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ABSTRACT

Bacterial DNA gyrase and topoisomerase IV control the topological state of DNA during replication
and represent important antibacterial drug targets. To be successful as drug candidates, newly syn-
thesized compounds must possess optimal lipophilicity, which enables efficient delivery to the site of
action. In this study, retention behavior of twenty-three previously synthesized dual DNA gyrase and
topoisomerase IV inhibitors was tested in RP-HPLC system, consisting of C8 column and acetonitrile/
phosphate buffer (pH 5.5 and pH 7.4) mobile phase. logD was calculated at both pH values and the best
correlation with logD was obtained for retention parameter φ0, indicating that this RP-HPLC system
could be used as an alternative to the shake-flask determination of lipophilicity. Subsequent QSRR
analysis revealed that intrinsic lipophilicity (logP) and molecular weight (bcutm13) have a positive,
while solubility (bcutp3) has a negative influence on this retention parameter.
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1. INTRODUCTION

The increasing emergence of pathogenic bacteria resistant to antibacterial drugs is a serious
threat to global health because commonly accessible antibiotics will no longer be effective in
treating these infections. To overcome the problem of bacterial resistance, many studies
continue to investigate this field using modern approaches, particularly through multi-tar-
geting as a promising tactic [1].

DNA gyrase and topoisomerase IV catalyze changes in DNA topology by breaking and
rejoining double-stranded DNA [2]. Both enzymes modify the topological state of DNA,
which is vital to DNA replication, repair, and decatenation and this is essential for cell
viability. DNA gyrase is involved in the negative supercoiling of DNA during replication,
whereas topoisomerase IV is involved in the decatenation during DNA replication. DNA
gyrase is a heterotetrameric protein consisting of two GyrA and two GyrB subunits (A2B2),
while topoisomerase IV is composed of two ParC and two ParE subunits (C2E2) that are
homologous to GyrA and GyrB, respectively. The GyrA and ParC subunits are involved in
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DNA transit, while the GyrB and ParE subunits contain
ATPase domains [3]. Because of the structural similarities
between DNA gyrase and topoisomerase IV, dual targeting
is possible in most bacteria, which prolongs the onset of
resistance development and makes these two enzymes
attractive targets for discovering novel antibacterial drugs
[4]. Novel synthetic classes of GyrB and ParE inhibitors have
been reported in recent years [5], which have included de-
rivatives of benzimidazoles [6], pyrrolamides [7–9], pyrro-
lopyrimidines [10], pyridylureas [11] and pyrazolopyridones
[12, 13]. Despite all the efforts to discover dual-targeting
GyrB/ParE inhibitors, none have advanced into the clinic.

Careful attention to physicochemical properties of newly
synthesized compounds must be paid because it can improve
their delivery to the site of action and their biological activity
[14]. Lipophilicity has long been considered a predictor of a
drug’s successful passage through preclinical and clinical
development. It contributes to the ADMET (absorption,
distribution, metabolism, excretion, and toxicity) properties
and biological activity of drug candidates. Increasing evi-
dence suggests that monitoring lipophilicity may contribute
significantly to the overall quality of drug candidates at
different stages of drug discovery [15]. Shake-flask is the
traditional method for the determination of lipophilicity, but
it is time-consuming, requires large amounts of tested sub-
stances and cannot provide very reliable values when logP > 3.
Reversed-phase high-performance liquid chromatography
(RP-HPLC) represents a reliable alternative to the shake-flask
method for the lipophilicity evaluation. In contrast to the
shake-flask method, it requires low amounts of tested

compounds and enables the determination of a wide range of
logP values (�3 < logP < 8) [16]. According to the literature
overview, RP-HPLC retention data were used for the lip-
ophilicity evaluation of various classes of pharmacologically
active compounds in the early phases of drug discovery
[17–19].

The aim of this study was to investigate the retention
properties of a selected group of twenty-three dual DNA
gyrase and topoisomerase IV inhibitors using RP-HPLC, to
select the most reliable RP-HPLC retention parameter for
the lipophilicity evaluation, and to identify the structural
properties that most influence their retention.

