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Preface

Although gas chromatography and chemometrics are both mature fields of analyti-
cal chemistry, progress is continually being made in these important fields. New 
technologies, new methods, and new applications have been frequently reported in 
peer-reviewed literature, in manufacturer catalogs, and on the internet. A number of 
such novel aspects are presented in this book.  

The introductory chapter describes more recent developments in gas chromatogra-
phy, and also the utility of chemometrics approaches in gas chromatographic analysis. 
Chapter 2 describes the principle of negative thermal gradient chromatography, 
the advantages of this technique, and its applicability. Chapter 3 presents the main 
characteristics and utility of portable gas chromatography/mass spectrometry sys-
tems, and discusses some specific applications. Chapter 4 describes various sampling 
procedures used to make flavor and fragrance samples amenable to gas chromato-
graphic analysis.  Chapter 5 discusses various new applications of gas chromatography 
in the analysis of biotics and xenobiotics, such as volatile compounds of biological 
origin, components of biological fluids, drug metabolites, and toxicants.  Chapter 6 
considers the use of conference matrices as an alternative to other types of screen-
ing experiments used in chemometrics to separate key variables from those that are 
unimportant in large sets of influential parameters.  Chapter 7 looks at quantitative 
structure-retention relationship (QSRR) models for liquid chromatography method 
development.

The goal of this book is to increase understanding of the subject by including the most 
recent information described in a unified form by specialists. The book is addressed to 
a large audience, including analytical chemists in general, either working on applica-
tions or lecturing in analytical chemistry.

Serban C. Moldoveanu
R.J. Reynolds Tobacco Co.,

Winston-Salem NC, USA

Vu Dang Hoang
Hanoi University of Pharmacy,

Hanoi, Vietnam

Victor David
University of Bucharest,

Bucharest, Romania
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Chapter 1

Introductory Chapter: Novel 
Aspects in Gas Chromatography 
and Chemometrics
Vu Dang Hoang, Victor David and Serban C. Moldoveanu

1. Introduction

Gas chromatography and chemometrics are important topics of analytical chemistry. 
They are both mature areas of research, and for this reason, the more recent progress 
made in these fields is not necessarily revolutionary. Nevertheless, the progress  
continues. A wide range of applications associated with continuous demands to improve 
analytical techniques is also reflected in the progress seen in gas chromatography and 
chemometrics.

2. An overview of progress in gas chromatography

The first gas chromatographic separations were performed more than 75 years 
ago [1, 2]. These separations used hydrogen as a carrier gas, a chromatographic 
column containing silica gel on activated carbon, and a thermal conductivity detec-
tor [3]. Important developments followed, such as the invention of flame ionization 
and electron capture detectors, the introduction of temperature gradient for the 
GC separation, the connection of a gas chromatograph with a mass spectrometer, 
the introduction of open-tubular (capillary) column, the introduction of capillary 
columns made from fused silica, etc. From the beginning of GC and up to this day, 
the progress in the nature of the stationary phase was also made. The first stationary 
phases in the packed column were made of solid porous support coated with a high-
boiling fluid or porous plastic, and those were followed by the capillary columns with 
a bonded, cross-linked coating [4]. The minicomputer revolution allowed the intro-
duction of computer control of the gas chromatographic instrumentation and the data 
processing in GC. Throughout its history, numerous other important improvements 
were made in gas chromatography. Among these can be mentioned the invention of 
other types of detectors, development of various injection procedures allowing large 
volume injections or cold on-column injection, development of solid-phase micro-
extraction (SPME), introduction of autosamplers, development of comprehensive 
two-dimensional GC, introduction of fast gas-chromatography, etc.

Modern gas chromatography is strongly associated with the use of gas chroma-
tography-mass spectrometry, which has a mass spectrometer as a detector for a GC 
system. As a result, the progress in mass spectrometry has been very important for the 
utilization of GC, and GC-MS became the most utilized and powerful technique for 



Chapter 7

QSRR Approach: Application to
Retention Mechanism in Liquid
Chromatography
Jovana Krmar, Bojana Svrkota, Nevena Đajić,
Jevrem Stojanović, Ana Protić and Biljana Otašević

Abstract

One-factor-at-a-time experimentation was used for a long time as gold-standard
optimization for liquid chromatographic (LC) method development. This approach
has two downsides as it requires a needlessly great number of experimental runs and it
is unable to identify possible factor interactions. At the end of the last century,
however, this problem could be solved with the introduction of new chemometric
strategies. This chapter aims at presenting quantitative structure–retention relation-
ship (QSRR) models with structuring possibilities, from the point of feature selection
through various machine learning algorithms that can be used in model building, for
internal and external validation of the proposed models. The presented strategies of
QSRR model can be a good starting point for analysts to use and adopt them as a good
practice for their applications. QSRR models can be used in predicting the retention
behavior of compounds, to point out the molecular features governing the retention,
and consequently to gain insight into the retention mechanisms. In terms of these
applications, special attention was drawn to modified chromatographic systems,
characterized by mobile or stationary phase modifications. Although chromatographic
methods are applied in a wide variety of fields, the greatest attention has been devoted
to the analysis of pharmaceuticals.

Keywords: liquid chromatography, machine learning algorithms, molecular
descriptors, QSRR model building and validation, analyteʼs retention predictions

1. Introduction

One of the most widely applied analytical techniques in a broad variety of applica-
tion areas is high-performance liquid chromatography (HPLC). It stands out due to its
high precision, efficacy, and robustness. Despite its undeniably good aspects, the
susceptibility of analyteʼs retention to a diversity of experimental setup parameters
makes HPLC method development a time-consuming and expensive process. Unfor-
tunately, the selection of an appropriate combination of chromatographic conditions
related to both a stationary and a mobile phase, as a starting point for the analysis of a
particular drug chemical entity, is often done using a trial-and-error approach [1].
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At the same time, one of the major goals of contemporary chromatographic analysis
is to efficiently identify optimal working conditions for a better success rate in the
method development. Luckily, a tailored, pragmatic approach denoted as quantita-
tive structure–retention relationship (QSRR) modeling was introduced [1, 2]. With
the assistance of computerized statistical methods, QSRR models are supposed to
mathematically relate the molecular structural properties with the chromatographic
response of a drug generated within a set of defined experimental conditions. The
molecular structure encodes its physicochemical information in the form of numer-
ical quantities denoted as molecular descriptors. This approach offers great assis-
tance in understanding the analyteʼs chromatographic behavior and enables the
discovery of physicochemical processes involved. As expected, statistical QSRR
studies are, therefore, recognized as a supreme chemometric approach leading to
the timely enhanced, high-quality separation, and efficient analytical method
development [1, 2].

