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Abstract: Hemodialysis (HD) removes nitrogenous waste products from patients’ blood through a semipermeable mem-
brane along a concentration gradient. Near-infrared spectroscopy (NIRS) is an underexplored method of monitoring the 
concentrations of several molecules that reflect the efficacy of the HD process in dialysate samples. In this study, we aimed 
to evaluate NIRS as a technique for the non-invasive detection of uremic solutes by assessing the correlations between the 
spectrum of the spent dialysate and the serum levels of urea, creatinine, and uric acid. Blood and dialysate samples were 
taken from 35 patients on maintenance HD. The absorption spectrum of each dialysate sample was measured three times 
in the wavelength range of 700-1700 nm, resulting in a dataset with 315 spectra. The artificial neural network (ANN) learn-
ing technique was used to assess the correlations between the recorded NIR-absorbance spectra of the spent dialysate and 
serum levels of selected uremic toxins. Very good correlations between the NIR-absorbance spectra of the spent dialysate 
fluid with serum urea (R=0.91) and uric acid (R=0.91) and an excellent correlation with serum creatinine (R=0.97) were 
obtained. These results support the application of NIRS as a non-invasive, safe, accurate, and repetitive technique for online 
monitoring of uremic toxins to assist clinicians in assessing HD efficiency and individualization of HD treatments.
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INTRODUCTION

End-stage renal disease (ESRD) is characterized by 
the progressive retention of uremic toxins, causing 
clinical manifestations of the uremic syndrome. Even 
though the definition of uremic toxins also includes 
inorganic molecules, in clinical practice the term 
usually refers to organic uremic solutes deriving from 

protein catabolism. The most assessed uremic toxins 
in routine clinical practice are urea, creatinine, and 
uric acid. Hemodialysis (HD) is a life-saving proce-
dure for patients with ESRD. The technique involves 
the removal of nitrogenous waste products from the 
patient’s blood through a semipermeable membrane 
along a concentration gradient. Nearly fifty years ago, 
a dynamic assessment of dialysis performance based 
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on urea kinetic modeling was embraced as a parameter 
of dialysis adequacy to standardize the procedure and 
provide all patients with the optimum treatment [1]. 
This estimation relies on a combination of three ele-
ments affecting urea concentration: dialyzer clearance 
(K), dialysis time (t) and body size as represented by 
urea distribution volume (V), roughly corresponding 
to total body water [2]. Even though it was introduced 
at a time when the dialysis population was younger 
and had fewer comorbidities, membranes were smaller, 
and the average dialysis time was shorter, the Kt/Vurea 
remains the fundamental estimation of HD adequacy 
in clinical practice, despite its positive correlation with 
survival benefit being recently disputed [3-5]. In clini-
cal practice, dialysis adequacy is evaluated monthly, 
assuming that an equal dialysis dose will be delivered 
for all remaining treatments. This regular follow-up of 
HD patients generates an average annual blood loss of 
250 to 350mL to routine laboratory testing in already 
anemic individuals [6]. Post-dialysis urea needed for 
Kt/Vurea calculation requires a 4 mL blood sample and 
still only provides information related to a single di-
alysis session which may not correspond to the actual 
status at any given time [7]. Furthermore, it exposes 
the medical staff to blood and imposes costs associated 
with processing and analyzing blood samples. 

Alternative methods of urea monitoring have been 
explored to curtail these downsides. Fully automated 
online calculation of Kt/V through ionic dialysance of 
sodium and dialysate UV spectroscopy monitoring have 
been implemented on some HD monitors to provide 
the necessary information in real-time without blood 
sampling or additional costs [8,9]. Both methods offer 
rapid detection of dialysis inadequacy by continuous 
monitoring and permit immediate technique adjust-
ments without the need for blood draws. However, there 
are concerns that ionic dialysance may be associated 
with interstitial sodium retention due to the spiking 
of dialysate sodium required for the measurements 
[10]. In contrast, UV absorbance at any wavelength is 
not specific for a single substance, and its results are 
affected by eating during dialysis and fluid infusions 
[11]. Highly sensitive and selective online urea assays 
could overcome these potential disadvantages, but 
this technology is complex and still not commercially 
available. 