2. EXPERIMENTAL

2.1. Materials and reagents

Acetonitrile HPLC purity (JT Baker, Deventer, Netherlands),
sodium hydrogenphosphate (Sigma Aldrich, Steinheim,
Germany), phosphoric acid (Sigma Aldrich, Steinheim,
Germany) and deionized water (TKA water purification
system, Niederelbert, Germany) were used for the mobile
phase preparation. Dimethyl sulfoxide, used for the prepa-
ration of stock solutions, was purchased from Fisher
(Loughborough, UK).

The design, synthesis and biological evaluation of dual
DNA gyrase and topoisomerase IV inhibitors (Fig. 1) tested
in this study were previously published [8, 20, 21]. Tested
compounds were dissolved in dimethyl sulfoxide to prepare

Fig. 1. Chemical structures of tested compounds

2 Acta Chromatographica

Unauthenticated | Downloaded 02/21/23 01:10 PM UTC



stock solutions (1 mg mL�1), which were then diluted with
the mobile phase (see below) to obtain working solutions
(0.01 mg mL�1).

2.2. RP-HPLC analysis

Retention behavior was tested on HP 1100 HPLC chro-
matograph, using the Zorbax Eclipse Plus C8 column (150
3 4.6 mm, 5 μm particle size; Agilent technologies, USA).
Phosphate buffer was prepared by dissolving sodium
hydrogenphosphate in deionized water and pH was adjusted
to 5.5 or 7.4 by adding phosphoric acid. Mobile phase
consisted of acetonitrile and phosphate buffer (pH 5.5 or
7.4). Retention factor (k) of each compound was determined
with the mobile phase containing 50% of acetonitrile (v/v).
According to these results, four different ratios of acetoni-
trile and phosphate buffer were then selected for each
compound, making sure that k is higher than 0.3 (content of
acetonitrile ranged from 20 to 65%, in 5% increments, v/v).
Column temperature was set to 25 8C, flow rate 1 mL min�1,
injection volume 20 μL and detection was performed at 254
nm. For each compound, retention factor was calculated and
logk values were plotted against percentage of acetonitrile
(φ). Following retention parameters were then calculated:
logkw (y-axis intercept), S (slope) and φ0.

logk ¼ logkw þ Sφ (1)

φ0 ¼ −logkw=S (2)

2.3. Calculation of molecular descriptors and logD

Molecular descriptors were calculated using the web-based
platform ChemDes [22], which allows the calculation of
more than 3,000 molecular descriptors. In this study, 3D
Chemopy descriptors were calculated and after deletion of
those without variance, 479 molecular descriptors were
retained for modeling. ChemDes uses the MOPAC software
as default to optimize each molecule. Prior to the descriptor
calculation, the dominant form of each molecule at pH 5.5
was determined using MarvinSketch 21.4.0. logD was calcu-
lated in MarvinSketch 21.4.0 at two pH values (5.5 and 7.4)
by the consensus method, which utilizes ChemAxon and
Klopman’s models and the PhysProp database. For these
calculations, electrolyte concentrations (Naþ, Kþ and Cl�)
were set to the default values [23].

2.4. QSRR modelling

Descriptor selection as well as multiple linear regression
(MLR), partial least squares (PLS) and support vector machine
(SVM) modelling were performed in Statistica 13.3 [24].

Prior to modelling, the number of descriptors has to be
reduced and only the most relevant ones should be retained.
Molecular descriptors can be selected using various
approaches, such as genetic algorithm [25], principal
component analysis [26] or stepwise MLR [27, 28]. In this
study, forward stepwise MLR was used for the selection of
descriptors prior to model creation. In forward stepwise
MLR, descriptors are included in the model sequentially and

evaluated at each step. Descriptors are retained or removed
according to specified criteria (F to enter and F to remove).
In this study, F to enter was 8, whereas F to remove was 3.
The following descriptors were selected for SVM and MLR
modelling: logP, bcutp3 and bcutm13. For the PLS modelling,
nine most influential descriptors were selected following the
same procedure (MoRSEU14, RDFC20, DPSA1, E2e, bcutv1,
MATSv5, logP, bcutp3 and bcutm13).

The quantitative structure-retention relationship (QSRR)
studies were performed to investigate the relationships be-
tween φ0 (dependent variable) of tested compounds and their
calculated molecular descriptors (independent variables). In
order to perform a relevant comparison between different
methodologies used to build QSRR models, the same training
and test sets were prepared. For MLR(φ0), PLS(φ0) and SVM
(φ0), the test set consisted of six compounds (NDL-20, NHM-
80, TAZ-7, TCF-3a, THT-9 and THT-11), while remaining
derivatives formed the training set. The test set was formed
with the aim to cover structural and physico-chemical diversity
of all tested compounds and so the φ0 of these compounds
were evenly distributed over the entire range of φ0 values.