QSRR models are commonly associated with the retention prediction of a new
and non-analyzed compound. However, QSRR models are much more useful since
they are applied in revealing the molecular descriptors with the greatest retention
predictive potential as well as in revealing the mechanisms that govern the separa-
tion in a specific chromatographic system on a molecular level. Based on a reliable
QSRR model that accounted for different sets of chromatographic data within the
same type of stationary phase (e.g. reversed-phase (RP)), the quantitative compar-
ison of chromatographic columns can be achieved [1, 3]. The additional value of the
same data refers to the direction where to look for a chromatographic column with
equivalent performance and orthogonal selectivity as well as to upgrade chromato-
graphic performances that are the most responsible for retention parameters inclu-
sive of a short overall run time [4]. Besides all the aforementioned, many authors
assert that the retention in an HPLC system, especially in RP- and micellar chro-
matographic systems, can be closely related to the biological activity of a drug. This
can be understandable in terms of a compound’s lipophilicity and pKa value because
its chromatographic distribution between stationary and mobile phases is highly
similar to its bodily distribution between the cell membrane and intracellular or
extracellular fluids. As a result, the chromatographic data can be related to the
description of biological processes of drug absorption, distribution, and excretion as
well as drug-receptor interactions. Looking at the QSRR study within these wider
frames, this approach can be used as a valuable in silico method for the prediction of
the analyteʼs lipophilicity and biological activity of potentially new drug molecules.
In such a manner, the utilization of less effective experimental methods and animal
models can be reduced [3].

Because of their wide applicability, the QSRRs methodologies have been quite
extensively studied over the past two decades. The first article, in which Tamf and
Kamlet mention QSRR in a similar context known nowadays, dates from 1977. How-
ever, an intense interest in this topic has arisen over the last two decades after the
work of Roman Kaliszan [5]. The first theory used to describe chromatographic
retention was the theory of linear free-energy relationships (LFER), according to
which the analyteʼs retention parameters reflect the free-energy changes associated
with the chromatographic distribution [6]. In that regard, a chromatographic column
is recognized as a “free-energy transducer,” which translates the chemical structure
differences of compounds into quantitative differences in the retention parameters. In
order to provide the proper knowledge about a chromatographic system, a relatively
large set of reliable input data, coming from a group of structurally heterogeneous
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compounds and retention data, is needed. The early introduced QSRR models were
based on a priori selection of a small set of structural descriptors derived from a
molecular formula or a molecular graph reflecting physicochemical properties. These
sets of structural descriptors are well known to chemists since they originate from the
accepted theories of chromatographic separation and the interpretation of fundamen-
tal intermolecular interactions [7]. Since the representation of the separation process
solely in terms of intermolecular interactions is questionable, an approach based on
linear solvation energy relationships (LSER) was introduced by Abraham [6, 7]. He
pointed out a new notably expanded set of molecular descriptors indicating the dif-
ference in interactions as a consequence of the solvent properties of the mobile and
stationary phase. In parallel with these considerations, to provide reproducible quan-
titative input chromatographic data, two main methodological directions may be
observed in the literature. The retention data can be determined under the same
experimental condition or by varying chromatographic conditions, such as mobile
phase compositions, flow rates, column temperatures, etc. [1]. The latter approach,
also known as mixed QSRR modeling, is found to be advantageous. It enables the
recognition of patterns in analyteʼs retention changes within observed experimental
ranges of chromatographic parameters and consequently an in-depth understanding
of complex chromatographic systems. In addition to proper input data, statistically
significant and physically meaningful QSRR modeling finally relies on solid mathe-
matical analysis. The usual technique for the mathematical description of correlations
between all gathered data is multiple linear regression (MLR). However, the advances
in liquid chromatography (LC) and an increase in the amount of chromatographic
data generated over time make the conduction of a QSRR study difficult to handle
traditionally. In that regard, QSRR models have shifted from a priori selection of
simple descriptors and traditional regression analysis to the generation of a large pool
of molecular descriptors and machine learning algorithms (MLAs) based on linear
and/or nonlinear regression analysis [1]. For the sake of obtaining chemically valid
interpretations, useful and reliable QSRR models demand a selection of the most
informative and predictive descriptors among often mutually correlated ones. There-
fore, the need for suitable selection techniques for input information data emerged
accompanied by QSRR model validation strategies used to evaluate model prediction
performance [2]. High-performance calculations at all the stages have made the pro-
cess of LC method development more efficient and sustainable. They have also
improved the fundamental knowledge of the separation processes. In accordance with
numerous benefits, the anatomy of the QSRR modeling is reviewed below in conjunc-
tion with the guidance of modern requirements and tendencies.

2. QSRR workflow: a detailed walkthrough

2.1 Molecular descriptors

The power of QSRR comes from the characterization of compounds via molecular
descriptors (MDs) that depict the physicochemical information of molecules in a
numerical manner. The concept of MDs has come a long way in the last 50 years as it
witnessed constant progress in computational chemistry. The accompanying advances
in hardware enabled the calculation of over 5000 descriptors for a single molecule
[8, 9]. Depending on the classification criteria, molecular descriptors can be divided
into several groups. Some descriptors are obtained experimentally, while the others
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are purely theoretical. According to the data type, molecular descriptors can be Bool-
ean, integer, real, vector, etc. According to the structural dimensions (D), on the other
hand, molecular descriptors can range from 1D to 6D [10, 11]. Based on the references
outlining their application in QSRR studies, the extensively used descriptor-
calculation software are AlvaDesc [12–14], Dragon [15–19], Molinspiration
Cheminformatics [20, 21]. and Chem3D Ultra [19]. The latest and freely available
software, PaDEL-Descriptor [14, 18] and Mordred [22, 23], allow MDs to be com-
puted under open science practice representing a valuable addition to the palette of
commercial software. For more simple descriptors (e.g. compositional or topological
descriptors), a simplified molecular input line entry system string (SMILES) or a 2-D
map can be used to represent molecules under study. If descriptors give more infor-
mation, molecular geometry has to be determined prior calculation process. The
accuracy of the most descriptors subsequently depends on the method used to build a
3-D molecular structure. Given a variety of the computational methods used for
optimizing the geometry of analytes for QSRR studies and the availability of
resources, researchers can opt to perform empirical force field methods (e.g., molec-
ular mechanics), semi-empirical optimization (e.g., AM1, PM3), or sophisticated ab
initio calculations (e.g., Hartree-Fock and Density Functional Theory) [24, 25]. In an
interesting study, Amos et al. investigated how different levels of theory for structure
optimization contributed to the QSRR outcome. The sum of ranking differences
(SRD) showed that a fast and rational method of structure optimization shared the
results with time-consuming and expensive calculations in terms of the final accuracy
of the QSRR model. Moreover, the solvent correction did not reduce the mean abso-
lute error of QSRR predictions. The authors carefully explained these unexpected
findings in the context of an error inherent in the Dragon descriptor calculation
process [26].