Near-infrared (NIR) absorption is another less 
explored alternative to monitor concentrations of 

several molecules that reflect the efficacy of the HD 
process in dialysate samples. The method has been 
assessed in a modest number of previous scientific 
works, which mainly focused on determining urea 
concentration by analyzing the spectra obtained by 
passing incident NIR light through samples of dialysate 
fluid and comparing the results with concentrations 
in standard dialysate solutions with established urea 
levels or reference dialysate samples [12,13]. Machine 
learning (ML) is a set of methods related to decision-
making mainly based on probability and statistics but 
more powerful than standard statistical methodologies 
[14]. This relatively new and highly effective approach 
automatically detects existing data patterns and uses 
them to predict future data. The technique has been 
applied successfully in many fields, including health 
care [15]. In practice, several ML methods are used. 
Artificial neural network (ANN) is one type of ML 
approach modeled to mimic the concept of biological 
neural networks. It typically has several layers (input 
layer, one or more hidden layers, and output layer) 
consisting of interconnected nodes mimicking neurons 
[14]. Nodes perform the linear transformation of the 
input data and feed the transformation output to the 
activation function, which further transmits it to the 
next layer. Nodes are all assigned a weight, a model 
parameter that determines the strength of the node’s 
signal. Weights are adjusted through the learning 
stage with a backpropagation approach to diminish 
classification errors. ANNs are used for regression 
and classification problems by dividing the dataset 
into a training and test set for model training and 
model validation. Before the training, the number of 
passes through the entire training dataset (epochs) is 
determined to optimize learning and assess whether 
the model is underfitted or overfitted [16]. 

In the present study, we aimed to evaluate the 
accuracy of NIR spectroscopy as a method for non-
invasive online monitoring of uremic toxins removal 
by assessing the correlations between the spectra of 
spent dialysate and coinciding serum levels of urea, 
creatinine, and uric acid with an ML technique. The 
aim to provide a non-invasive, real-time assessment of 
HD treatment efficacy to help modify and individualize 
this therapy by combining NIR spectroscopy of used 
dialysate and ML ANN technique has been success-
fully met in the present study.
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MATERIALS AND METHODS

Ethics statement

The research was conducted according to the princi-
ples of the Declaration of Helsinki and in compliance 
with local regulatory requirements. Ethical approval 
was granted by the Ethics Committee of the Clinical 
Hospital Center Dr Dragiša Mišović, Belgrade, Serbia 
(Reference No. 01-1432/14), and all patients gave 
informed consent for participation.

Subjects and dialysis parameters

Dialysate and blood samples were obtained from 35 
ESRD patients on maintenance HD (9 were treated 
with hemodiafiltration and 26 with high-flux HD) 
with a standard regimen of three 4-hour dialysis treat-
ments per week. The inclusion criteria were consistent 
HD prescription in the previous three months, stable 
intradialytic blood pressure, the absence of physical 
weakness or dyspnea, and the ability to rest in a 45-90° 
position during the entire dialysis session. Patients with 
an active infection, malfunctioning vascular access, 
and/or intradialytic complications were not included. 
Patients were continuously monitored during the 
dialysis treatment according to the standard protocol.

