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Abstract: Recent data indicate that lead (Pb) can induce adverse effects even at low exposure levels.
Moreover, the corresponding mechanisms of low Pb toxicity have not been well identified. In the liver
and the kidneys, Pb was found to induce various toxic mechanisms leading to organ physiological
disruption. Therefore, the purpose of the study was to simulate low-dose Pb exposure in an animal
model with the aim of assessing oxidative status and essential element levels as the main mechanism
of Pb toxicity in the liver and kidneys. Furthermore, dose–response modelling was performed in order
to determine the benchmark dose (BMD). Forty-two male Wistar rats were divided into seven groups:
one control group, and six groups treated for 28 days with 0.1, 0.5, 1, 3, 7, and 15 mg Pb/kg b.w./day,
respectively. Oxidative status parameters (superoxide dismutase activity (SOD), superoxide anion
radical (O2

−), malondialdehyde (MDA), total sulfhydryl groups (SHG), and advanced oxidation
protein products (AOPP)) and Pb, copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) levels were
measured. Lowering Cu levels (BMD: 2.7 ng/kg b.w./day), raising AOPP levels (BMD: 0.25 µg/kg
b.w./day) in the liver, and inhibiting SOD (BMD: 1.3 ng/kg b.w./day) in the kidneys appear to be the
main mechanisms of Pb toxicity. The lowest BMD was derived for a decrease in Cu levels in liver,
indicating that this effect is the most sensitive.

Keywords: oxidative stress; essential elements; Pb exposure; benchmark modelling; dose–response

1. Introduction

Lead (Pb) is one of the most persistent hazardous contaminants in the environment,
posing a serious public health risk. It is a multi-organ toxin that affects almost all organs,
including the brain, kidneys, liver, and reproductive organs [1–3]. Lead exposure primarily
occurs through ingesting tainted food or water, or inhaling Pb-contaminated air [4,5]. After
being absorbed, Pb is conjugated with glutathione in the liver and distributed between
blood and tissues, and a small amount is excreted by the kidneys, so Pb builds up in various
body tissues and harms a variety of macromolecules and organelles [6,7]. Epidemiological
studies conducted on workers exposed to Pb indicate a connection between Pb exposure
and the induction of certain liver enzymes, increased plasma cholesterol levels, disrupted
glucose homeostasis, and thickening of the gallbladder wall [8,9]. Chronic exposure to high
doses of Pb could cause permanent alterations in the kidneys, including interstitial fibrosis,
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tubular atrophy, glomerular sclerosis, and eventually renal failure [10,11]. On the other
hand, the signs of chronic low-dose Pb poisoning in humans are usually modest, and many
individuals remain asymptomatic. Furthermore, chronic low-dose Pb exposure in humans
has also been linked to gout and hypertension development trough renal and nonrenal
mechanisms [12].

In the liver and the kidneys, Pb was found to induce oxidative stress by inducing
reactive oxygen species, leading to oxidative damage of crucial molecules, proteins, nucleic
acids, and lipids [13]. Although Pb is not a Fenton’s metal, it can induce oxidative damage,
indirectly elevating the level of free Fe which acts as a Fenton’s metal. As a divalent
cation, its chemical configuration allows Pb to mimic essential cations in physiological
processes, such as calcium (Ca2+), zinc (Zn2+), copper (Cu2+) and manganese (Mn2+) [14,15].
Most of them are essential for proper enzyme activity as cofactors or for regular cell
membrane signal transduction [16]. The elevation of Fe in the blood occurs due to Pb
displacement from the hemoglobin molecule (plumbenia). By mimicking and displacing
essential cations which are important cofactors of antioxidant enzymes, Pb decreases their
activity by increasing oxidative stress in the tissues. However, hepatotoxic and nephrotoxic
mechanisms in the case of low, environmentally relevant doses of Pb are still not clear [8,17].

Lead’s toxic potential has been extensively studied for many years. During widespread
use of Pb in industry, especially after 1970s, humans were exposed to high lead levels that
were reflected in blood Pb levels (BLLs) of 100 µg/dL, or even higher [18,19]. Nowadays,
after the ban of Pb use in the many products, the BLL in the non-occupationally exposed
general population is usually lower than 5 µg/dL (set as reference level by the Center
for Disease Control and Prevention) [20,21]. In order to derive the point of departure
for hazardous chemicals, for regulatory purposes, a novel benchmark approach has been
developed. It is an advanced method that uses software modelling for toxic dose–response
analysis [22,23].