MLR was applied to assess the linear relationship be-
tween selected molecular descriptors and φ0. In this study,
the standard MLR model building method was applied.

PLS modeling is useful when analyzing data with collinear,
noisy and numerous descriptors. The optimal number of PLS
components was selected by analyzing the R2(Y) value and
the cumulative R2(Y) value of each component. Scaled
regression coefficients were used to evaluate the influence of
the descriptors on the created model and for their ranking.
The final PLS (φ0) model consisted of three components.

SVM was developed as a binary classification tool [29].
However, in recent years, it has also been used as a nonlinear
method in QSAR and QSPR modelling [30, 31]. In this study,
the optimal SVM(φ0) model was obtained using radial
basis function (RBF) Kernel type and regression type 1.
Gamma value was set to 0.25, while optimal capacity (C) and
epsilon (Ɛ) values were 8 and 0.1, respectively. The model
consisted of 11 support vectors (6 bounded).

2.4.1. Evaluation of quality of created QSRR models. Fol-
lowing statistical parameters were calculated and used for
the evaluation of the quality of created QSRR models:
RMSEE, RMSEP, the F ratio, the P value, r, Q2 (Eq. (3)) and
R2

pred (Eq. (4)).

Q2 ¼ 1� PRESS

P�
YobsðtrainingÞ � Ytraining

�2 (3)

R2
pred ¼ 1� PRESSP

Yobs testð Þ � Ytraining
� �2 (4)

PRESS ¼
Xn

i−1
e2ðiÞ (5)

RMSEE value represents root mean squared error of
estimation, while RMSEP is defined as the root mean squared
error of prediction. These errors were calculated for the
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training and the test set, respectively. Q2 is an internal vali-
dation parameter calculated for the training set according to
Eq. (3) and leave-one-out (LOO) procedure [32, 33]. In this
equation, Ytraining is the average value, whereas Yobs(training) is
an observed φ0 value of the training set compounds. PRESS
was calculated after the completion of the LOO procedure,
according to Eq. (5). In this equation e(i) represents the dif-
ference between the observed and predicted φ0 values. R2

pred

is an external validation parameter calculated for the test set
according to Eq. (4), which is used to assess predictive po-
tential of a model for compounds that are structurally
different from the training set [34]. In this equation Yobs(test) is
an observed value of φ0 of a test set compound, whereas
Ytraining is the average φ0 value of the training set compounds.
Values of Q2 and R2

pred higher than 0.5 indicate good pre-
dictive potential of the model [32, 35, 36]. The F-test is based
on the ratio MS Regression/MS Residual and evaluates the
significance of the model. The P-value indicates the proba-
bility level where a model with this F-value may be the result
of just chance. The model is considered statistically significant
if the P-value is lower than 0.05 [36].

3. RESULTS AND DISCUSSION

3.1. RP-HPLC analysis

The tested compounds contain ionizable groups and there-
fore, effective lipophilicity (logD) is a more appropriate

lipophilicity parameter than logP (logP represents intrinsic
lipophilicity, i.e. lipophilicity of unionized form of a com-
pound). The pH values that were chosen in this study were
5.5 and 7.4 because they are the most relevant for the
pharmacokinetic (gastrointestinal absorption, distribution
and elimination) and pharmacological behavior of drugs.
For the initial lipophilicity estimation, logD was calculated at
both pH values using MarvinSketch. There are several highly
lipophilic compounds with logD > 3 (TEL-28, TAZ-2b,
NAS-36, TLK-10, KSK-22 and TCF-3a). Therefore, the
shake-flask method might give unreliable results, which
justifies the development of HPLC method for the lip-
ophilicity evaluation of these compounds.

Retention parameters (logkw, S and φ0), as well as
calculated logD values of the tested compounds are pre-
sented in Table 1. Due to high correlations between logk and
φ at both pH values (calculated correlation coefficients
were from 0.9837 to 0.9999), logkw could be calculated by the
y-axis extrapolation of these curves.

