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Abstract: The pharmaceutical industry has faced significant changes in recent years, primarily influ-
enced by regulatory standards, market competition, and the need to accelerate drug development.
Model-informed drug development (MIDD) leverages quantitative computational models to fa-
cilitate decision-making processes. This approach sheds light on the complex interplay between
the influence of a drug’s performance and the resulting clinical outcomes. This comprehensive
review aims to explain the mechanisms that control the dissolution and/or release of drugs and their
subsequent permeation through biological membranes. Furthermore, the importance of simulating
these processes through a variety of in silico models is emphasized. Advanced compartmental
absorption models provide an analytical framework to understand the kinetics of transit, dissolution,
and absorption associated with orally administered drugs. In contrast, for topical and transdermal
drug delivery systems, the prediction of drug permeation is predominantly based on quantitative
structure–permeation relationships and molecular dynamics simulations. This review describes
a variety of modeling strategies, ranging from mechanistic to empirical equations, and highlights
the growing importance of state-of-the-art tools such as artificial intelligence, as well as advanced
imaging and spectroscopic techniques.

Keywords: model-informed drug development; solubility; drug dissolution; drug release; release
mechanism; drug permeation; modeling; oral absorption; percutaneous permeation

1. Introduction

Formulation development, one of the most challenging activities in the pharmaceutical
industry, has changed significantly over the years. This situation is a consequence of contin-
uous pressure from regulators, increasing competition between companies, and the constant
struggle to speed up formulation development and launch a drug product in a shorter time
frame. Among a number of innovations that have been introduced in the pharmaceutical
industry in recent years, in silico computational modeling deserves special attention. In
silico modeling in pharmaceutical development, also known as model-informed drug
development (MIDD), is a relatively broad concept, defined as the “application of a wide
range of quantitative models in drug development to facilitate the decision-making pro-
cess” [1] or “development and application of exposure-based, biological, and statistical
models derived from preclinical and clinical data sources” [2].

In general, MIDD methods refer to the application of various computational tools
to mathematically describe the relationship between different factors (drug, formulation,
organism, and/or disease-related) that influence the bio-performance of a drug and the
associated clinical outcomes, with the ultimate goal of supporting optimal decision-making
during formulation development, thus increasing the chance of a product receiving ap-
proval and recouping the investment in its development.
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MIDD tools are often available as ready-to-use software, although the use of in-house
designed (generic) models is also a common practice [3–6]. Moreover, some models are
mechanistic in nature, i.e., they allow interpretation of the underlying processes that
influence system response, but some operate as ‘black boxes’ where the algorithms in the
background are not revealed to users. In any case, the user needs to understand the basic
scientific principles and, in the case of mechanistic models, the mathematical equations
incorporated in an in silico model.

This review focuses on elucidating the key processes that control drug release and
permeation through biological membranes following oral and cutaneous application and
discusses the possibilities of simulating these processes using available in silico tools.
Selected examples are also provided to illustrate current trends in MIDD practice.

2. Interpretation of Oral Drug Dissolution, Permeation, and Absorption within
Physiologically-Based Biopharmaceutics Modeling

Physiologically-based biopharmaceutics modeling (PBBM) is an emerging MIDD
tool used for mechanistic interpretation and prediction of drug absorption, distribution,
metabolism, and excretion (ADME), with a particular focus on establishing a link between
bio-predictive in vitro dissolution testing and mechanistic modeling of drug absorption [7].
PBBM is widely used by pharmaceutical companies, research institutions, and medical
regulatory authorities and is now an indispensable tool at various stages of drug and
formulation development [8–12]. A major advantage of PBBM over conventional in vitro
and preclinical animal studies is the ability to link the physicochemical properties of a
drug to its dissolution, absorption, and disposition in a target patient or population, taking
into account specific physiological conditions. This is achieved through linked differen-
tial equations that describe simultaneous or sequential dynamic processes that a drug
undergoes in the body. In addition, PBBM predictions can relate to different physiological
or disease states, so this unique approach can support personalized pharmacotherapy
and drug/dose/dosing regimen selection in different patient populations or individual
patients [13–15].

Although PBB models can represent different routes of drug administration, they have
mainly been used to simulate the bio-performance of drugs following peroral administra-
tion [3,5,11,16]. In this case, the processes that a drug undergoes in the body are influenced
by a number of factors that reflect the drug properties, critical product attributes, and
features of human gastrointestinal (GI) tract physiology (Figure 1). These factors are treated
as input parameters in PBBM, i.e., each model is drug-specific and is further customized for
a particular formulation type and physiology or disease state. To simulate the overall influ-
ence of these parameters on drug absorption, a PBB model must mathematically describe
each process occurring in the GI lumen, either simultaneously or concurrently.

In order for a drug substance to be absorbed, it must first be released from a dosage
form and dissolved in the body fluids, then, diffuse to the site of absorption and, finally, pass
through the biological membrane and enter the enterocytes. Depending on the dosage form,
a drug may be readily available for dissolution (e.g., immediate release (IR) powders), or a
dosage form needs to disintegrate and release drug particles prior to dissolution. The drug
release rate can be modeled using various functions that will be described in the following
sections, and they can be included in a PBB model. In addition, a systematic review of
disintegration mechanisms and mathematical models describing these mechanisms is
provided by Markl and Zeitler [17]. There are also specialized software tools, such as
DDDPlusTM software, which considers more specific formulation parameters, including
types and amounts of excipients and manufacturing properties (e.g., compression force,
tablet diameter) to simulate tablet disintegration and drug particle release rate [18]. In
particular, DDDPlusTM software considers that the main mechanism of tablet disintegration
is the swelling of the disintegrant particles caused by water uptake into the tablet, which
generates a force inside the tablet that eventually leads to the breakage of the bonds between
the particles [19].
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times confused with �drug release’, these terms have different meanings, with �drug re-
lease’ being a more complex phenomenon involving the �dissolution of drug particles’ 
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and most of them are based on the mass transfer model (Table 1). In this model, mass 
transfer is driven by a concentration gradient, i.e., a saturated solution forms at the par-

Figure 1. Factors and processes affecting drug/dosage form performance in the GI tract following
peroral administration.