2.2 Feature selection

A small set of predictors (i.e., input variables or factors) with well-known physi-
cochemical meaning can be pre-defined when modeling separation in systems with
fully elucidated retention mechanisms. For complex chromatographic modes, such as
micellar liquid chromatography (MLC) and mixed-mode liquid chromatography
(MMLC), a priori attribute selection may compromise the accuracy of QSRR predic-
tions making it a poorly acceptable strategy for retention modeling [27, 28]. Alterna-
tively, a large set of independent variables can be formed; the most significant
attributes can be extracted from it and used to build a model for retention time
prediction. Clearly, the predictive ability of these models depends on the efficiency of
the mathematical algorithm used to select predictor variables [7, 29].

The choice of the most informative features for a particular regression problem
poses one of the main challenges in machine learning (ML). Determining the appropri-
ate method of variables selection, in this regard, has been an interesting topic in a broad
range of domain applications, including studies for which the datasets with hundreds or
thousands of attributes become available along with the development of molecular
modeling software. Faced with plenty of noisy and irrelevant features, contemporary
QSRR studies call for variable selection without exception. The purpose of variable
selection methods is to handle space dimensionality by discarding the features that are
redundant and irrelevant in predicting endpoint values. A feature is irrelevant if it is
unpredictive for the dependent variable or response. A reduction is needed if it is highly
correlated with other features. The adoption of feature selection techniques ultimately
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avoids overfitting, improves a model’s predictive power, and enhances an understand-
ing of the underlying patterns preserved in data. A decreased computational burden
placed on modeling techniques as well as easier data visualization happens to be
additional benefits associated with feature selection techniques [29–31].

In a typical MLA-empowered QSRR pipeline, a minimal feature subset is deter-
mined after the pre-processing of raw data and before the modeling. Among various
techniques, MLR, genetic algorithm (GA), and Relief method have been quite eagerly
used in QSRR studies [31, 32]. Other important feature selection methods are least
absolute shrinkage and selection operator (Lasso), artificial neural network (ANN),
and random forest (RF) [24, 27, 33]. The last two algorithms will be discussed later in
the text, as part of Section 2.4.

2.2.1 Multiple linear regression

MLR founds a linear relationship between a dependent variable and two or more
independent variables (regular attributes). It is basically the extension of the Ordinary
Least Squares (OLS) method.

The general MLR model can be written using Eq. (1):

yj ¼ β1xj1 þ β2xj2 þ … þ βnxjn þ β0 þ ɛ (1)

where yj is a dependent variable, xj are independent variables, βn are slope coeffi-
cients for each predictor, β0 is an intercept, and ε refers to a model’s error term.

In the OLS method, the slope coefficients that minimize the loss function come
from Eq. (2):

Xk
j¼1

yj � ŷj
� �

¼
Xk
j¼1

yj � βxj þ β0
� �� �2

(2)

The use of MLR makes sense only if: a) there is a linear relationship between
predictors and dependent variable, b) the correlation between variables is not too
high, c) the instances are chosen randomly from the population, and d) the residuals
are normally distributed. MLR estimator is burdened with a great variance,
especially in the cases, where the number of attributes approaches the number of
observations [27].

2.2.2 Least absolute shrinkage and selection operator

Lasso regression is one of the most popular regularization methods for selecting
significant independent variables. The concept of regularization has been introduced
to avoid overfitting in MLR modeling. In brief, the regularization refers to adding a
“penalty” term to the best model built upon a training dataset and to achieve a smaller
variance and control the influence of the predictor variables over the response. In
Lasso regression, this is done by penalizing the absolute value of the magnitude of
coefficients (Eq. (3)).

LASSO ¼
XK
J¼1

yj �
X

n
xjnβn

� �2
þ λ

Xp

k¼1

βkj j (3)
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In Eq. (3), λ is the tuning parameter that controls the amount of shrinkage. If λ is
large, the slope coefficients are penalized highly toward 0, and more features are
eliminated. If λ is 0, all features are considered and the residual sum of squares
criterion is applied. As λ increases, the bias increases. Otherwise, the variance
increases [27, 34].

2.2.3 Genetic algorithm

GAs are methods that generate a solution for optimization and search problems by
simulating the mechanism of natural selection and the survival of the fittest. In the
initial stage, the GA creates a random population of chromosomes. Each chromosome,
usually represented by a binary string, encodes a potential solution to the problem
under study. In the case of feature selection, individual chromosomes make up a
random subset of variables, where the presence or absence of a variable in the chro-
mosome is denoted by 1 or 0, respectively. Using individuals in the current genera-
tion, the GA creates a sequence of new populations. To achieve this goal, the
algorithm first evaluates each chromosome of the current population by determining
its fitness value. The fittest individuals are selected to pass their genes to the next
generation. Offsprings are, in fact, produced by subjecting the selected parents to
crossover (gene exchange) and mutation (gene change in individuals). In addition,
some of the population’s members with the best fitness values are chosen as elite
children and added directly to the next population. The subsequent generation is
formed after children with inherited good characters replace the current population of
parents. The GA loops until one of the stopping criteria is met (e.g. a predefined
number of generations). The flowchart (Figure 1) outlines the main GA steps.

In terms of the prediction accuracy of constructed QSRR models, the GA showed
superiority in selecting the most relevant features compared to other variable selection
methods [18, 35]. Lately, the GA has been used for the non-polynomial hard problem
of feature selection [36], the selection of molecular descriptors for localized QSRR
models [37], and the development of a QSRR model intended to improve the struc-
tural annotation of triterpene metabolites in an LC-HRMS system [38].

2.2.4 ReliefF

In this method, each attribute is assigned a relevance weighting according to its
ability to distinguish between class labels. Attributes with weight above the user-
defined threshold τ are considered significant and included in the set of selected
features. The underlying principle is that the instances belonging to the same class
should be closer than those of different classes. The algorithm cycles over j training
cases (Ri) that are chosen by the user. First, n dimensional weight vector Wof zeros is
initialized. Then, the target instance Ri is selected at random and the distances
between it and its two nearest neighbors, namely, nearestHit (the closest instance with
the same class) and nearestMiss (the closest instance with the opposite class) are
calculated. Feature weight W is updated so that more weight is assigned to attributes
that distinguish an instance from neighbors of different classes (Eq. (4)). After j
cycles, each element of the weight vector is divided by j, giving rise to the relevance
vector [27, 30, 31].