The purpose of the present study was to simulate a low-dose subacute Pb exposure
scenario in animal model, with the aim of obtaining relevant BLLs for environmental
exposure. After determination of hepatotoxic and nephrotoxic effects, the aim was to
determine the benchmark dose for such effects, which might be useful in further human
health risk assessment and safety evaluation of low-dose Pb exposure.

2. Materials and Methods
2.1. Chemicals

All chemicals used for oxidative status analyses and metal analyses were p.a. quality,
and were purchased from Sigma Aldrich, Germany or Scientific Fisher, Germany. Lead
(II) acetate trihydrate (Pb (CH3CO2)2 • 3H2O), Alkaloid Skopje Macedonia, was used for
making solutions for experimental animal treatment.

2.2. Animals and Experimental Study Design

The study was conducted on forty-two male albino Wistar rats (six weeks old) pur-
chased from Military Medical Academy, Belgrade. The rats were randomized in seven
groups (n = 6) and acclimatized for one week in the animal room at the Faculty of Pharmacy,
University of Belgrade, under relative humidity of 40–60%, a temperature of 25 ± 3 ◦C,
and a 12 h light–dark cycle. After acclimatization, six groups were treated with rising
doses of Pb (0.1, 0.5, 1, 3, 7, 15 mg Pb/kg body weight (b.w.)/day), while the control group
received distilled water only. Oral gavage was performed every morning for a period
of 28 days. The doses were chosen to mimic environmentally realistic and low-subacute
exposure to Pb with the aim of obtaining BLLs that have been reported in Pb-exposed
human populations [18,24–26]. Twenty-four hours after the last dose, the rats were hu-
manely sacrificed. The liver and the kidneys were taken, extensively washed (ice cold 0.9%
NaCl) and dry-weighed. The relative organ weight (%) was calculated as organ weight
(g)/final body weight (g) × 100. The samples of organs were dissected and appropriately
stored for oxidative status (−80 ◦C), and metal (−20 ◦C). The study was approved by the
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Ethical Committee on Animal Experimentation of the University of Belgrade Faculty of
Pharmacy (No. 323-07-11822/2018-05), and was carried out in accordance with the United
Kingdom Animal (Scientific Procedures) Act 1986 and the EU Directive 2010/63/EU for
animal experiments.

2.3. Metal Analyses

The preparation of samples for metal analyses was carried out using a microwave-
assisted digestion system (Milestone, Start D SK-10T, Milestone Srl, Sorisole, Italy). Weighted
samples were digested using 7 mL concentrated HNO3 (69%) and 1 mL concentrated H2O2
(30%) under conditions suggested by the manufacturer. After digestion, the cooled samples
were filled up to 25 mL with deionized water. The determination of Pb was performed
using a graphite furnace atomic absorption method, while essential metals were deter-
mined using a flame atomic absorption method on an AAS GTA 120 graphite tube atomizer,
200 series AA, Agilent Technologies, Santa Clara, CA, USA. The accuracy of the analyses
was checked using standard reference materials (SRM) whole blood Level 2 (SeronormTM,
Sero, Billingstad, Norway) and 1577c—Bovine liver (LGS Standard, London, UK).

2.4. Oxidative Status Analyses

Preparation of tissue samples for oxidative status analyses consisted of homogeniza-
tion with cold 0.1 mol/L phosphate buffer (pH 7.4) in a 1:9 weight-to-volume ratio, using a
T10 basic Ultra-Turrax homogenizer (IKA, Staufen, Germany). With the aim of obtaining
post-mitochondrial supernatant, the homogenates were centrifuged at 800× g for 10 min
and then at 9500× g for 20 min (+4 ◦C). All oxidative status parameters were determined in
the post-mitochondrial supernatant. The rate of superoxide anion radical (O2

−) formation
was determined using the method described by Auclair and Voisin [27]. The Misra and
Fridovich method [28] was used for superoxide dismutase activity (SOD) determination.
The total oxidative status (TOS) was measured based on the Erel-optimized spectrophoto-
metric method [29]. The malondialdehyde (MDA) concentration was determined using
a spectrophotometric method with thiobarbituric acid, and the results are expressed as
µmol/g protein [30]. Total sulfhydryl groups (SHG) were calculated using the spectrophoto-
metric method with 5,5′-dithiobis-2-nitrobenzoic acid (DTNB), as described by Ellman [31].
The method published by Witko et al. [32] was used for determination of advanced oxi-
dation protein products (AOPP). All parameters are expressed on protein levels that were
measured using the Bradford method [33].