Dosage form disintegration enables drug dissolution, which is one of the key factors
governing drug systemic exposure. Although the term ‘drug dissolution’ is sometimes
confused with ‘drug release’, these terms have different meanings, with ‘drug release’ being
a more complex phenomenon involving the ‘dissolution of drug particles’ [20].

Different equations have been used to describe the dissolution of drugs in PBBM, and
most of them are based on the mass transfer model (Table 1). In this model, mass transfer is
driven by a concentration gradient, i.e., a saturated solution forms at the particle surface,
and the dissolution of the drug is controlled by the diffusion of molecules through the
stationary liquid layer surrounding each particle (Figure 2).
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Table 1. Examples of dissolution equations incorporated in PBB models.

Name Equation Denotations

Nernst–Brunner equation dMdissol
dt = D×A

h × (Cs − Ct) Mdissol—dissolved
amount of drug
t—time
Cs—solubility (saturation concentration)
Ct—drug concentration in solution at
time t
D—diffusion coefficient
h—diffusion layer thickness
A—effective surface area
ρ—particle density
r—spherical particle radius
s—shape factor
L—particle length
d—particle diameter
Mundissol—undissolved amount of drug at
time t
Mundissol(0)—initial amount of the solid
drug
z *—hybrid dissolution parameter

Johnson equation
dMdissol

dt = D
h×ρ×r ×

1+2s
s (Cs − Ct)× Mundissol

s = L
d

Wang–Flanagan equation dMdissol
dt = 3D

ρ×r × ( 1
h + 1

r )× (Cs − Ct)× Mundissol

z-parameter equation *
dMdissol

dt = z× (Cs − Ct)× Mundissol(0) ×
(

Mundissol
Mundissol(0)

)2/3

z = 3D
h×ρ×r

* z-parameter can be used as a substitute for the effect of drug particle size, density, diffusion coefficient, and
diffusion layer thickness on drug dissolution rate when these parameters are considered constant for a given
formulation under the specific dissolution condition; z-parameter is formulation-specific [21].

As already mentioned, drug dissolution is a prerequisite for absorption but acts as a
rate-limiting factor for absorption when this process is slower than permeation. In such
cases, all factors affecting drug dissolution (including drug, formulation, and physiological
factors) need to be carefully evaluated and considered in a PBB model.

Solubility is a critical parameter affecting drug dissolution, meaning that for poorly
soluble drugs, solubility may limit dissolution. In addition, the solubility of weak elec-
trolytes changes with the pH of the medium. Since the pH of gastrointestinal fluids varies
greatly, it is important to study the solubility of drugs under different pH conditions in the
physiological range.

A common formulation approach to increase the absorption and bioavailability of
drugs, especially for poorly soluble drugs, is to use salt forms, which generally have better
solubility than the acidic or basic drug form. However, a salt form may precipitate in the
GI tract, e.g., if its solubility in the stomach is much higher than in the small intestine. This
highlights the importance of considering the precipitation rate of drugs in bio-predictive
dissolution models. It should also be noted that the drug precipitation rate depends on the
presence of excipients and the regional conditions (pH value, volume, etc.) in the GI tract.
Various methods have been proposed to address these issues, including both in vitro as-
says [22,23] and mathematical predictions [24–26]. Consequently, the precipitation process
has been considered in the dissolution models integrated within PBBM software [27–30].

Solubility may also vary between different polymorphic forms of a drug, and similar
considerations apply to hydrates (which generally have lower solubility and dissolution
rate in aqueous solutions) and the amorphous state (which is characterized by increased
solubility and dissolution rate compared to the drug’s crystalline forms). However, some
drug forms may undergo transformation in the GI lumen. For example, anhydrous carba-
mazepine tends to convert to a hydrate form upon contact with GI fluids, and this may
compromise the drug dissolution rate [31]. Such phenomena can be accounted for in a PBB
dissolution model by entering different solubility values for different drug forms.

Another phenomenon that can either increase or decrease the solubility of drugs
is complexation with excipients or other compounds present in the GI tract. A typical
example of the positive effect on drug solubility is the complexation of lipophilic drugs
with cyclodextrins (CDs). The effect of CD on drug solubility can be estimated from the
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drug solubility in the absence of CD and the binding constant for a given system [32–34].
For example, if the stoichiometry of the drug–CD complex (D/CD) is 1:1, the total drug
solubility (CDtot) can be calculated using the following equation [34]:

CDtot = CD +
K × CD × CCDtot

1 + k × CD
(1)

where K is equilibrium binding constant, CD—concentration of free dissolved drug (drug
intrinsic solubility), and CCDtot—total CD concentration. The binding constant can be
estimated from the slope of the phase solubility (solubility vs. CD concentration) diagram,
using Equation (2) [32–34]:

K =
Slope

CD × (1 + Slope)
(2)

Moreover, molecular docking can serve as a useful in silico technique for predicting
interactions between CDs and lipophilic drugs, elucidating the molecular mechanisms of
drug encapsulation within CDs of varying sizes (α, β, γ). This technique can be utilized
to generate and cluster poses based on free energies, subsequently analyzing representa-
tive poses to understand the binding affinities and interactions between drugs and CDs.
Through docking, we can assess CDs’ impact on guest molecule properties such as sol-
ubility, stability, and other physical and chemical characteristics [35]. Such simulations
can also highlight the cavity size-dependent stoichiometry of drug−CD complexation,
offering a pictorial representation of the diverse interactions between drugs and α-, β-, and
γ-CDs [36].