Wi ¼ Wi � Ri � nearestHitð Þ2 þ Ri � nearestMissð Þ2 (4)
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Originally, the Relief algorithm has been intended for classification problems and
could be fooled by an insufficient number of cycles. Nowadays, it has been adapted
for predicting continuous decision variables and as such is being used for QSRR
studies (e.g. to predict retention parameters). The differences between Relief, ReliefF,
and RReliefF are presented in detail in [39].

2.3 Response transformation

When implementing supervised algorithms, it is a good practice to examine data
distribution. The distortion of the symmetry of normal distribution around its mean is
denoted as skewness. A general impression of skewness can be gained by drawing a
histogram or computing the skewness coefficient. If the distribution’s shape has one
peak and a long tail on the right side of the curve, the distribution is positively skewed.

Figure 1.
GA flowchart.
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In contrast, the distribution has a negative skew if a long tail is on the left side of the
curve. In numerical terms, the skewness for a normal distribution is (approximately)
0. Negative coefficients are related to negative skewness and vice versa. The coeffi-
cient values between – 0.5 and + 0.5 indicate moderately skewed data, and if they are
less than �1 or greater than + 1, the distribution is highly skewed. A highly skewed
dataset can contaminate a model’s predictive performance because the algorithm has
to deal with scattered endpoints at extreme values. In the case of right-skewed data,
for instance, MLAs are likely to predict points with lower values better than those
with high values. Therefore, skewed distribution is one of the major obstacles to the
application of MLAs to real-world data and should be addressed prior to the modeling.
A common strategy for dealing with skewed variables is to transform them. Logarith-
mic, square root, and cube root transformations are recommended when data follow
the power-law distribution, while in the opposite case, it is better to opt for square,
higher powers, or cube root transformations [27, 40, 41].

2.4 Model building techniques

The choice of regression technique for correlating molecular descriptors and chro-
matographic conditions with a chromatographic parameter has a huge impact on the
performance of any QSRR model. Due to its simple and explainable character, MLR
received considerable attention in mechanistic research long ago [24]. However, if
researchers amass vast troves of data and cannot make sense of it in a reasonable
amount of time, the process is the main candidate for modeling through more sophis-
ticated MLAs. MLAs fall under the umbrella of artificial intelligence and can process
and understand data faster. These algorithms learn to resolve issues by drawing firm
conclusions from observation data they are supplied with. Along with improvements
in technology and computing power, QSRR can take advantage of machine learning in
a fundamental and practical manner. By acknowledging nonlinearity in LC data,
MLAs play an important role in the accuracy of property predictions. However, no
currently available MLA can deliver optimal performance for every modeling task.
A variety of MLAs should be used before selecting a particular regression technique.
The common MLAs are ANNs, support vector regression (SVR), and ensemble
methods [42].

2.4.1 Artificial neural networks

ANN is a series of machine learning algorithms that mimic the process of natural
thinking by making experience-based decisions. Modeled on the human brain, the
ANN refers to a massive composition consisting of some primitive processing ele-
ments (i.e. artificial neurons). Most operative neural nets are constructed by grouping
neurons into layers. An individual neuron might be connected to several nodes in the
layer beneath, i.e., above it. Data passing through layers in only one direction makes
up a feedforward neural net (or multi-layer perceptron). Apart from the layers, the
main components of ANN include the adaptive coefficients –weights, assigned to each
of the connections between the layers, as well as the transfer functions, which convert
received raw data into output. The transfer functions, learning rules, and architecture
itself define the behavior of each ANN [43]. When a neural net is being trained, all of
the weights are first randomly assigned to synapses between neurons. Then the input-
output pairs of data are fed to the net in an attempt to train an algorithm to recognize
the underlying patterns between variables. This strategy pertains to the process of
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supervised learning. In a supervised feedforward backpropagation algorithm, the
training is performed by comparing the processed signals with the desired outputs and
adjusting the inputs’ weights until the margin of error is minimal. Herein, the weights
are updated in the steepest descent fashion. Higher weights are attributed to the
inputs that contribute the most to achieving the right target [44, 45].

Neural nets are a valuable tool for analytical R and D due to the ability to learn
nonlinear relationships encountered between predictors and dependent variables in
most corresponding systems. Contemporary applications of ANN in the pharmaceuti-
cal sciences are broad, ranging from interpretation of analytical data to drug design.
Over the past decade, there has been an impressive increase in the number of publica-
tions on QSRR studies that used ANN as a modeling technique. In particular, the single-
hidden layer neural nets provided a satisfactory level of prediction accuracy [46–51].
After the improvement in computer power and the rise of big data, ANNs began to
flourish in the form of deep learning (DL) algorithms [52–55]. Deep neural networks
are the ones that have more than one hidden layer. With each additional layer, the DL
algorithm can model increasingly complex relationships. As compared to other ML
techniques, ANN architecture is characterized by great flexibility and can process raw
data and automatically extract a set of the most informative features. Unfortunately,
the DL is not free of limitations; in general, these algorithms are data-hungry and
require massive training sets. The question to be raised, in that respect, is whether the
analytical domain can provide big data without losing valuable resources [56, 57]?

2.4.2 Support vector regression

SVR is another promising machine learning algorithm that acknowledges the
nonlinearity in data. It is built on the principles of statistical learning and the concept
of constructing a line (or hyperplane in high-dimensional space) that fit the data.
Among an infinite number of possible solutions, SVR finds a hyperplane with the
greatest distance to the nearest training instances. Finding such a hyperplane is based
on minimizing the l2-norm of the coefficient vector, w (Eq. (5)), while the absolute
error between the target yi and predicted values are set to be less than or equal to a
specified margin, ε (Eq. (6)).

min
1
2

wk k2 (5)

yi �wixi
�� ��≤ ε (6)

In Eq. (6), xi is the i-th input point in the input space (a feature) and wi is its
associated coefficient. The maximum error ε is tuned to gain the predictive ability of
the built model satisfactorily.