2.5. Benchmark Dose Modeling

PROAST 70.1 software (https://www.rivm.nl/en/proast, accessed on 22 August
2020) was used to conduct benchmark dose–response modeling (Dutch National Institute
for Public 132 Health and the Environment, RIVM). For continuous data, a benchmark
response (BMR) of 5% was utilized, as recommended by the Scientific Committee of the
European Food Safety Authority (EFSA) at a 90% confidence level [23]. External dosages,
BLL and Pb levels in liver and kidneys tissues were all examined as doses for all parameters
obtained in the research. The benchmark dose interval (BMDI) was determined using the
program, which included lower (BMDL) and upper (BMDU) BMD. The model-averaging
method in PROAST software combines all available models into one, which is then applied
in data processing [34].

2.6. Statistical Analyses

GraphPad Prism8 software (GraphPad Software Inc., San Diego, CA, USA) was used
for statistical analyses and graph-making. If data passed a normality and homogeneity
of variance check, the data were presented as mean and standard deviation (S.D.), and
analyzed using a one-way ANOVA followed by Fisher’s LSD test. If not, the data were
presented as median and ranges (minimum-maximum), and the Kruskal-Wallis test fol-
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lowed by the Mann–Whitney U test was used. The level of statistical significance was set at
p < 0.05.

3. Results
3.1. Relative Organ Weight

Relative liver and kidney weights are presented in Table 1. The results show that there
are no statistically significant differences in the organ weight of rats between groups.

Table 1. Relative organ weight of rats subacutely treated with different low Pb doses.

Dose (mg Pb/kg b.w./Day) Liver (g/100 g Body Weight) Kidneys (g/100 g Body Weight)

Control 4.13 ± 0.50 0.72 ± 0.06
0.1 4.29 ± 0.32 0.69 ± 0.08
0.5 4.26 ± 0.29 0.66 ± 0.05
1 4.17 ± 0.24 0.66 ± 0.04
3 4.04 ± 0.11 0.64 ± 0.04
7 4.01 ± 0.28 0.69 ± 0.06
15 4.50 ± 0.24 0.72 ± 0.03

The values are presented as means ± standard deviation, N = 6, compared to all other groups, using ANOVA
followed by Fisher’s LSD test.

3.2. Lead and Essential Metal Status in Rats’ Liver and Kidneys

Lead tends to accumulate in the rat liver and kidney (Figure 1). In the liver, statistically
increased Pb levels were determined in the groups treated with 7 and 15 mg Pb/kg b.w./day
compared to controls, and in the case of the highest Pb dose of 15 mg Pb/kg b.w./day, in
all treated groups. In the case of the kidneys, a statistically significant increase in Pb levels
compared to control was detected in groups treated with 3, 7, 15 mg Pb/kg b.w./day. In
both organs, a dose-dependent increase in the bioaccumulation of Pb was observed.
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Figure 1. Liver (a) and kidney (b) Pb levels in Wistar rats subacutely exposed to low levels of Pb over
a period of 28 days. Results are presented as means ± SD. * † ‡ § # ∧ p < 0.05; §§ p < 0.01; *** ††† ‡‡‡ §§§

p < 0.001 compared to control, 0.1, 0.5, 1, 3, and 7 group, respectively, using ANOVA followed by
Fisher’s LSD test.

A trend of decreasing Cu levels in the liver, with the lowest value in the highest
dose group, can be observed (Table 2). In the liver, no statistically significant difference
was observed in values of other essential elements (Zn, Fe, Mn) in relation to the control
value. In the kidneys, there were no statistically significant changes in essential elements
compared to the control group.
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Table 2. Essential elements levels in liver and kidneys tissue of Wistar rats subacutely exposed to low
levels of Pb.