The presence of surfactants, either in the formulations or in the GI tract (e.g., naturally
occurring bile salts), may also affect drug solubility and dissolution. These surface-active
agents increase drug solubility and dissolution by facilitating particle wetting (thus in-
creasing the effective surface area in contact with the solvent) or by micellar solubilization,
depending on the surfactant concentration. Drug solubility in the presence of bile salts
(Cs(BS)) can be estimated using Equation (3) [37]:

Cs(BS) = Cs + SCaq × SR × Mw × [BS] (3)

where Cs is drug solubility in the absence of bile salts, SCaq—aqueous solubilization capacity
for the drug, SR—bile salts solubilization ratio for the drug, Mw—drug molecular weight,
and [BS]—concentration of bile salts.

Here, SCaq is expressed as the ratio of moles of drug and moles of water at drug
aqueous solubility concentration:

SCaq =
moles(drug)
moles(water)

(4)

and SR can be calculated from the octanol/water partition coefficient for the drug (P) using
Equation (5):

logSR = 2.23 + 0.61 × logP (5)

On the other hand, a drug trapped in a micelle diffuses slower in comparison to the
free drug, as illustrated in Equation (6) [38].

De f f = D × f + Dmic × (1 − f ) (6)

where Deff is effective diffusion coefficient, D—diffusion coefficient of free drug, Dmic—
diffusion coefficient of drug associated with bile salt micelles, and f —fraction of free drug,
which is expressed as:

f =
Cs

Cs(BS)
(7)
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Still, an increase in solubility prevails, so the overall effect of bile salts on poorly
soluble drugs is an increased dissolution rate [38].

Particle size is another key factor that affects drug dissolution. Smaller particles have
a larger surface area that comes into contact with the solvent, so reducing the particle
size usually increases the drug dissolution. This is one of the most important formulation
strategies to increase the absorption of poorly soluble drugs, especially in the case of
high-dose oral dosage forms. However, if the particles are too small and hydrophobic
in nature, they may form aggregates, leading to a decrease in the effective surface area
and, consequently, dissolution. Therefore, the effect of decreased particle size should
be carefully considered in the early phase of formulation development. In this context,
PBBM is particularly useful as it allows an estimation of the impact of particle size on drug
dissolution and absorption prior to formulation changes. This type of sensitivity analysis
(SA) can be performed by gradually changing the drug particle size while keeping the other
input parameters at baseline values and assessing the impact on the extent and rate of drug
absorption. Several case studies from the industry demonstrate the successful application
of PBBM SA for the selection of drug particle size and the establishment of drug particle
size specifications [39–41].

Drug dissolution can also be affected by the particle shape. This effect is often neglected
in dissolution models, which generally assume a spherical particle shape. However, there
have been attempts to include the shape factor in the dissolution equations [42–44]. There
are also reports on more complicated computational methods to estimate the dissolution of
particles with irregular shapes, such as the computational fluid dynamics-direct numerical
simulation method (CFD-DNS) [45] or the moving particle semi-implicit (MPS) method [46].
In addition, the particle shape can change over time. This phenomenon is more difficult
to understand and incorporate into a dissolution model, but there are a few examples of
dissolution modeling that consider particle shape changes over time [43,47].

There are some situations where the dissolution model has to take into account more
specific phenomena, e.g., in the case of nano-sized drug particles. Indeed, it has been shown
that nanoparticles have a much higher gastrointestinal tissue uptake and bioavailability
compared to micro-sized particles [48,49]. This phenomenon cannot be explained solely
by the increase in surface area due to reduced particle size, supporting the hypothesis
that nanoparticles may form a supersaturated solution in a small volume of fluid between
the intestinal microvilli, resulting in increased drug flux across the apical membrane. In
such cases, empirical equations may be derived and included in a PBB model to estimate
nanoparticles’ effect on drug dissolution and concomitant absorption. Such an approach
is illustrated in the study by Zhang et al. [50] using a poorly soluble, poorly permeable,
and weakly basic drug. These authors utilized PBBM to demonstrate how particle size
reduction to the nano-sized range can be a beneficial strategy to increase the bioavailability
of a poorly soluble, poorly permeable, weakly basic drug with pH-dependent solubility in
the physiological range.

3. Drug Release Modeling

Drug release modeling is of pivotal importance for understanding the release mecha-
nism and predicting the release of drugs from different formulations, carriers, and dosage
forms. Modeling of drug release is particularly important for modified release dosage
forms specifically developed to provide prolonged, controlled, sustained, delayed, pulsatile
release or other types of release profile modifications. In conventional dosage forms that
are administered orally, there are two specific types of delivery systems: monolithic and
multiparticulate [51]. Matrix tablets are monolithic forms that can be formulated with a
variety of polymers (hydrophilic and hydrophobic) or lipid excipients. Multiparticulate
systems can be tailored to different release profiles, depending on the manufacturing tech-
nology and the specific properties of the drug and product being developed. Pellets are the
most commonly used multiparticulate system for modified drug release.



Pharmaceuticals 2024, 17, 177 7 of 39

The ability to accurately model drug release kinetics enables the optimization of drug
delivery systems, ensuring efficacy and minimizing adverse effects. Over the years, various
methods have been developed to address this critical aspect of pharmaceutical research.
They range from mechanistic and empirical approaches to hybrid models that combine the
strengths of both approaches. In addition, the emergence of artificial intelligence (AI) and
machine learning (ML) techniques has led to the development of innovative solutions for
drug release modeling.