For the development of HPLC method, C8 column was
chosen due to the similarity of its hydrophobicity with the
hydrophobicity of octanol alkyl chain (octanol is the most
frequently used organic solvent in the shake-flask method).
It was also expected that the analysis would be faster than
with the C18 column. Phosphate buffer was used for the
adjustment of pH values (pH 5.5 and pH 7.4) of the mobile
phases because it is present in biological fluids.

Of the three retention parameters presented in Table 1
(logkw, S and φ0), φ0 showed the highest correlation with

Table 1. RP-HPLC retention parameters and calculated logD values

Compound

pH 5.5 pH 7.4

logkaw S φ0 logD logkw S φ0 logD

TEL-28 2.96 ± 0.10 �0.044 ± 0.002 67.48 5.07 2.98 ± 0.12 �0.044 ± 0.002 67.89 5.07
TAZ-2b 3.15 ± 0.11 �0.050 ± 0.002 63.55 4.13 3.61 ± 0.23 �0.064 ± 0.005 56.55 4.13
KSK-75 1.95 ± 0.10 �0.041 ± 0.002 47.26 2.05 3.07 ± 0.27 �0.064 ± 0.007 47.88 2.09
NFM-26 3.88 ± 0.16 �0.096 ± 0.005 40.26 �0.36 3.88 ± 0.14 �0.103 ± 0.004 37.68 �1.04
NAS-36 3.05 ± 0.13 �0.050 ± 0.003 61.34 3.24 3.39 ± 0.28 �0.054 ± 0.005 62.39 3.24
LMD-17 2.19 ± 0.11 �0.053 ± 0.003 41.28 1.90 3.09 ± 0.10 �0.090 ± 0.003 34.37 0.45
TLK-10 2.74 ± 0.15 �0.053 ± 0.003 51.84 3.07 3.79 ± 0.41 �0.075 ± 0.010 50.61 3.06
LMD-62 2.43 ± 0.13 �0.067 ± 0.003 36.28 0.62 3.19 ± 0.09 �0.096 ± 0.003 33.39 0.21
KSK-22 2.47 ± 0.10 �0.045 ± 0.002 54.52 3.30 3.35 ± 0.35 �0.065 ± 0.008 51.44 3.29
THT-11 2.71 ± 0.08 �0.081 ± 0.003 33.57 �1.02 2.77 ± 0.06 �0.086 ± 0.002 32.04 �1.35
NZ-104 2.71 ± 0.11 �0.052 ± 0.003 52.01 2.24 2.84 ± 0.08 �0.058 ± 0.002 49.38 2.24
THT-9 2.99 ± 0.13 �0.059 ± 0.003 50.44 2.18 2.57 ± 0.12 �0.050 ± 0.003 51.19 2.18
TZS-34 2.88 ± 0.15 �0.049 ± 0.003 58.47 2.92 2.94 ± 0.14 �0.052 ± 0.003 56.83 2.92
NHM-80 3.21 ± 0.20 �0.072 ± 0.005 44.80 1.82 3.99 ± 0.17 �0.097 ± 0.005 41.24 0.73
NZ-97 2.51 ± 0.07 �0.076 ± 0.002 33.13 0.19 2.55 ± 0.05 �0.084 ± 0.002 30.52 �1.38
KSK-6 2.37 ± 0.12 �0.052 ± 0.003 45.16 2.01 2.04 ± 0.10 �0.044 ± 0.002 46.56 2.04
NCH-4d 2.85 ± 0.13 �0.070 ± 0.004 40.91 2.44 2.99 ± 0.09 �0.087 ± 0.003 34.20 0.78
NDL-20 2.95 ± 0.11 �0.045 ± 0.002 66.05 2.79 2.66 ± 0.10 �0.039 ± 0.002 67.62 2.79
TCF-3a 2.97 ± 0.12 �0.054 ± 0.002 54.96 3.20 3.21 ± 0.17 �0.059 ± 0.004 53.97 3.20
THT-10 2.87 ± 0.13 �0.058 ± 0.003 49.16 2.91 3.06 ± 0.13 �0.065 ± 0.003 46.74 2.90
TLK-13 2.65 ± 0.15 �0.056 ± 0.004 46.83 2.54 2.63 ± 0.14 �0.056 ± 0.003 46.85 2.51
TAZ-7 2.69 ± 0.10 �0.071 ± 0.003 37.98 2.14 2.76 ± 0.04 �0.086 ± 0.001 31.97 0.55
KSK-15 2.86 ± 0.10 �0.081 ± 0.003 35.27 0.62 3.02 ± 0.03 �0.090 ± 0.001 33.57 �0.94