All HD treatments were performed under the usual 
protocol, with adequate ultrafiltration rates prescribed 
to remove the interdialytic weight gain. The dialyzer 
setup and preparation involving a pre-rinse step were 
performed according to the clinic’s standard operating 
procedure. The dialysis was performed using Dialog+ 
Adimea® (B. Braun Avitum AG, 34209 Melsungen, 
Germany) machines. The dialysate solution contained 
138 mmol/L Na+, 110.5 mmol/L Cl-, 2 mmol/L K+, 
1.75 mmol/L or 1.50 mmol/L Ca++, 1 mmol/L Mg++, 3 
mmol/L CH3COO-, 32 mmol/L HCO3

-, 1 g/L glucose. 
All patients were dialyzed via antebrachial arteriovenous 
fistulas using a two-needle system and received unfrac-
tionated heparin to prevent circuit coagulation. The 
dialysate flow was set at 500 mL/min, and the mean 
blood flow rate was 280 mL/min.

Sampling procedures 

The samples of the spent dialysate were collected at the 
midweek dialysis session 15 min after dialysis onset 

directly from the dialyzer outlet. For each sample, 15 mL 
of spent dialysate solution was collected in a container 
and stored at room temperature for approximately 3 
h before being transported to the research laboratory. 
Visible near infrared (VIS-NIR) absorbance spectra of 
the samples were measured the day after the HD. The 
blood samples were collected concurrently from the 
arterial port of the dialysis system, and the concentra-
tions of urea, creatinine, and uric acid were determined 
on the integrated biochemical analyzer Dimension 
RxL Max (Siemens Healthcare GmbH, Germany) in 
the hospital laboratory within 3 h.

NIR spectroscopy

Ultraviolet-visible-near infrared (UV-VIS-NIR) optical 
absorption spectra of the spent dialysate were obtained 
using the Lambda 950 (Perkin Elmer, USA) spectrom-
eter equipped with a standard tungsten halogen lamp 
and a PbS detector. The wavelength region of interest 
was 700-1700 nm, and the resolution was set to 2 nm. 
The optical path length was 1 mm. The absorption 
spectrum of each sample was measured three times, 
providing a dataset with 315 spectra. The instrument 
was connected to a Windows 7 operating system PC 
and was controlled by Perkin Elmer UV WIN LAB 
Explorer. All measurements were performed in the 
Laboratory of Nanotechnologies and Nanosystems 
(Nanolab) at the Faculty of Mechanical Engineering, 
University of Belgrade, by a single investigator.

Neural network training

NIR absorption values were implemented in the ANN 
algorithm. In this work, we used a two-layer feedfor-
ward network, with a sigmoid transfer function in a 
single hidden layer and a linear transfer function in 
the output layer for function fitting. The recorded 
NIR-absorbance spectra of the spent dialysate were 
used as input data for the ANN, and targets were cor-
responding serum levels of urea, creatinine, and uric 
acid. The ANN was created with an NFTOOL func-
tion in the MATLAB® software and trained with the 
Levenberg-Marquardt algorithm as the fastest method. 
The Levenberg-Marquardt algorithm is a widely used 
optimization method for training neural networks. It 
is particularly effective in scenarios where there are 
nonlinear relationships between variables and com-
plex optimization tasks. The primary objective of this 
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algorithm is to minimize the discrepancy between the 
predicted outputs of the neural network and the desired 
target outputs [17]. This algorithm has an efficient 
implementation as a built-in function in the MATLAB® 
software because the solution of the matrix equation is 
a built-in function. The algorithm combines aspects of 
both gradient descent and Gauss-Newton methods. It 
is known for its efficiency in training neural networks 
with complex architectures and nonlinear activation 
functions. MATLAB® provides a highly optimized and 
reliable implementation of this algorithm, enabling ef-
ficient training of neural networks [18]. The training 
starts with 2 and finishes with 10 hidden neurons. The 
number of hidden layer neurons is enhanced when the 
network performance is inadequate. The optimum 
number of neurons in the single hidden layer in our 
ANN was determined to be 3. With these settings, the 
input vectors and target vectors were randomly divided 
into three sets as follows: 70% were used for training, 
15% were used for network validation, and 15% were 
used as a completely independent test for network 
generalization. The training data was used to adjust the 
network weights and biases while minimizing the error 
value. Network generalization was assessed by using 
the validation data. The network was adjusted in the 
direction of maximum error reduction. The training 
of the network was completed when the generalization 
stopped improving, as indicated by an increase in the 
mean square error (MSE) of the validation data samples.