Liver Dose (mg Pb/kg b.w./Day)

Control 0.1 0.5 1 3 7 15

Cu Mean 2.58 2.11 1.94 * 1.78 ** 1.73 ** 1.68 *** 1.29 ***††‡

µg/g SD 0.39 0.19 0.26 0.59 0.26 0.59 0.52
Zn Mean 25.22 27.58 24.60 26.71 23.28 26.67 22.24
µg/g SD 2.24 1.63 2.13 5.55 2.56 5.87 4.48
Fe Mean 88.19 103.5 92.85 92.79 76.57 †† 103.1 # 86.89
µg/g SD 8.12 13.01 17.74 23.04 8.89 13.83 19.49
Mn Mean 4.21 4.77 2.07 † 2.49 2.15 5.60 ‡§# 2.70 ∧

µg/g SD 1.38 1.22 1.19 1.52 1.37 2.42 1.19

Kidney Control 0.1 0.5 1 3 7 15

Cu Mean 1.79 1.65 1.88 1.36 2.04 1.38 1.43
µg/g SD 0.82 0.58 0.52 0.62 0.78 0.49 0.35
Zn Mean 9.48 8.52 10.27 8.91 11.87 8.02 7.97
µg/g SD 4.22 2.84 2.92 4.34 3.29 2.51 0.67
Fe Mean 5.15 6.07 8.93 5.28 8.38 6.14 5.52
µg/g SD 1.59 2.13 3.99 2.35 2.80 2.25 1.88
Mn Mean 3.47 1.95 2.41 3.13 2.86 2.40 2.62
µg/g SD 1.52 0.98 0.33 1.24 1.48 0.58 0.98

* † ‡ § # ∧ p < 0.05; ** †† p < 0.01; *** p < 0.001; compared to control, 0.1, 0.5, 1, 3, 7 group, respectively; ANOVA
followed by Fisher’s LSD test.

3.3. Oxidative Status in Rats’ Liver and Kidney Tissues

In the liver, an increasing trend in AOPP levels was observed in the treated groups of
rats (Table 3). In the treated groups, induction of SOD enzyme activity was also observed,
with the highest value in the group treated with the highest dose of 15 mg Pb/kg b.w./day.
The level of MDA varied irregularly between groups. In all treated groups, inhibition of
the renal enzyme’s SOD activity occurred (Table 3). A slight decrease in MDA levels was
observed in some treated groups. Other oxidative stress parameters remained unchanged
from the control.

Table 3. Oxidative status in the liver and kidney tissue of Wistar rats subacutely exposed to low
levels of Pb.

Liver Dose (mg Pb/kg b.w./Day)

Control 0.1 0.5 1 3 7 15

AOPP Mean 21.80 24.25 23.10 28.00 ***‡ 24.60 # 27.05 **‡ 23.60 #∧

(µmol/min/g) SD 2.41 2.81 2.85 3.14 0.98 1.94 1.34
O2
− Mean 32.89 36.47 36.51 34.90 38.07 33.88 39.05

(µmol/min/g) SD 2.73 3.98 5.91 3.04 1.89 3.75 7.73

SOD Mean 5.753 10.44 *** 7.29 † 7.30 † 10.31 **‡§ 7.84 † 13.28
***†‡§#∧

(U/g) SD 2.63 3.26 2.92 0.94 2.37 0.55 0.44
TOS Mean 0.21 0.15 * 0.24 ††† 0.17 ‡ 0.22 ††§ 0.16 *‡‡‡# 0.23 ††§∧

(µmol H2O2
Equiv./g) SD 0.04 0.04 0.03 0.03 0.03 0.04 0.06

MDA Mean 0.090 0.100 0.095 0.110 0.110 0.095 0.115
(µmol/g) SD 0.040 0.140 0.080 0.030 0.020 0.050 0.070
SHG Median 21.80 24.25 23.10 28.00 ***‡ 24.60 # 27.05 **‡ 23.60 #∧

(mmol/g) Range 6.20–32.89 7.50–36.47 7.30–36.51 9.40–34.90 2.70–38.07 4.70–33.88 3.80–
39.05
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Table 3. Cont.