Traditionally, the following mechanisms have been studied and predominantly utilized
to control drug release: diffusion, dissolution, swelling, erosion, osmosis, partitioning,
and chemical reactions [52]. In addition, changes in the dosage form/delivery system
geometry, phase transition(s), microenvironment pH, and/or ionic strength change or other
phenomena can also influence drug release. Mechanistic drug release modeling involves
the application of fundamental principles and physicochemical processes to describe the
release of drugs from pharmaceutical formulations. At its core, this approach aims to
understand the underlying mechanisms that control drug dissolution and diffusion, as well
as the interaction between the drug and its delivery system.

Commonly used mechanistic models are based on Fick’s law of diffusion, describing
the process of the drug flux J as the rate of transfer (dQ/dt) through the unit surface A:

J =
dQ
Adt

= −D
∂C
∂x

(8)

where D is the diffusion coefficient, and ∂C
∂x is the change of concentration C in the direction

x. The minus sign represents diffusion gradient, i.e., decrease in the concentration from the
higher to the lower.

Since the diffusion of the drug occurs in all three dimensions, the following form of
partial equation describes the system more accurately:

∂C
∂t

= D
∂2C
∂x2 + D

∂2C
∂y2 + D

∂2C
∂z2 (9)

In order to solve the partial differential equations, initial and boundary conditions
need to be considered. In the case of sphere or cylinder geometry of the dosage form (or
delivery device), the following equations apply:

∂C
∂t

= D
(

∂2C
∂r2 +

2
r

∂C
∂r

)
( f or sphere geometry) (10)

∂C
∂t

= D
(

∂2C
∂r2 +

1
r

∂C
∂r

)
( f or cylinder geometry) (11)

When a constant diffusion coefficient D is considered, solutions are derived for a vari-
ety of geometries with different initial and boundary conditions. The boundary conditions
can be considered as (in)finite as well as (non)sink. Partial differential equations can be
solved analytically or numerically with explicit or implicit solutions.

Siepmann and Siepmann [53] provided an overview of models for drug diffusion from
controlled drug delivery systems of the matrix or reservoir type. Depending on whether
the drug concentration (cini) in the delivery system exceeds the saturation solubility (cs)
or not, reservoir devices can be considered with non-constant activity sources (cini < cs) or
with constant activity sources (cini > cs). Similarly, matrix systems can be considered as
monolithic solutions (cini < cs) or monolithic dispersions (cini > cs).

Table 2 provides an overview of the diffusion models for reservoirs or matrix systems
with different geometries: slab (thin film), sphere, or cylinder. Tablets usually have the
shape of a cylinder, pellets and other multiparticulate systems are considered spheres,
while films or semisolid formulations applied in a thin layer (e.g., creams, ointments) can
be considered slabs.
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Table 2. Overview of diffusion models for reservoir devices and matrix systems of different geometries.

Device Type Slab Sphere Cylinder

Reservoir device with
non-constant activity

source
cini < cs

Mt
M∞

= 1 − exp
(
− ADKt

VL

)
Mt
M∞

= 1 − exp
(
− 3Ro DKt

R2
i Ro−R3

i

)
Mt
M∞

= 1 − exp
(
− (Ri H+Ro H+2Ri Ro)DKt

R2
i Ro−R3

i

)

Reservoir device with
constant activity

source
cini > cs

Mt =
ADKcs

L t Mt =
4πDKcs Ro Ri

Ro−Ri
t Mt =

2πHDKcs
ln(Ro /Ri)

t

Matrix systems as
monolithic solutions

cini < cs

Mt
M∞

=

1 − 8
π2

∞
∑

n=0

exp[−D(2n+1)2π2t/L2]
(2n+1)2

Mt
M∞

= 1 − 6
π2

∞
∑

n=1

exp[−Dn2π2t/R2]
n2

Mt
M∞

= 1 − 32
π2

∞
∑

n=1

1
q2

n
exp(− q2

n
R2 Dt)

·
∞
∑

p=0

1
(2p+1)2 · exp(− (2p+1)2π2

H2 Dt)

Matrix systems as
monolithic
dispersions

cini > cs

Mt = A
√

Dcs(2cini − cs)t
Mt
M∞

− 3
2

[
1 −

(
1 − Mt

M∞

) 2
3

]
=

3D
R2 · cs

cini
·t

Mt
M∞

+
(

1 − Mt
M∞

)
ln
[
1 − Mt

M∞

]
= 4D

R2 · cs
cini

·t

where A—total surface area of the device, cini—initial concentration of the drug in the device, cs—solubility of the
drug, D—diffusion coefficient of the drug, H—length of the cylinder, K—partition coefficient of the drug between
the membrane and the reservoir, L—thickness of the membrane, Mt—cumulative amount of the drug released at
the time t, M∞—cumulative amount of the drug released at infinity, R—radius of the sphere, Ro—outer radius of
the device, Ri—inner radius of the device, t—time, V—volume of the reservoir.

In the case of reservoir devices with non-constant activity source (cini < cs), the model
actually represents a process of first-order kinetics:

dMt

dt
=

ADK(M0 − Mt)

VL
(12)

whereas, in the case of reservoir devices with constant activity source (cini > cs), the model
represents a zero-order kinetic process:

dMt

dt
=

ADKcs

L
(13)

Similarly, slab-geometry of monolith dispersions matrix system is a type of system
where the diffusion model has been described by the Higuchi equation:

Mt = A
√

Dcs(2cini − cs)t (14)

The Higuchi equation was derived for an ointment with a suspended drug.
There are reports of more detailed approaches to solving drug release models based

on specific delivery systems, available data, and preconceived assumptions. For example,
Jain et al. [54] developed a model that can discriminate between the effects of diffusion
and dissolution of the drug encapsulated by the porous passive layer of an implant. The
authors found that the dimensionless initial concentration plays a key role in determining
whether the problem is diffusion- or dissolution-limited. Chakravarty and Dalal [55]
developed a two-phase model for drug release from microparticles with combined effects
of solubilization and recrystallization.