RESULTS

The average serum concentrations of urea, creatinine, 
and uric acid were 25.01±5.28 mmol/L, 0.97±0.21 
mmol/L, and 0.34±0.06 mmol/L, respectively. The 
following regression plots display the network out-
puts for training targets, validation, and test set. For 
a perfect fit, the data should fall along a 45-degree 
dashed line, representing points where the network 
outputs are equal to the targets. The circles represent 
the data points. The correlation coefficient (R) is an 
indication of the relationship between the outputs and 
targets. An R value close to 0 indicates a lack of a linear 
relationship between outputs and targets, while R=1 
corresponds to an exact linear relationship between 
outputs and targets. The correlation was considered 
excellent if R>0.95 and very good if R was >0.90. The 
Rall represents the value of R for the training data 

sets. Regression plots between the NIR absorbance 
of the spent dialysate and the corresponding serum 
urea concentrations in the 15th min of HD onset are 
presented in Fig. 1. The observed wavelength region 
was 700-1700 nm, and the number of spectra used 
for training was 315. The following automatically 
computed equation of the regression line: 

Output = 0.8Target + 5.9

provided optimal linking between the predicted (out-
put) and measured (target) values of urea, with a slope 
of 0.8 and a y-intercept of 5.9. This mathematical 
representation yielded a Rall value of 0.91, indicating 
a strong relationship between the predicted and actual 
values of urea concentration.

Fig. 2 shows regression plots between the NIR ab-
sorbance of spent dialysate and the coinciding serum 
creatinine concentrations in the 15th min from HD 
session onset within the observed wavelength region of 
700-1700nm. The number of spectra used for training 
was 315. The optimal relation between the predicted 
(output) and measured (target) values of creatinine was 
obtained with the following automatically computed 
equation of the regression line:

Fig. 1. Regression plot between the NIR absorbance of the spent 
dialysate and coinciding serum urea concentration in the 15th min 
of the HD (wavelength 700-1700 nm; the number of spectra used 
for training was 315). The Rall was 0.91. The regression line equation 
linking the predicted and measured values is Output=0.8Target+5.9.
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Output = 0.95Target + 47, 

where 0.95 is the slope and 47 the y-intercept. This 
equation also indicated a significant and positive cor-
relation between the predicted and measured serum 
creatinine levels with a Rall of 97. 

Regression plots between the NIR absorbance 
of the spent dialysate and the coinciding serum uric 
acid concentrations in the 15th min of the HD session 
(wavelength 700-1700 nm, number of spectra used for 
training 315) are presented in Fig. 3. The automatically 
computed equation of the regression line optimally 
relating the predicted (output) and measured (target) 
values of uric acid was: 

Output = 0.83Target + 0.063

where 0.83 is the slope, and 0.063 defines the y-inter-
cept. The Rall of 0.91 indicates a strong and positive 
correlation between the predicted and measured serum 
concentrations of uric acid.

The variations of MSE used for the training, test-
ing, and validation of ANN data for urea, creatinine, 
and uric acid are presented in Fig. 4. The best valida-
tion checks occurred at epochs 7,10, and 15 for urea, 
creatinine, and uric acid, respectively.

Training, validation, and test parameters were 
plotted against the best case. The MSE for training 
and testing sets, quantifying the difference between 
the network outputs and measured values, were close 
to 0, implying that the designed ANN was well trained 
by observing the R and MSE values. The performance 
plots show that the MSE declines as the number of 
epochs (one complete sweep of training, testing, and 
validation) increases. The validation and test set errors 
have similar characteristics for all parameters, and no 
significant over-fitting occurred for all cases (where the 
best validation performance is achieved). These results 
support the analytical benefit of NIR spectroscopy in 
detecting selected uremic toxins in the spent dialysate 
fluid from patients on maintenance HD.