Liver Dose (mg Pb/kg b.w./Day)

KIDNEY Control 0.1 0.5 1 3 7 15

AOPP Mean 6.75 6.04 4.66 6.86 5.56 7.40 5.71
(µmol/min/g) SD 1.21 1.26 0.817 0.74 1.06 2.20 1.57
O2
− Mean 34.91 35.24 33.61 27.13 **††‡ 33.64 29.13 **†† 33.87 §∧

(µmol/min/g) SD 3.60 6.01 4.70 1.56 9.782 4.69 5.75
SOD Mean 13.56 9.20 * 10.64 7.20 ** 7.18 ** 7.45 ** 8.10 **
(U/g) SD 0.95 2.36 3.44 2.80 4.24 2.53 3.23
TOS Mean 3.30 3.30 3.60 3.11 3.84 3.35 3.78
(µmol H2O2
Equiv./g) SD 0.38 0.37 0.34 0.20 0.41 0.71 0.66

MDA Mean 1.66 1.42 1.02 ** 0.73 *** 1.10 * 0.69 *** 1.14 *
(µmol/g) SD 0.32 0.37 0.23 0.55 0.31 0.14 0.22
SHG Median 0.08 0.09 0.07 0.09 0.09 0.11 0.09
(mmol/g) Range 0.07–0.10 0.06–0.11 0.05–0.08 0.07–0.13 0.06–0.09 0.10–0.19 0.05–0.09

Advanced oxidation protein products (AOPP), super oxide anion (O2
−), superoxide dismutase (SOD), total

oxidative status (TOS), malondialdehyde (MDA), sulfhydryl groups (SHG); * † ‡ § # ∧ p < 0.05; ** †† p < 0.01;
*** ††† ‡‡‡ p < 0.001; compared to control, 0.1, 0.5, 1, 3, and 7 group, respectively; ANOVA followed by Fisher’s
LSD, or the Kruskal-Wallis test followed by the Mann–Whitney U test.

3.4. Benchmark Dose Modelling

In the liver, dose dependence for the Pb effects was observed for Cu with external
dose–response, BMDL: 2.7 × 10−6 mg Pb/kg b.w./day (Figure 2a) and AOPP with external
dose–response, BMDL: 0.00025 mg Pb/kg b.w./day (Figure 2b). In case of internal dose
(BLL)-response, BMDL: 1.4 × 10−5 µg/dL (Figure 3) and internal dose (ng Pb/g liver)-
response, BMDL: 2.4 × 10−6 ng Pb/g (Figure 4) was determined for the Cu decrease.
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tissue level (µg/g) using a model averaging method with 200 iterations, PROASTweb70.1 software
(https://proastweb.rivm.nl/). The red triangles represent the medians.

The external dose–response relationship for the effects of Pb in the kidneys was
detected for SOD activity (Figure 2C), with BMDL: 1.3× 10−6 mg Pb/kg b.w./day.

For all other investigated parameters in the liver and the kidneys, the dose dependence
was not obtained.

4. Discussion

In the present study, we have examined the hepatotoxic and nephrotoxic effects of
low Pb doses, reaching a BLL similar to general exposed population [35,36]. The six
dose groups allowed ideal statistical conditions for benchmark dose analysis. Our data
suggested that the Pb treatment did not affect liver and kidney weight. Lowering Cu levels
in the liver (BMDL: 2.7 × 10−6 mg Pb/kg b.w./day), along with higher AOPP liver levels
(BMDL: 0.00025 mg Pb/kg b.w./day), and inhibition of SOD (BMDL: 1.3 × 10−6 mg Pb/kg
b.w./day) in the kidneys might be the most sensitive mechanisms of low-dose Pb toxicity
in these organs.