a four different ratios of acetonitrile and phosphate buffer were used for the construction of the curves; all logkw values were calculated by the
extrapolation method (correlation coefficients between logk and φ were from 0.9837 to 0.9999)
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logD at both pH values (r 5 0.85 and 0.89 with logD
calculated at pH 5.5 and pH 7.4, respectively). Correlation
coefficients between logkw and logD were 0.01 (pH 5.5) and
0.07 (pH 7.4), while correlation coefficients between S and
logD were 0.80 (pH 5.5) and 0.79 (pH 7.4). Therefore,
φ0 could be considered the most reliable RP-HPLC
parameter for logD prediction at both pH values. This
retention parameter was introduced by Valko and Slegel [37]
and it represents the volume fraction of organic modifier in the
mobile phase at which equal partitioning of the solute between
the mobile and stationary phases is obtained (k5 1, logk5 0).
It relies on the pH, temperature and organic modifier, while it
does not rely on column type and length, flow rate and mobile
phase composition. It also represents concentration of the
organic modifier in the mobile phase resulting in the retention
time (tR) that is double the dead time (t0). Therefore, it can be
accurately estimated which is considered a distinguishable
advantage over extrapolating of logk values to pure water
mobile phase [38]. This parameter was also proved to be more
suitable for the estimation of lipophilicity of sets of structurally
unrelated compounds [39, 40]. Although introduced almost
thirty years ago, this parameter is still used for the estimation of
lipophilicity of various classes of bioactive compounds [38, 41].
Correlations between φ0 and logD at both pH values were
presented in Fig. 2.

Compound NDL-20, with an unexpectedly high φ0 at
both pH values, was an outlayer. At both pH values, com-
pounds with the highest φ0 values were TEL-28, TAZ-2b and
NAS-36, and their calculated logD values were higher than
3.2. TEL-28, TAZ-2b and NAS-36 contain ester groups,
halogen atoms (chlorine or bromine) and three or four rings.
These moieties increase lipohilicity and consequently increase
φ0 values. At pH 5.5, compounds with the lowest φ0 values
were NZ97 and THT11, and their logD values were lower
than 0.19. At pH 7.4, compounds with the lowest φ0 values
were also NZ-97 and THT-11, as well as TAZ-7 and KSK-15,
for which calculated logD values were lower than 0.55. NZ-97,
THT-11, TAZ-7 and KSK-15 contain carboxylic acid moiety,
and as pH increases, the proportion of the ionized form of
these compounds also increases, which could explain their
low φ0 values determined at pH 7.4.

3.2. QSRR modelling

Due to high correlation between φ0 determined at pH 5 5.5
and pH 5 7.4 (r 5 0.98), only φ0 determined at pH 5 5.5
was used for further QSRR modelling.

Results of the validation of created models are presented
in Table 2.

PLS (φ0) model cannot be considered reliable due to the
high discrepancy between RMSEE and RMSEP. This means
that using this model, φ0 values of compounds that are
structurally different from those in the training set cannot be
reliably predicted. The remaining QSRR models (MLR (φ0)
and SVM (φ0)) pass all validation tests. Although RMSEE
was higher (2.75 vs 2.48), due to lower RMSEP, lower dif-
ference between RMSEE and RMSEP, higher Q2, r and
R2

pred, MLR (φ0) could be considered more reliable model
for the logD prediction. Descriptors which form both MLR
(φ0) and SVM (φ0) models were logP, bcutp3 and bcutm13.
Cross-correlation between these decscriptors was not higher
than 0.41 (logP and bcutp3: r 5 0.32; logP and bcutm13:
r 5 0.07; bcutp3 and bcutm13: r 5 0.41). A rule of thumb in
regression analysis is that at least 5 observations per
descriptor are needed and the more acceptable ratio would
be 10:1 [42]. Therefore, the dataset size in this study
(twenty-three compounds) allows the use of three de-
scriptors for reliable QSRR modelling. In addition, satisfac-
tory values of validation parameters for the test set (Table 2)
show that the model was not overfitted. Statistical data
calculated for the MLR (φ0) model are presented in Table 3.