One of the main advantages of mechanistic modeling is that it provides valuable
insights into the factors that influence drug release and, thus, supports the development
and optimization of drug delivery systems. It also enables the prediction of release profiles
under different conditions. However, mechanistic modeling can be challenging due to
the complex interplay of factors involved, often requiring extensive experimental data for
accurate parameter estimation. Furthermore, relying on simplifying assumptions may lead
to discrepancies between model predictions and real-world observations. Nonetheless, the
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rigorous foundation of mechanistic drug release modeling remains a fundamental tool in
the development of efficient and reliable drug delivery systems.

Some of the assumptions made in the previously described diffusion models in-
clude considerations of the constant diffusion coefficient [56], one-dimensional diffusion,
neglecting of excipients dissolution/diffusion, etc. Different forms of changes in the diffu-
sion coefficient can be derived, depending if the carrier is (micro)porous, non-porous, or
highly swollen.

The Siepmann–Peppas sequential layer model [57] enables the understanding and
prediction of drug release from hydrophilic matrix tablets subject to swelling and erosion.
This model considers diffusion of water and drug with time- and space-dependent diffusion
coefficients, moving boundary conditions, swelling of the system, dissolution of both the
polymer and the drug, and radial and axial mass transport (demonstrated in the case of
cylindrical matrix tablets). Due to the complexity of such a model, Fick´s law is usually
derived into simpler semi-empirical forms, which are often used to fit the experimental data
due to their simplicity. However, care must be taken in the application and interpretation
of such models to take into account the assumptions made in simplification. As mentioned
earlier, geometry is critical to the meaningful modeling of the drug release from a delivery
system. Delivery systems may vary in complexity of composition. They range from inert
structures to systems that undergo changes in their volume, size, and/or shape. These
changes are primarily influenced by swelling and erosion processes. Here, models should
be used that can capture the diffusivities of the drug and carrier (e.g., polymer) that
occur simultaneously.

Empirical drug release modeling methods rely on experimental data to establish math-
ematical relationships between the drug release profiles and various factors affecting the
release process. In contrast to mechanistic models, which focus on the underlying physical
and chemical principles, empirical approaches are data-driven and do not require detailed
knowledge of the release mechanism. These models are particularly useful when the
underlying release mechanism is complex or not well understood, making it challenging to
develop a mechanistic model. Empirical modeling often involves curve-fitting techniques,
such as polynomial equations, exponential functions, or power laws, to the experimental
data to accurately capture the release behavior.

The famous Peppas equation is an example of a semi-empirical model describing the
release rate as a total quantity of the drug released being proportional to the power of time,
where the power is dependent on the geometry of the formulation and is also indicative of
the release mechanism:

Mt = ktn (15)

where Mt is the amount of drug released at time t, k is a constant, and n is a release-
indicating exponent.

Interpretation of the release mechanism type based on the value of the release-
indicating exponent n depends on the delivery system geometry (Table 3).

Table 3. Interpretation of Peppas equation exponent depending on the delivery system geometry.

Delivery System Geometry
Release Mechanism

Thin Film Cylinder Slab

0.5
0.5 < n < 1.0

0.45
0.45 < n < 0.89

0.43
0.43 < n < 0.85

Fickian diffusion
Anomalous transport (combined mechanisms)

1.0 0.89 0.85 Case II transport (usually synchronized
swelling and erosion of polymers)

>1.0 >0.89 >0.85 Super Case II transport

For anomalous transport, i.e., combined mechanisms of the drug release, it may be
beneficial to utilize the Peppas–Sahlin equation where the release exponent m is used in
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combination with constants K1 and K2 to describe the relative contributions of the drug
released by diffusion through the (swollen) layer and the erosion, i.e., relaxation, usually of
the polymer chains:

Mt = K1tm + K2t2m (16)

In the case of Case II transport, constant drug release is achieved, and the equation
effectively becomes a zero-order kinetics model. Similarly, in the case of thin film geometry,
where the release mechanism is pure diffusion, the equation corresponds to the Higuchi
model. It is usually recommended to consider the first 60% of the active ingredient release
profile for modeling the mechanism(s).

There are other, more complex forms of semi-empirical models, e.g., for matrix systems
where the porosity and tortuosity of the matrix are also considered or for systems with a
constant release surface. Similarly, lag time or burst release may also be included in the
model equations. Geraili and Mequanint [58] demonstrated that models such as Hixson–
Crowell and Hopfenberg can successfully capture polymer erosion as the predominant
release mechanism from the photo-crosslinked polyanhydride matrix tablets.

A well-known purely empirical model is the Weibull equation, which can be used
to describe different drug release profiles but does not provide insight into the actual
release mechanism:

Mt = 1 − exp

[
−(t − Ti)

b

a

]
(17)

where Ti represents the lag time (typically 0), a describes the time scale of the process, and
b is representative of the distribution type (b = 1 in the case of exponential distribution,
b > 1 in the case of sigmoid, and b < 1 in the case of parabolic curve).

In addition to the release mechanisms described above, a variety of drug delivery
systems have been developed in which a specific stimulus triggers the drug release, such
as a change in pH, temperature, or other similar factors [59]. In addition to internal stimuli
for drug release, external stimuli, such as (electro)magnetic field, ultrasound, light, etc., can
also trigger drug release [60–62]. Drug release from complex delivery systems is sometimes
based on several processes, including the combination of permeation and diffusion from
emulsion-based systems, or is tailored to follow a circadian or other rhythm [63].