For the endpoints that reside outside the ε-tube, deviation from the margin is
represented by the slack variable, ξ. Term C is added to penalize these points in
comparison with those either above or below the hyperplane. With respect to these
deviations, the objective function and its constraint are given in Eqs. (7) and (8),
respectively.

min
1
2

wk k2 þ C
Xn
i¼1

ξi (7)

yi � wixi
�� ��≤ εþ ξij j (8)
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The SVR hyperplane is constructed after the inputs are mapped into a space of
higher dimension(s) than the original using the kernel function (e.g., polynomial,
splines, radial basis function, etc.). Then, using a simple linear function, the SVR helps
predict the target value. By projecting the optimal hyperplane back into the input
space, it takes on a nonlinear form. Due to its remarkable generalization ability, the
SVR has gained popularity in QSRR studies [31, 44, 55, 58–63]. In most publications,
the empirical performance of SVR matches with or is considerably better than the
performance of other MLAs studied.

2.4.3 Ensemble learning algorithms

In ensemble learning, algorithms with high bias or too much variance (so-called
weak learners) are merged to produce the most popular result. The underlying idea of
aggregating predictions is to create a much more accurate and robust model. Bagging
(also known as bootstrap aggregation) and boosting are the most prominent classes of
ensemble methods [64].

Weak learners that are used widely in ensemble learning are decision trees (DTs).
DTs are nonlinear machine learning techniques that can handle either regression or
classification tasks. They are simple, intuitive, and can deal with missing values and
large datasets with elegance. The classification and regression tree (CART), intro-
duced in 1984, is a typical DT algorithm [65]. It is presented as a tree-shaped diagram
containing a set of nodes and branches growing downwards. This topology gives the
idea of a binary and hierarchical algorithm that adopts the recursive partitioning
method. It is an iterative procedure that seeks to find the best split (the best splitting
feature and the best input data) at each step. Performance metrics, e.g., Gini index,
information gain, or error rate, are utilized to assess the quality of the split. Funda-
mentally greedy nature and poor ability to cope with the penalties on tree complexity
(while growing the tree) are the main disadvantages of the top-down approach.
Pruning is done to prevent an overfitting phenomenon [66].

2.4.4 Random forest

RF was introduced as a DT-based ensemble in 1984 [65]. It is a collection of
unpruned DTs (grown to the maximum extent) that are trained by the bagging
method. In bagging, base models are grown on bootstrapped subsets of the data and
the individual predictions of all base models are averaged to get the final output. As a
result, the ensemble model has less variance than its building elements. While sharing
the main idea with bagging, the RF adopts an additional level of randomness – each
node of each tree deliberately takes into account only a random subset of features
(e.g., the square root of a number of descriptors) for the splitting procedure. An RF
model benefits from this tactic in terms of efficacy. In addition, it is important to
mention that the internal validation is built into the forest growth. According to the
concept of bootstrapping, some of the data are omitted from the samples intended for
tree growth, while the others are repeated in the samples. The former is denoted as
Out-Of-Bag (OOB) data. Given the fact that the OOB sample is not included in the
tree fitting, it is used to estimate the model error. Usually, it makes up to one-third of
the available data, while the other two-thirds of the data is used for training. In order
to achieve a small OOB error, it is necessary to optimize the number of base models
and the size of a subset of features [66, 67].
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In QSRR studies, the RF algorithm is readily used as a modeling technique
[42, 55, 66, 68] as well as a feature selection method [69, 70]. The latter is due to the
ability of the algorithm to quantify the importance of variables under study. The
importance of each feature is determined by observing a change in prediction error when
the OOB set for that feature is permuted (and the other features are kept constant).

2.4.5 Gradient boosted trees

Gradient boosted trees (GBT) is an extremely powerful ensemble algorithm based
on boosting and gradient descent approach. Unlike the bagging, which combines weak
learners in parallel, the boosting merges base models linearly. The focus here is
especially on shallow DTs that have low variance and high bias.

A correlation between base models (arising from the same data) is precluded by an
incremental change of the training set. This is done by assigning weights to each
example. Initially, all weights are set to be equal and the first decision tree is trained
on the original dataset. Accurately predicted instances have their weights decreased,
while the others have their weights increased. The trees that enter the ensemble in
subsequent iterations are thus applied to the reweighted data and their goal is to
correct the errors made by the previous model. Boosting, which decreases the bias of
individual base models, is viewed as one of the groundbreaking concepts introduced
in ML over the last decades. The GBT algorithm minimizes a loss function via a
gradient descent procedure. The predictive power of the GBT ensemble correlates
with the number of base models and the size of learning rate. A larger ensemble will
very quickly over-fit, while a combination of too few DTs might lead to poor predic-
tive performance. Lower values of learning rate (a parameter that controls the length
of incremental step) may resolve the problem of overfitting, but a prolonged conver-
gence toward the solution can place a lot of computational burden on the model in
question [71, 72]. Due to the ability to create highly accurate QSRR models (and the
fact that it quite often outperforms many other regression algorithms), the GBT is
popular in analytical R&D. The successor to the gradient boosting, regularized gradi-
ent boosting (i.e., XGBoost), is increasingly used to provide state-of-the-art solutions
to many LC challenges as it yields improved generalization capabilities and better
avoids over-fitting [27, 32, 42, 73, 74].

2.5 QSRR model validation

It seems that it is feasible to build mathematical models that fit the data very well.
But, there is still a possibility that it may happen due to chance correlations or
overfitting. In that case, the models are not considered appropriate for their intended
application. Therefore, proper statistical validation of models is of great importance in
QSRR studies. The two main concepts, denoted as internal and external validation,
will be discussed herein. The internal validation procedures include leave-one-out
(LOO) and leave-many-out (LMO) cross-validation (CV), y-randomization, and
bootstrapping.

2.5.1 Leave-one-out cross-validation

LOO-CV is performed by excluding each sample (compound) once and building a
model with the remaining data and predicting the value of the response for the
eliminated sample. Due to the presence of repetitive cutting data set activities, the
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LOO is also known as rotation estimation and jack-knife validation method. This
approach indicates that the eliminated sample serves as a temporary test set taken
from the overall training set. Each cycle of this repetitive procedure is followed by
calculating the differences between experimentally observed response values and
estimated (predicted) ones by the model. These values are afterward included in
Eqs. (9) and (10) corresponding to the root mean square error of CV (RMSECV) and
the cross-validated correlation coefficient (Q2), respectively. Finally, the model pre-
dictive performances are inspected by the values of the root mean square error of
calibration (RMSE, Eq. (11)) and the overall CV correlation coefficient value, calcu-
lated for the whole original dataset as the average value of Q2 from each CV cycle [27].
The value of overall Q2 is usually greater than that of individual Q2, though a large
difference between them (overall Q2 greater by 25%) indicates that the model suffers
from overfitting [75].

RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
yexperimental � ypredicted
� �2

n� 1

vuut
(9)

Q2 ¼ 1�
P

yexperimental � ypredicted
� �2

P
yexperimental � yexperimental

D E� �2 (10)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
yexperimental � ypredicted
� �2

n

vuut
(11)

In the aforementioned Eqs. (9)–(11), n stands for the number of samples in the
dataset, yexperimental are the values of experimentally observed responses and ypredicted
are the responses calculated (theoretically predicted) based on the built model calcu-
lated either from the data used from model development (in case of Q2 and RMSECV)
or the original dataset (in case of RMSE). The brackets ˂ ˃ are used to point out the use
of the average values of experimentally obtained responses.

2.5.2 Leave-many-out cross-validation

To perform the LMO-CV, the initial dataset is divided into blocks of samples;
afterward, each block is eliminated once from the model building in each cycle in a
similar manner as applied in the LOO-CV. The prediction of response is made for the
block under consideration. It should be noted that the blocks may consist of the same
number of constituents, but that is not an obligation. The LMO may also have differ-
ent validation cycles. In that respect, as an example, the original dataset can be divided
into 10 parts indicating that each data block accounts for 10% of the data, 10 valida-
tion cycles are needed and the respective method may be referenced as 10-fold CV as
well. In comparison with the LOO, this procedure is more time-effective. The valida-
tion metrics are similar to those presented for the LOO-CV with adjustments in
relation to a sample or a block of samples. It is worth mentioning that the same
appropriate adjustments must be implemented in the used equations. Also, since there
is no truly new compound under consideration within none of the variations of the
internal validation procedures, it is advisable to perform as many as possible internal
validation tests for the final justification that the model is of good quality, relevant,
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and suitable for its intended use. This recommendation especially stands in the case of
the modeling based on small datasets where any omission of data from the original
dataset may lead to the inability to perform the modeling procedure at all [75, 76].

2.5.3 y-randomization

Y-randomization is used to ensure the robustness of the developed model. For
example, it can check whether there is a molecular descriptor statistically well corre-
lated with the response value y; but, in reality, there is no cause-effect relationship
originating from the physical and/or chemical meaning of a molecular descriptor and
the respective retention measurement. The model validation is performed by keeping
the so-called X matrix with original unchanged descriptors while the vector of the
response values y is randomized or scrambled. Since the new models are built based
on the same input dataset but associated with changed (false) responses, it is expected
that they are of poor quality as reflected by the values of Q2 and overall Q2. Kiralj and
Ferreira proposed a detailed overview of the possible Q2 and overall Q2 values and
their interrelationships according to which the chance correlation may be inspected
[77].

2.5.4 Bootstrapping

Bootstrapping procedure suggests the random splitting of a complete dataset into
training and test sets several times and the building of respective models afterward.
While in the LOO and LMO procedures each sample is excluded from the modeling
only once, in the bootstrapping there is an equal chance for a sample to be eliminated
once, several times, or even never. The corresponding Q2 and overall Q2 validation
metrics are calculated and expected to be of high values as well as to oscillate around
the real values or values obtained from the LOO-CV of a real model. It should be noted
that this validation procedure is affected by a number of splits or resampling as well as
the structure or similarity between the training and test sets [77].

2.5.5 External validation

The predictive power of a QSRR model is evaluated by the external validation,
with model blind samples (compounds), meaning that these samples were not previ-
ously seen by the model or used for model development. Therefore, the extraction of
an external validation test set from the original data is required, and a proper selection
of the size and type of these data is of crucial importance for a successful validation
process. Usually, this subset covers 15–25% of the original dataset [78, 79]. Although
the external validation test set is a golden standard of the QSRR models’ prediction
properties, there is a concern about the relatively small size of the external test set in
comparison with the LOO- or LMO-CV where the whole dataset acts as a test set in
some moment. At the same time, the consideration of the similarity between the
training and external validation subsets is of utmost importance by means of similar
variable ranges and distribution. The common trend indicates that a greater similarity
between these subsets leads to a decrease in prediction errors [4]. Finally, more than
one splitting of the dataset into modeling and external validation test sets is also
advisable [80].

The statistical parameters for model evaluation include the multiple coefficients of
determination of external validation, also called predictive R2, and the root mean
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square error of prediction (RMSEP). The values of these parameters can be calculated
using Eqs. (10) and (11), taking into consideration that all data correspond to the
external test set solely. Another valuable indicator of the model’s predictive perfor-
mance is the Pearson correlation coefficient of prediction (R), which is used to reflect
a correlation existing between the experimentally observed responses and the
responses predicted by the model. It is expected from the value of R to be maximally
close to 1. The parameter R can be calculated by Eq. (12) [77].

R ¼
P

yexperimental � yexperimental

D E� �
ypredicted � ypredicted

D E� ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

yexperimental � yexperimental

D E� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ypredicted � yexperimental

D E� �2r (12)

2.5.6 Detection of sources of prediction errors

Apart from the inspection of the statistical parameters computed from the respec-
tive validation procedure, to assure the quality and practical usefulness of QSRR
models, it is worth getting insight into the possible sources of prediction errors
(residuals). In that respect, besides the calculation of RMSE, which uses the same
units as the response, it is useful to express it in percentages. By analyzing the value of
RMSE (%), the magnitude of the prediction error concerning the mean of actual
experimentally observed values is clearer for understanding. Another benefit of this is
the possibility to detect outliers i.e., the samples for which the predicted values are too
distant from the mean of the experimentally observed values. The outliers differ
significantly from all other observations due to the exceptional chemical nature or
chromatographic behavior of a compound and may occur in the test dataset as well as
in the training dataset. Since their values lie outside the overall usually normal distri-
bution of a dataset, it is quite obvious that the outliers can cause serious problems
when it comes to the development of reliable and statistically stable QSRR models.
Based on the number of outliers and the intensity of their distinction from other data
points in a dataset (soft or influential outliers), the model predictive ability and/or
model statistical stability may be brought into question [44]. It is recommended that
the outliers should be removed from a dataset before proceeding with model devel-
opment and analyzed for the origin of possible errors [77, 78, 81]. For the sake of
building models of suitable quality, various methods for outlier detection immerged
among which some are based on visual analysis of scatter plots, histograms, Box plots,
and the others on the calculation of Z-score and interquartile range. More sophisti-
cated methods propose so-called acceptable error windows and unambiguous cut-off
limits for applicability domain margins while considering the chemical structural
diversity of compounds in a dataset, standardized residuals of predictions and a
specific leverage (structural) value of each compound (OTrAMS method), a standard
deviation of predictive residuals and a mean of predictive residuals (Monte-Carlo
sampling method). More detailed information on the use of later outlier detection
methods was provided by Aalizadeh et al. [59].