Lead exposure has been found to affect all organs, including the blood, liver, kidneys,
heart and brain, affecting their physiological structure and function [2,35,37–39]. Effects

https://proastweb.rivm.nl/
https://proastweb.rivm.nl/
https://proastweb.rivm.nl/
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on the liver and kidneys are key points in the evaluation of the safety of existing and new
substances. The main parameters in the serum that are usually used for the evaluation of
liver function are liver enzymes’ activity and lipid profile parameters [40]. In our previously
published study, we have reported that low lead exposure led to dysregulation of lipid
profile in subacutely exposed rats, while liver enzymes remained in normal ranges [35].
Both Cu excess and deficiency in the liver can induce clinical problems, since it is a com-
ponent of various enzymes that are required for health and wellbeing. Liver Cu levels
homeostasis are highly regulated, and normally neither a decrease nor an excess buildup of
Cu occurs due to effective physiological regulation processes [41,42]. The liver regulates the
elimination of acquired Cu from the body through bile. Along with Zn, Cu has high affinity
for SHG of metallothionines. Furthermore, as a cofactor, Cu is crucial for the function of
several enzymes: SOD, mitochondrial monoamine oxidase, tryptophon-2,3-dioxygenase,
cytochrome c oxidase, ceruloplasmin, and hephaestin [41,42]. Lead has been shown to
induce Cu deficiency in animal studies [43] and humans [44], while Cu supplementation
in animal studies has been proven to have protective effects on Pb toxicity [45]. In the
present study, low Pb doses induced an external and internal (BLLs and tissue Pb levels)
dose-dependent decrease in Cu in the liver. The derived BMDs were: 2.7× 10−6 mg/kg
b.w./day for an external dose, 1.4 × 10−5 µg/dL for an internal dose (BLL), and 2.4 × 10−6

ng/g Pb for an internal dose (ng Pb/g liver tissue). The decrease in Cu may probably affect
all previously mentioned biological processes in the liver, possibly leading to disruption
of liver function. A potential mechanism by which Pb decreases Cu could be competition
between Pb and Cu for several biological process, including transport through membranes
or competition for active seats in biologically active proteins. By altering ion homeostasis,
Pb causes many of its harmful effects. This disruption happens when Pb replaces other
metal ions such as iron, calcium, zinc, magnesium, selenium, and manganese [14,16].

Another important mechanism of Pb toxicity is the induction of oxidative dam-
age in various tissues [13]. Our results have shown induction of SOD enzyme activ-
ity and dose-dependent increases in AOPP levels in the liver, with a derived BMDL of
0.00025 mg Pb/kg b.w./day indicating oxidative stress induction in the liver. Advanced
oxidation protein products are dityrosine-containing cross-linked protein products that
have been shown to be good indicators of protein oxidation. In 1996, AOPP were first
identified in the plasma of chronic uremic patients as new oxidative stress indicators [32].
AOPP are transported by oxidized plasma proteins and bind to the high-density lipopro-
tein (HDL) scavenger receptor class B type I; thus, they are classified as HDL receptor
antagonists [46]. The induction of liver SOD enzyme activity in the present study might
be a protective mechanism on oxidative stress induction, keeping in mind that production
of free radicals can stimulate antioxidant enzymes’ activity or inhibit it [47]. Similar to
our results, Barregard et al. have shown (40 days, 10.39 mg Pb/kg b.w./day) an increase
in SOD activity in the liver and a decrease in SOD activity in the kidneys of rats [11]. In
studies wherein higher doses of Pb were tested, inhibition of SOD, catalase (CAT) and
glutathione peroxidase (GPx) have been documented. For example, in the 5-day long study
on intraperitoneal application of Pb-acetate to Wistar rats, a dose of 20 mg/kg b.w./day
induced a decrease in the liver’s SOD activity [48]. Another animal study on Wistar rats
(100 mg/kg b.w./day, per os, 60 days) also resulted in a decrease in SOD activity, CAT
activity and glutathione levels, while MDA increased in the liver, compared to the untreated
group [49].