Sirousazar [64] developed a spherical, temperature-responsive drug delivery sys-
tem that has an inner layer that undergoes a solid–liquid phase transition at a certain
temperature. The response of the system to the temperature change was mathematically
modeled by solving the relevant heat and mass transfer equations in a pseudo-steady state.
Kashkooli et al. [60] gave an overview and several examples of modeling targeted-release
drug delivery systems.

3.1. Other Contemporary Approaches to Drug Release Modeling

Computational fluid dynamics (CFD) is a numerical technique for simulating and
analyzing fluid flow phenomena. In the context of drug release modeling, CFD enables the
study of the interaction between the drug released from the carrier (the dosage form) and
the surrounding medium (the fluid) by understanding the flow patterns and dynamics in
and around the drug delivery systems. CFD can provide insight into the different mass
transport mechanisms responsible for drug release, such as diffusion, convection, and
erosion, as well as simulate how different hydrodynamic factors might impact drug release.
Other methods used for numerical simulations are based on the discrete element method
(DEM), finite element method (FEM), etc.

Kubinski et al. [65] utilized a CFD approach to model the mass transfer coefficients
and corresponding drug release for the USP apparatuses I and II configurations of interest.
Limited experimental dissolution data was necessary to achieve high predictability for
erosion-based formulations. Lou and Hageman [66] investigated the influence of tablet
position in the USP apparatus II vessel on polymer erosion and drug release of a sur-
face erodible sustained-release tablet using CFD. The authors developed a mathematical



Pharmaceuticals 2024, 17, 177 11 of 39

model to describe the polymer erosion and tablet deformation based on the mass transfer
coefficient. Numerical analysis was used to simulate the drug release, considering both
drug diffusion and polymer erosion as controlling factors. The results showed that tablets
located at the off-center position deformed faster than those located at the center position.
However, the tablet location had no profound impact on the drug release rate since all
drug release profiles were similar. Walsh et al. [67] performed a computational study on
paracetamol diffusion from a porous matrix. The authors developed a numerical CFD
model based on the finite element method in order to solve the mass transfer equations.
Schütt et al. [68] used CFD to evaluate the drug dissolution/tablet disintegration process
under the influence of hydrodynamic and shear stress, i.e., the combination of motility pat-
terns and fluid viscosity, aiming to mimic the ascending colonic environment. The motility
patterns used were derived from in vivo data, representing different motility patterns in
the human ascending colon. They showed significant differences in the drug release rate
from the tablets, as well as in the ability of the drug to distribute along the colon.

CFD has also been utilized to simulate hydrodynamic conditions in different dissolu-
tion testing apparatuses [69–71].

Kalný et al. [72] combined two approaches in a combined simulation of tablet dis-
integration and ibuprofen dissolution. Tablet fragmentation triggered by swelling of the
disintegrant (croscarmellose sodium) was simulated using the discrete element method
(DEM), while the dissolution of ibuprofen from the resulting population of disintegrated
fragments was simulated using a finite volume grid-based model. The final ibuprofen re-
lease curve was then determined by superimposing the dissolution curves of the individual
disintegration fragments. This approach facilitates the development of immediate-release
solid dosage forms. Kimber et al. [73] used DEM to generate an unstructured mesh over
which mass transfer equations were solved to model swelling and drug release from tablets.

Ranjan and Jha [74] used FEM simulations and experiments to study drug release from
controlled-release polymeric formulations in a rotating paddle apparatus. The interaction
between the hydrodynamics inside the vessel and the swelling and erosion of dosage forms
often leads to significant deviations from the dissolution behavior observed when using the
approximation of a perfect sink. The authors investigated in detail the effects of agitation
speed, drug loading, and polymer swelling and erosion on drug release.

Advances in instrumental techniques, such as spectroscopy, have provided new in-
sights into the study of dissolution phenomena. Van Haaren et al. [75] reviewed ATR-FTIR
(attenuated total reflectance-Fourier transformed infrared) spectroscopic imaging in study-
ing underlying chemical and physical mechanisms of drug release from solid dosage forms.
Spectroscopic ATR-FTIR imaging can characterize a sample with high chemical specificity
and high spatial resolution, and generally, a flow cell set-up is used for ATR-FTIR imaging
during dissolution. In addition, a UV-Vis spectrophotometer can be integrated into the
pipeline, allowing simultaneous measurement of total drug release during the dissolution
process [75]. For ATR-FTIR imaging, the analyzed samples must be placed on an internal
reflectance element, and measurements are usually taken at the interface between the ana-
lyzed sample and the medium. This method has been used to investigate the influence of
pH and/or ionic strength on drug release from a hydrophilic polymer matrix system [76,77],
to study the drug release from multi-layer and/or multi-drug tablets [78,79], as well as thin
films [80]. In addition, ATR-FTIR imaging was coupled with DEM to model the release of
nicotinamide from HPMC matrix tablets [81]. In addition to FTIR spectroscopic imaging,
magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), Raman imaging,
coherent anti-Stokes Raman scattering microscopy, UV imaging, fluorescence imaging, ter-
ahertz (THz) imaging, and X-ray micro-tomography, are also used to study the dissolution
process [75,82]. Brown et al. [82] reviewed various applications of UV(-Vis) dissolution
imaging for pharmaceutical systems. Table 4 shows selected examples of imaging studies
used to analyze the dissolution process.
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Table 4. Selected examples of imaging studies used for analysis of the dissolution process.

Method API, Delivery System/Dosage Form Studied Process References

ATR-FTIR *
imaging

Ibuprofen (acid and salt formulations)
in amorphous solid dispersions
produced through hot-melt extrusion
with copovidone and Soluplus®

Interaction of different forms of ibuprofen with
polymers: in extrudates with its acidic form,
ibuprofen was found to interact with polymers
by forming hydrogen bonds, resulting in more
sustained drug release.