2.5.7 Definition of model applicability domain

In addition to the statistical model assessments, the predictive power of a robust
and validated QSRR model must be expressed in terms of the applicability domain.
The model interpretability is affected by its characteristics as well. This domain refers
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to a theoretical space defined by a range of the molecular descriptors of compounds
used for model training purposes and respective chromatographic conditions as well
as a range of the modeled responses. It is obvious that the applicability domain
strongly reflects the physicochemical and structural properties and chromatographic

Figure 2.
QSRR workflow.
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behavior of compounds from a training set. In order to make the best response pre-
dictions, the training set must be similar to the target molecule [24, 44, 75]. The aim of
narrowing the space for making predictions actually serves to avoid unjustified and
inaccurate model extrapolations. The dedicated approaches for the definition of
applicability domain based on the range of response variables or the range in the
descriptor space (geometrical methods and distance-based and probability density
distribution-based methods) were thoroughly described by Roy et al. [82, 83]. As the
issue is closely related to the applicability domain, the same authors elaborate the
strategy for a proper selection of data to be introduced in the training and/or test
dataset out of the original dataset as well [83]. It is perfectly reasonable to state that
the lack or poorly conducted selection of compounds increases modeling errors and
calls into question the success in all predefined QSRR modeling goals or application
areas.

After summing all the previous considerations into a graphical presentation, the
QSRR flowchart may look like the one in Figure 2.

3. Application of statistical QSRR model in complex HPLC techniques

The application of the QSRR approach is directly driven by its definition. As the
QSRR represents a mathematical relationship between molecular retention
behavior and its properties inherent in molecular structures (molecular descriptors),
they are primarily used to predict the retention behavior of molecules omitted
during model development. In addition, it can be used to single out important fea-
tures, by which the retention behavior is governed and it is possible to gain insight
into the retention mechanisms. It can also be applied for stationary phase characteri-
zation or their comparison in terms of separation characteristics [5]. In some cases,
they can provide drug or xenobiotics classification or an assessment of their
bioactivity [2]. By incorporating experimental parameter values into a QSRR
model, their application can be expanded on HPLC method development and
optimization [84].

Since various highly adaptable mathematical tools are suitable for structuring
statistical QSRR models, the QSRR approach shows compatibility with a broad spec-
trum of HPLC properties. Although it has a place in the modeling of conventional
unimodal HPLC, which was discussed in more detail by Haddad et al. [84], it is also a
valuable tool in the case of defining more complex HPLC systems. Complicated
molecular retention patterns are often generated from mobile or stationary phase
modification. Taking into consideration such HPLC system modification, the predic-
tive abilities of QSRR can not only reduce experimental requirements but also provide
a deeper insight into the retention mechanism. The following section is not a compre-
hensive literature review but rather a demonstration of the beneficial properties of
QSRR used for characterizing complex HPLC systems applied for the analysis of small
molecule substances.

3.1 QSRR approach for HPLC with mobile phase modifications

Increasing the retention of poorly retained analytes in RP-HPLC is often achieved
by modifying mobile phase properties. The addition of modifiers can provoke changes
in the retention behavior by imposing an additional equilibration process.
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3.1.1 Ion-interaction chromatography

Compromised retention of basic solutes can be promoted by introducing ion-
interaction agents into the mobile phase. Ion interaction chromatography (IIC)
involves a series of equilibration processes between chromatographic phases and
analytes, which necessitates the understanding of the separation process [85, 86]. An
IIC system, with added chaotropic salts, was assessed by Čolović et al. [63]. A mixed
QSRR-SVR model was developed based on the retention data of 34 analytes as inde-
pendent variables were selected i.e., three mobile phase parameters (concentration of
NaPF6, pH, and acetonitrile content) and four molecular descriptors (Branching
index EtaB with ring correction relative to molecular size (ETA_EtaP_B_RC), calcu-
lated octanol/water partition coefficient (XlogP), 3D topological distance-based auto-
correlation – lag 9/weighted by polarizabilities (TDB9p) and radial distribution
function – 045/weighted by relative polarizabilities (RDF45p) descriptor). The
importance of analytes’ steric effects and voluminosity were indicated by
ETA_EtaP_B_RC, while XlogP implied the significance of hydrophobicity, which was
in line with the RP retention mechanism. However, TDB9p and RDF45p indicated the
participation of electrostatic interactions during the retention process. Thus, the
hypothesis on the complementarity of the analytes’ electronic structure and the elec-
trical bilayer created in the stationary phase was supported.

3.1.2 Micellar liquid chromatography

In MLC, a modification of mobile phase features is attained by adding surfactants.
When surfactants are present at a concentration above the critical micellar concen-
tration, micelle formation occurs. Surfactant molecules can coat the stationary phase
as the absorbed monolayer. Moreover, surfactant interaction with both analyte and
stationary phase implies the presence of secondary equilibration. Thus, the explora-
tion of the MLC retention process is challenging [85, 87]. A QSRR-MLR modeling
approach was performed by Ramezani et al. for testing anthraquinones. These authors
linked molecular descriptors (partition coefficient calculated from hydrophobic frag-
mental constants (logP), Geary autocorrelation of lag 8 weighted by van der Waals
volume descriptor (GATS8v), the mean topological charge index which represented
the effect of analyte charge in the MLC separation (JGI4), and descriptors based on 3D
molecule representation of structures based on electron diffraction theory (3D-MoRSE),
namely 3D-MoRSE descriptor of signal 27 (Mor27m) and 3D-MoRSE descriptor of
Moran autocorrelation of lag 7 (MATS7md)) and empirical factors of six organic
modifiers to anthraquinones’ retention time. It was concluded that the retention
behavior is significantly influenced by the modifier’s logP values, as well as by the
mass, molecular weight, and van der Waals volume, in addition to the topological
charge [63].

Complementation of the available knowledge on MLC was attained by Krmar
et al.; numerous mixed QSRR models were developed using different types of algo-
rithms. Not only was the GBT identified as the most suitable but also the most
significant properties relevant for the separation of aripiprazole and impurities were
extracted. QSRR models, in addition to MDs, contained experimental parameter
values (concentration of non-ionic surfactant Brij L23, pH, and the content of ACN)
in line with the Box-Behnken design. Steric effects and dipole-dipole interactions were
identified to be the most important thermodynamic molecular parameters relevant for
retention behavior [27].
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3.1.3 Cyclodextrin-modified liquid chromatography

Shifting the analytes’ retention behavior in RP-HPLC can also be provoked by
adding cyclodextrins (CD) to the mobile phase. Molecular retention patterns are
modified because of CD-analyte complex formation, in addition to the adsorption
process of CD on the stationary phase surface [85].