DISCUSSION

The abundance of data generated by the growing number 
of patients on HD and the large number of dialysis pa-
rameters that need to be determined at every treatment 

Fig. 3. Regression plot between the NIR absorbance of the spent 
dialysate and the coinciding serum uric acid concentration in 
the 15th min of the HD session (wavelength 700-1700nm; the 
number of spectra used for training was 315). The Rall was 0.91. 
The regression line equation relating the predicted and measured 
values is Output=0.83Target+0.063. 

Fig. 2. Regression plot between the NIR absorbance of spent 
dialysate and the coinciding serum creatinine concentration in 
the 15th min of the HD session (wavelength 700-1700 nm; the 
number of spectra used for training was 315). The obtained Rall 
was 0.97. The regression line equation relating the predicted and 
measured values is Output=0.95Target+47.
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session present both an opportunity as well as a necessity 
to introduce predictive mechanistic models and ML 
techniques in this area [19,20]. However, ML has only 
modestly been employed in HD to predict mortality, 
hematic parameters, hyperglycemia, and dialysis ad-
equacy, and to assist with volume maintenance [19-25]. 
The NIR data contains a vast amount of information, 
usually of very high dimensions, allowing the applica-
tion of ML methods that could be used to improve care 
in HD patients [26]. For this reason, we hypothesized 
that NIR spectroscopy could be used as an accurate 
and non-invasive method for online monitoring of 
nitrogenous waste compounds in patients’ blood based 
on their removal in the spent dialysate. We performed a 
NIR spectral analysis of spent dialysate and used an ML 
algorithm to predict concentrations of these analytes 
in blood based on the observed NIR spectra, thereby 
evaluating the accuracy of NIR absorption results. To 
the best of our knowledge, no previous work has used 
the ML approach for this purpose.

Quantitative methods for clinical laboratory meas-
urements should be accurate, precise, reliable, rapid, 
easily automated, and affordable. NIR spectroscopy has 
the potential to satisfy all these criteria. It requires no 
reagents and no sample preparation and offers a safe 
and rapid means of assessing the chemical composi-
tion of a wide range of biological samples. The light 
in the NIR region of the electromagnetic spectrum 
covering the wavelength range of 750-2500 nm is 
transmitted through or absorbed by the sample, and 
the substance concentration is predicted by analysis 
of the transmitted spectral information. Even infor-
mation about complex substances can be obtained 
from a single NIR spectrum. The NIR absorption of 
biological materials originates from the overtone and 
combination bands of the molecular vibrations of C-H, 
S-H, O-H, and N-H bonds, stretching vibrations, and 
the O-H bending vibrations. These absorption bands 
are tens of nm wide and relatively weak, with only a 
small fraction of the absorption of water. When several 
biologic compounds with comparable concentrations 
are present in a matrix, the absorption bands may 
overlap and individually contribute to the observed 
absorption at any given wavelength. NIR spectroscopy 
has been applied previously to detect urea in several 
physiological fluids [27-28], and, more recently, in HD 
effluent [30]. The NIR spectroscopy appeared to be 
less suited for creatinine and uric acid in serum due 

Fig. 4. Variation of MSE for training, testing, and validation data 
for urea (A), creatinine (B), and uric acid (C) with the number of 
epochs (iterations). The best validation check occurred at epoch 
7 for urea (A), at epoch 10 for creatinine (B), and at epoch 15 for 
uric acid (C).
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to the relatively low concentrations of these analytes 
[31], but in urine, the method rendered sufficiently 
strong and accurate spectral signature for creatinine 
[32]. In the present work, we empirically determined 
the optimal wavelength segment for measuring urea, 
creatinine, and uric acid to be between 700 to 1700 nm. 
The region above 1700 nm was excluded as it is strongly 
dominated by water absorption and temperature. 

