytometry analyses of GM-CSF/IL-17/

IFN-γ staining of CD4+TCRαβ+ lymphocytes retrieved from spinal cord of rats immu-

nized for EAE. The gating strategy for distinct subsets (delineated according to IL-17/IFN-γ
expression) of GM-CSF+ CD4+TCRαβ+ lymphocytes retrived from spinal cord of rats on the

13th day post-immunization (shown in D) is based upon fluorescence minus one controls: (A)

minus GM-CSF, (B) minus IL-17 and (C) minus IFN-γ. CD4+TCRαβ+ lymphocytes were sep-

arated using magnetic-activated cell sorting (MACS) as described in Materials and Methods.

This gating strategy was used in Fig 11.

(TIF)
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S12 Fig. Aging increases number of GM-CSF+CD4+TCRαβ+ lymphocytes retrieved from

draining lymph nodes and spinal cord of AO rats immunized for EAE. (A) Bar graphs rep-

resent (a) the number of GM-CSF+CD4+TCRαβ+ cells retrieved from draining lymph nodes

(dLNs) of young and aged AO rats on the 7th day post-immunization (d.p.i.) and (b) concen-

tration of GM-CSF in supernatants of dLN cells from young and aged AO rats cultured in

RPMI alone or in the presence of MBP. (B) Bar graphs represent (a) the number of GM-CSF+

CD4+TCRαβ+ cells retrieved from spinal cord (SC) of young and aged AO rats in the effector

phase of the disease and (b) concentration of GM-CSF in supernatants of PMA/ionomycine

stimulated CD4+TCRαβ+ lymphocytes retrieved from SC of young and aged AO rats.

Data (mean ± SEM) are representative of two experiments (n = 9). � p�0.05; ��� p�0.001;

### p�0.001. � vs young AO rats; # vs RPMI.

(TIF)

S1 Table. Summary of mRNA targets and reference gene for RT-qPCR analysis.

(DOC)
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