Intrinsic lipophilicity, logP, was calculated by the Crip-
pen method. The relationship between this descriptor and
φ0 is linear and positive (Fig. 3) and the increase in lip-
ophilicity results in the increase in φ0. This supports our
previous observation that applied RP-HPLC systems can be
used for reliable prediction of the lipohilicity of dual DNA
gyrase and topoisomerase IV inhibitors.

Descriptors bcutp3 and bcutm13 belong to the Burden
descriptors and are based on polarizability and atomic
masses, respectively. Descriptors bcut are defined as the ei-
genvalues of a connectivity matrix which takes into
account both connectivity and atomic properties of a
molecule, such as atomic weight, partial charge and polar-
izability. These descriptors are based on a weighted version
of the Burden matrix [43, 44] and the weights are a variety of

Fig. 2. a) Correlation between φ0 and logD (pH 5.5) and b) correlation between φ0 and logD (pH 7.4)

Table 2. Validation parameters of created models

RMSEE Q2 RMSEP r R2
pred

SVM (φ0) 2.48 0.78 4.19 0.92 0.80
MLR (φ0) 2.75 0.86 3.77 0.94 0.88
PLS (φ0) 1.41 0.93 5.60 0.88 0.73
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atomic properties placed along the diagonal of the Burden
matrix (atomic weight, partial charge (Gasteiger–Marsili)
and polarizability weighting schemes are used) [45].

Descriptor bcutp3 represents the highest eigenvalue
number 3 of the Burden matrix/weighted by atomic polar-
izabilities which encode information about the polarizability
of the molecules. It was shown that the increase in polar-
izability increases solubility, i.e. that molecular polarizability,
both of the solute and solvent, is a major factor that dictates
solubility [46–48]. According to the MLR model, this vari-
able has negative impact on φ0 and the increase in bcutp3
results in the decrease in φ0, which indicates that the water
solubility of the molecules is inversely related to φ0.
Derivatives with the highest values of this descriptor are
NHM-80 and TEL-28, while those with the lowest values are
KSK-22 and NDL-20.

Descriptor bcutm13 belongs to the Burden descriptors
based on atomic mass. The relationship between bcutm13
and φ0 is positive, according to the positive value of the
coefficient in the MLR model. This also means that the
molecular weight of tested compounds positively affects
their retention in the applied RP-HPLC systems. Com-
pounds with the highest value of this descriptor are LMD-62
and TEL-28 (molecular weights of these compounds are
higher than 530), while those with the lowest values are
TAZ-7 and KSK-22 (molecular weights of these two com-
pounds are lower than 450). It is difficult to estimate φ0 only
on the basis of descriptor values. For example, LMD-62 has
low φ0 despite the high value of bcutm13. This could be
explained by the high value of bcutp3, which has a negative
impact on φ0. TEL-28 also has high bcutm13 value and
despite high value of bcutp3 (which has a negative effect on
φ0), this compound has high value of φ0. Compound
KSK-22 has low values of both bcutm13 and bcutp3 and a
high value of logP. Its high φ0 could be explained by the

greater influence of bcutp3 and logP on φ0 compared to the
influence of bcutm13. Therefore, all selected descriptors have
to be taken into account, which underlines the importance
of use of the created MLR (φ0) model for valid prediction
of φ0.

4. CONCLUSION

The retention behavior of a group of twenty-three dual
DNA gyrase and topoisomerase IV inhibitors was tested in
an RP-HPLC system, employing a C8 column and a mobile
phase consisiting of acetonitrile/phosphate buffer (pH was
adjusted to 5.5 or 7.4). The HPLC parameter φ0 had the
highest correlation with logD values calculated at pH 5.5 and
7.4, which indicates that the applied HPLC system could be
used as an alternative to the shake-flask method for the
evaluation of logD. QSRR analysis showed that lipophilicity
and molecular weight have a positive effect, while solubility
has a negative effect on retention parameter φ0. It was also
shown that prediction of φ0 is possible by the use of
developed MLR (φ0) model. These results could facilitate
the design of new dual DNA gyrase and topoisomerase IV
inhibitors with more optimal lipophilicity and biological
properties.
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