Lead excretion from organisms and lead’s ability to be distributed and accumulated in
the kidneys allows for direct toxic effects. Pb has been shown to induce kidney damage
through several mechanisms, including general oxidative stress induction, essential cation
interaction, inflammation, and induction of glomerular and tubular cell apoptosis. Some
of its additional mechanisms are changes in renal gangliosides (plasma membrane lipids
that play a role in the control of glomerular filtration), changes in renal vascular tone, and
alterations in the renin–angiotensin–aldosterone hormonal system [8]. In our previous
study, we showed that low subacute lead exposure did not significantly impact the serum
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nephrotoxicity markers of creatinine and urea levels [35]. A recent study by Kwon et al.
suggested a new mechanism following Pb exposure erythrophagocytosis in renal tubular
cells, which might greatly increase nephrotoxicity [17]. The observed data in our study have
shown a dose-dependent decrease in renal SOD activity in Pb-treated animals, with derived
BMDL: 1.3 × 10−6 mg Pb/kg b.w./day. SOD activity has been disrupted probably due to
direct inhibition of SOD by Pb, or due to the lower capacity of SOD synthesis. The SOD
enzyme plays a key role in oxidative stress resistance, and it is responsible for control of
potential over O2

− production in the cell. It catalyzes the reaction of O2
− dismutation into

H2O2 and oxygen [50]. Similar to our results, in the study on male Wistar rats, Pb-acetate
(20 mg/kg, i.p.) induced a decrease in renal antioxidant enzyme activity (SOD, catalase,
and glutathione peroxidase) after seven days of treatment [51], and inhibition of renal SOD
was noticed in the study on Wistar rats treated with 22.5 mg/kg b.w Pb-nitrate over a
period of 28 days [52]. The other investigated parameters of oxidative status in the kidneys
did not change significantly. Moreover, essential elements levels did not change.

The majority of Pb’s harmful effects are thought to manifest at a BLL of 5 µg/dL or
lower. As a result, the Centers for Disease Control and Prevention (CDC) is contemplating
decreasing the reference levels for BLL in children from 5 g/dL to 3 g/dL [18]. Our
findings support this, keeping in mind that our computed BMDL results were in the range
of micrograms Pb per kg b.w./day. In our previous studies, the lowest BMD for Pb for
neurotoxic effects was 4.5 × 10−6 mg Pb/kg b.w./day for induction of TOS in the brain [2].
This value was also in the range of values obtained in the presented study. Furthermore, for
the cardiotoxic effects, the lowest BMD was 2.2 × 10−6 mg Pb/kg b.w./day for increases
of MDA levels in cardiac tissue, while in case of toxic effects on blood, the lowest BMD
was, as in the study in the liver, for a decrease in Cu levels, 1.4 ng/kg b.w./day [35,39]. The
obtained results for the decrease in Cu in liver are in correlation with our previous results
in blood. Nonetheless, this is to be expected, given that liver is rich in blood and receives
over one quarter of the heart’s blood rate, despite making up only few % of the body’s total
weight. On the other hand, some epidemiological studies reported the BMD values of Pb for
few toxicological endpoints; however, to the best of our knowledge, there are no published
values considering hepatotoxic and nephrotoxic endpoints. In the study, performed in
China, that included lead-acid battery workers, the authors derived a BMDL of 13.5 µg
Pb/dL for a decrease in red blood cells’ concentration, 10.5 µg Pb/dL for a decrease in
hemoglobin levels, based on hematological toxicity, and an even tougher threshold of 6.6
µg Pb/dL for micronuclei or 3.5 µg Pb/dL for telomere length, based on genotoxicity [53].
Our research group’s recent publication demonstrated a connection between lead and
hormones’ action, indicating a positive association between BLLs and serum insulin levels,
with derived BMDs 1.49 and 0.74 µg Pb/dL in males and females, respectively [54]. In
our study, the observed internal BMDs (blood lead levels) are lower than the values from
epidemiological studies; this strengthens the notion that the blood Pb threshold level might
be very low.

5. Conclusions

In conclusion, our results strongly suggest the involvement of Cu in low-dose Pb
hepatotoxicity. The higher levels of AOPP in the liver also suggest oxidative stress as
an important mechanism. In the kidneys, Pb was found to inhibit the SOD antioxidative
enzyme activity, so the oxidative stress was found to be the main mechanism in low-dose Pb
nephrotoxicity. Benchmark dose modelling showed a dose response for those parameters.
The lowest BMD was derived for the decrease in Cu levels in liver, indicating this effect is
the most sensitive. Our results might be useful in low-dose Pb exposure risk assessment,
and strengthens the notion that the Pb threshold level for negative health effects might
be very low. Therefore, exposure to Pb needs to be as low as possible in order to protect
human health.
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