Maljurić et al. developed a QSRR-ANNmodel for the retention property analysis of
risperidone, olanzapine, and related impurities in a CD-modified RP-HPLC system.
The values of MSs, complex association constants, and chromatographic factors were
used in the model. The most influential molecular descriptors and complex association
constants were polarizability (POL), solvent-excluded volume (SEV), octanol/water
partition coefficient (logP), dipole-dipole energy (DEN), binding energy (BE), elec-
trostatic energy (EE), and unbound energy (UE) [48]. In a later study, a developed
model was employed for determining a change in retention factor, the stability con-
stants, and thermodynamic parameters of complex formation [88].

Another QSRR-ANN model for revealing separation processes in a CD-modified
RP-HPLC system was developed by Đajić et al. The experimental parameters were
acetonitrile percentage, aqueous phase pH, β-CD concentration, and column temper-
ature. The most important molecular descriptors were identified as radial distribution
function – 075/weighted by mass (RDF075m), signal 04/weighted by mass (Mor04v),
and CATS2D positive-lipophilic at lag 08 (CATS2D_08_PL). It was found that the
molecular size, shape, and lipophilicity of analytes significantly affect their retention.
The retention behavior is also governed by the size and lipophilicity of the added CDs
as it determines the structural agreement with the tested analytes [89].

3.2 QSRR for HPLC with unconventional stationary phases

Non-straightforward retention behavior resulting from the application of an
unconventional stationary phase can be defined similarly as in the previous examples.
As the QSRR successfully reveals additional interactions shaped by mobile phase
modifiers, it can also expose multiple retention mechanisms provided by the station-
ary phase.

3.2.1 Immobilized artificial membrane chromatography

The characteristics of the stationary phase used in immobilized artificial mem-
brane (IAM) chromatography are in line with its structure based on phosphatidyl-
choline residues covalently bound to silicon dioxide. In this way, the column mimics a
phospholipid membrane monolayer and exhibits biomimetic properties [90].

In the research of Ciura et al., the general conclusions about the molecular reten-
tion mechanisms of isoxazolone on an IAM chromatographic system were derived
from a QSRR model. The purpose of this research was to assess isoxazolone deriva-
tives’ affinity toward phospholipids. The model was developed using differential
evolution combined with partial least squares regression (PLS). Molecular descriptors
carrying the information referred to van der Waals volume as well as those defined
based upon the weighted holistic invariant molecular theory (WHIM), geometry,
topology, and atom-weights assembly theory (GETAWAY), and 3D molecule repre-
sentation of structures based on electron diffraction theory (3D MORSE), stood out as
descriptors of importance, carrying the information related to molecular size, shape,
symmetry, and atomic distribution. However, polarizability related and descriptors
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based on chemically advanced template search theory (CATS) were omitted despite
being important for lipophilicity determination. The interpretation of these results led
to a conclusion about the insufficient binding of isoxazolone derivatives to phospho-
lipid molecules [90].

In another study, Buszevski et al. tried to gain insight into the biological activity of
30 flavonoids using IAM chromatographic analysis. The GA-PLS algorithm was used
for QSRR model development. The conclusion about retention mechanisms was made
upon quantum chemical descriptors, indicating that hydrophobic forces, dispersion
effect, and electrostatic interactions govern the retention behavior of flavonoids in
IAM chromatographic separation [36].

3.2.2 Mixed-mode liquid chromatography

A promising application of QSRR models has also been shown by the explanation
of MMLC, where multiple functionalities in charge of providing different
intermolecular interactions are integrated into a single stationary phase.

Obradović et al. developed QSRR models to characterize an MMLC system in
which RP and hydrophilic interaction (HILIC) modes participate equally. Forty-three
substances, serotonin, and imidazole receptor ligands were tested. Interestingly, sep-
arate QSRR models for four different types of responses were developed. The reten-
tion factor in pure eluents and the turning point for modality shifting were used as
selected outputs. For characterizing the partition process in the RP mode, atomic
mass, lipophilicity, and intermolecular hydrophobic interactions were proved to be
important. The partition process in the HILIC modality was characterized by
lipophilicity, distribution of ionic forms, and electrostatic properties. Adsorption, on
the other hand, was driven by molecular geometry, electronegativity, polarizability,
van der Waals volume, and atomic mass of the tested analytes. For the turning point
and modality expressions, distribution of ionic forms, hydrogen bonding properties,
and electronic properties, as well as atomic mass, were significant [91].

Russo et al. used a QSRR model developed by PLS in combination with block
relevance (BR) to detect retention mechanisms provided by the arginine stationary
phase. Due to the diverse interaction ability of the stationary phase, analytes with
diverse ionization capacity (neutral, acids, and bases) were selected. It was noticed
that the analyte’s size and hydrogen donor capacity were important for the retention
of neutral substances. For acidic molecules, descriptors calculated with VolSurf+
software and VS+ descriptors, did not describe the electric charge well enough; the
MLR strategy was used for confirmation of the electrostatic background of acidic
analytes’ retention. Also, with the constructed QSRR model, it is possible to recognize
the turning point for modality shifting. The basic substances did not show a sufficient
degree of retention, so it was not possible to qualitatively define the retention mech-
anisms involved in their separation [92].

3.3 Future perspectives

With the use of adequate mathematical tools for linking input variables (both
molecular descriptors and experimental parameters) with suitable responses, the sta-
tistical approach of QSRR modeling does not recognize limitations regarding the type
of HPLC system that needs to be characterized. For this reason, it is considered that
especially mixed QSRR models can significantly improve the understanding and
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development of HPLC methods when complex retention patterns are present due to a
possible reduction of the requirements for experimental work.

4. Conclusion

It can be concluded from the literature that QSRR models have been widely applied
in chromatographic science, this topic is, therefore, of great interest to researchers in
different scientific areas. This chapter has presented the QSRR models with structur-
ing possibilities in detail, the importance of molecular descriptors, and machine
learning algorithms selection, as well as different approaches to conducting these
important tasks. It can be also used as a guideline when choosing internal and external
validation approaches to apply in the consideration of their main advantages and
disadvantages. Special attention was put into disclosing the most important QSRR
model applications, by pointing out the possibilities of investigating modified HPLC
systems that are of great interest to analysts working with different kinds of com-
pounds.
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