ML methods offer benefits in recognizing complex 
correlative relations between the input and output 
variables when linear regression models are unlikely 
to obtain valid results [33]. By reducing the utilization 
of redundant information in input variables during the 
training process, the ML algorithms produce highly 
nonlinear decision boundaries, permitting the use of 
small training data samples and exploiting various 
forms of medical data that may be latent in nature [34]. 
ML has been recognized as a helpful tool for decision-
making in both diagnosis and medical treatment in 
different areas of medicine [35]. Nevertheless, it has 
only recently been applied in the different areas of 
nephrology to help clinical decision-making [36-40], 
and so far, to our knowledge, it has not been used 
to assess the value of NIR spectroscopy of the spent 
dialysate for monitoring the removal of nitrogenous 
compounds. When used for this purpose, ML involves 
the transformation or higher-order combination of 
spectrum features to perform complex learning tasks 
and achieve a low training error. In this study, we used 
the ANN ML method to assess the correlation between 
inputs and targets. Several batch training algorithms 
can be used to train a network, including Bayesian 
regularization and scaled conjugate gradient. In the 
current study, we opted for the Levenberg-Marquardt 
backpropagation training function that updates weight 
and bias values according to the Levenberg-Marquardt 
optimization method. This algorithm is efficient and 
adaptive, has stable convergence, and minimizes the 
nonlinear function [41]. It also appears to be the fastest 
method for training average-sized feedforward neural 
networks. It locates the minimum value of the MSE 
through the iterative process of training, validation, 
and testing. The proximity of the obtained R values 
for the training and test sets suggests that the correla-
tion between the network and intended outputs is not 
coincidental. The MSE values for the training and test 
sets were close to zero, suggesting that the designed 
ANN model was well-trained.

The experimental results in this study indicate a 
very good correlation between the NIR-absorbance 
spectra of the spent dialysate fluid and serum urea 
(R=0.91) and uric acid (R=0.91), and an excellent cor-
relation for serum creatinine (R=0.97). The median 
value of the correlation coefficient for those solutes 
is high (Rmed>0.95), and the non-outlier range is very 
small when calculated over all 35 individual patients 
for the whole spectrum ranging from 700-1700 nm. 
Similar conclusions were drawn for online dialysate 
urea monitoring with NIR, while creatinine performed 
better in the mid-infrared spectroscopy of artificial 
dialysate solutions as assessed by partial least square 
regression [12,13,42]. 

The high correlations observed in this study may 
be attributed to the NIR-absorbing properties of the 
selected solutes as they contribute to the total NIR 
absorbance. Based on these results, it can be concluded 
that the accuracy and precision of NIR spectroscopy 
for urea, creatinine, and uric acid determination is 
sufficient to perform diagnostic screening compared 
to standard laboratory measurements. The undisputed 
advantage of the NIR spectroscopy method is that no 
specific reagents or preparation are required. Therefore, 
this method permits repetitive analyses at low cost 
and without solution pollution to help nephrologists 
assess the efficiency and modify and individualize 
HD treatments in real-time. Further improvements 
in assay precision might be achieved with additional 
wavelength ranges and by instrument upgrades that 
would reduce or cancel noise.

Recent decades have brought substantial advances 
in the care of ESRD patients. Significant efforts have 
been made to improve dialysis membrane biocompat-
ibility and hemocompatibility, improve the safety of 
the dialysis procedure, and upgrade the treatment of 
anemia and secondary hyperparathyroidism [43,44]. 
Since the number of ESRD patients is increasing faster 
than the supply of transplantable organs, these de-
velopments are of the utmost importance to provide 
superior treatment and better quality of life for this 
population. This work adds a potentially valuable tool 
to these efforts by combining clinical procedures with 
modern learning technologies. The described technique 
for monitoring dialysis efficiency by removing small 
uremic solutes offers grounds for improving the cur-
rently available options for tracking dialysis efficacy.    
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