[83]

Ibuprofen (crystalline and amorphous
form) in physical mixtures (PM) and
hot-melt loaded (HML) mesoporous
silica microparticles

Based on the chemical images, the faster release
of amorphous ibuprofen from HML tablets
compared to crystalline ibuprofen in PM tablets
was observed. Ibuprofen dissolved from the PM
tablets was adsorbed on the surface of the silica
particles.

[84]

Indomethacin formulated with
nicotinamide, urea, and mannitol in
different ratios

The observed changes in the release kinetics of
indomethacin (from first-order to zero-order) can
be interpreted from the results of the spatial
distribution of the components during the
dissolution.

[85]

UV-Vis imaging
system

Placebo hydrophilic matrix tablets
made of two HPMC ** grades

The swelling behavior of hydrophilic matrices of
two HPMC grades with different particle
morphology and using two compression forces.

[86]

Metformin extended-release tablets
The release of metformin and the swelling of the
polymer matrix were monitored simultaneously
(at 255 nm and 520 nm, respectively).

[87]

Propranolol formulated in liqui-solid
compacts of Sesamum radiatum gum

Differences in the release behavior of
propranolol from physical mixtures and
liqui-solid formulations were observed.

[88]

UV-imaging
system

Tablets with paracetamol or
carbamazepine were formulated with
super disintegrants (sodium starch
glycolate or croscarmellose sodium)

The influence of the properties of the active
substance and the properties and variability of
the excipients on the release of the drug were
investigated.

[89]

NIR ***-imaging
system

Paracetamol in hydrophilic matrix
tablets

Coupling hydrodynamic studies with NIR
chemical imaging and dissolution data provided
new insights into the mechanisms of drug
release.

[90]

* ATR-FTIR—attenuated total reflectance-Fourier transformed infrared spectroscopy, ** HPMC—hydroxypropyl
methylcellulose, *** NIR—near-infrared spectroscopy.

3.1.1. Artificial Intelligence and Machine Learning Algorithms in Drug Release Modeling

Specific AI techniques used in drug release modeling include a wide range of algo-
rithms, including neural networks, support vector machines, random forests, and genetic
algorithms. These techniques are able to handle complex and nonlinear relationships
between different formulation parameters and drug release profiles, leading to improved
modeling results. The benefits of using AI in drug release modeling include the ability
to process large and diverse datasets, recognize patterns, and make accurate predictions,
even in the absence of explicit mechanistic knowledge. AI models can efficiently learn from
complex data and offer a data-driven approach that complements traditional mechanistic
and empirical modeling techniques. However, challenges arise in the interpretability of
AI models, as their internal workings may not be easily understood by researchers or
regulatory authorities. Jiang et al. [91] reviewed emerging AI technologies used in solid
dosage form development, including their use for predicting drug release profiles. Several
ML algorithms used for drug release prediction are presented in the review, including
ANNs, ensemble of regression trees, support vector machines, dynamic neural networks,
decision trees, self-organizing maps, and deep neural networks. Similarly, Wang et al. [92]
provided a state-of-the-art review of ANNs used for the prediction, characterization, and
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optimization of pharmaceutical formulations. Additional reviews and illustrative examples
of a variety of ML algorithms that have been used to model the release profiles of drugs (or
other bioactive compounds), including artificial neural networks, decision trees or random
forests, adaptive neuro-fuzzy inference systems (ANFIS), genetic programming, etc. can be
found elsewhere [93–97].

Some interesting recent examples include a study in which random forest was applied
to classify dissolution profiles into two categories: “spring-and-parachute” and “mainte-
nance supersaturation” for the dissolution behavior of solid dispersions [98]. In addition,
authors have used random forest as a regression model for the successful prediction of drug
release profiles. Elbadawi et al. [99] developed ML models for predicting drug dissolution
of 3D printed tablets based on measurements of the viscosity of the extrudable formulations
prepared for the fused deposition modeling. Nagy et al. [100] used partial least squares
regression and an ANN algorithm to successfully model the dissolution of tablets using
NIR and Raman spectra of intact tablets. Recently, Greenberg et al. [101] demonstrated the
potential of AI to support precise drug delivery from extracellular vesicles.

In the context of drug release prediction, ANNs are usually considered “black-box”
models, where the equations behind the predictions are not visible to the user of the model,
nor are they based on the principle of a release mechanism. To assess the interpretability
and reliability of explainable AI models, researchers can compare the explanations pro-
vided by the AI model with existing mechanistic knowledge. The consistency between the
knowledge generated by the AI and established scientific principles confirms the reliability
of the model’s predictions. In addition, the accuracy and consistency of the AI model’s
predictions across different datasets and experimental conditions can further reinforce the
model’s reliability. Explainable AI has found valuable use cases in the optimization of oral
drug delivery systems. By analyzing the model’s explanations, researchers can identify key
formulation parameters that affect drug release, such as excipient composition, particle size,
and matrix properties. This information can guide formulation development and enable
the development of oral drug delivery systems with desired release profiles, improved
bioavailability, and reduced side effects. Moreover, explainable AI can help explore the
effects of different excipients and dosage forms, leading to the discovery of novel drug
delivery strategies that maximize therapeutic efficacy. Overall, AI and explainable AI ap-
proaches are very promising in drug release modeling. They are advancing pharmaceutical
research and ushering in a new era of precision drug delivery.

3.1.2. Hybrid Drug Release Models

A hybrid approach that combines the strengths of both empirical and mechanistic
modeling can be a promising solution. It provides a balance between simplicity and
mechanistic understanding, improving the accuracy and predictive ability of drug release
models. In hybrid models, mechanistic principles are integrated with empirical data,
allowing a more accurate representation of the complex interactions that determine the
release of drugs from pharmaceutical formulations. By incorporating mechanistic aspects,
such as diffusion as a release mechanism, the model can capture the underlying physical
and chemical processes involved in drug release. At the same time, empirical elements
are used to fine-tune the model based on experimental data, taking into account specific
formulation features and other variables that may not be fully captured by the mechanistic
components alone. Different approaches to drug release modeling are represented in
Figure 3.

An example of a hybrid model was presented by Yokoyama et al. [102]. The authors
investigated bi- and triple-layer tablet formulations containing acetylsalicylic acid and
mefenamic acid using cellular automata, a computational model for discrete dynamic
systems. This approach allowed them to estimate the effects of the inert layer between the
different active ingredients on the release of each active ingredient. In addition, models
based on the Noyes–Whitney equation in combination with a cellular automata-based
numerical solution for dissolution and disintegration were also developed. Sivasankara and
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Jonnalagadda [103] used Monte Carlo methods to simulate differences in the degradability
and crystallinity of polymers in biodegradable microparticles for injectable levonorgestrel
contraceptives. The contribution of drug diffusion and polymer degradation was evaluated,
and the predictive power of the machine learning models was validated. Pishnamazi
et al. [104] developed a hybrid ANN–Kriging method to simulate the release rate of aspirin
from controlled tablets prepared using lignin and the dry granulation method. The Kriging
interpolation method was used to increase the number of training and validation points for
the ANN.
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3.2. Estimation of Drug Dissolution

As discussed above, drug release and dissolution can be governed by a variety of
mechanisms, depending on the formulation factors and drug properties, and this may
markedly influence drug absorption. For this reason, the determination of drug dissolution
(or drug release rate) has been a priority in different stages of formulation development. In
terms of modeling drug dissolution, the Noyes–Whitney model, an extension of Fick’s first
law of diffusion, is specifically designed to explain the dissolution process of solid drug
particles in a solvent. It integrates the principles of diffusion characterized by Fick’s law to
model the rate at which a drug dissolves, taking into account the diffusion coefficient, the
concentration gradient, and the surface area of the dissolving solid.

When it comes to PBBM, the main interest lies in the estimation of drug dissolution
in vivo. This process cannot be quantitatively described in vivo, so the options are to
predict drug dissolution based on the properties of the drug and formulation or to measure
it in vitro. In the latter case, the choice of in vitro experimental conditions is essential for
the relevance of the dissolution test results. For example, if the drug is poorly soluble and
ionizes in the physiological pH range, the physiological conditions will have a significant
impact on the dissolution of the drug, which means that the in vitro setup should closely
mimic the in vivo environment. In this context, one should consider two definitions from
the regulatory guideline [105]. The first one, in vitro bio-predictive dissolution testing,
refers to a set of conditions for which in vitro dissolution profiles are capable of predicting
drug concentration profiles in plasma. These conditions are usually selected based on the
results of the in vitro–in vivo correlation (IVIVC), which means that there is a correlation
between the in vitro and in vivo dissolution profiles, but the conditions in vitro and in vivo
do not necessarily have to be the same. Another assumption regarding bio-predictive dis-
solution testing is that similar dissolution profiles of drugs in vivo result in similar plasma
levels, meaning that the in vitro test is able to reveal differences between the products that
would be clinically relevant. The other term refers to a bio-relevant dissolution test, which
represents a set of conditions designed to resemble a relevant physiological environment.
The choice of bio-relevant experimental conditions depends on drug properties, dosage
form characteristics, and physiological conditions at the site of drug release/dissolution.
Bio-predictive and bio-relevant in vitro dissolution test conditions have been much dis-
cussed over the years, and further details can be found in the relevant literature [106–115].
It is also interesting to note that nowadays, several software packages are available to
simulate the dissolution of drugs under different conditions, such as DDDPlus [18], DD-
Solver [116], or SIVA toolkit [117]. These software tools can greatly facilitate and accelerate
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the selection of the in vivo relevant conditions for in vitro testing, as demonstrated in
several publications [118–122]. However, these tools are still being improved and their
potential is not yet sufficiently exploited.

4. In Silico Modeling of Oral Drug Permeation and Absorption

There are two ways to look at the in vitro dissolution profiles in relation to PBBM. On
the one hand, in vitro dissolution data can be used as inputs for the simulation (if obtained
under bio-predictive or bio-relevant conditions) to estimate the resulting absorption and
plasma concentration profiles. On the other hand, PBBM can be used to simulate drug
dissolution and estimate the influence of drug-, formulation-, or physiology-related factors
on this process to clinically relevant dissolution specifications. The link between bio-
predictive or bio-relevant dissolution testing and PBBM and the utility of PBBM in terms
of identifying in vivo relevant dissolution testing conditions or issues related to drug
dissolution have been addressed in a number of publications [123–132].

The concomitant step that determines oral drug absorption after dissolution is perme-
ation. For a drug to enter the bloodstream, it must cross at least one biological membrane.
The epithelial cell layer in the intestine, the most important absorption site for orally ad-
ministered drugs, has a specific structure that is described in simplified terms as a lipid
bilayer with embedded proteins and is interrupted by tight junctions between the cells.
Drug transport across the membrane is limited to several possibilities, depending on the
properties of the drug, either through the lipid membrane (transcellular) or through the
aqueous pores between the cells (paracellular). Each of these processes has specific features
and can be described mathematically within a PBB model, as summarized in Table 5.

Table 5. Examples of permeability equations incorporated in PBB models.

Process Equation Denotations

Passive diffusion

dM
dt = D×A

h × (C1 − C2)
(Fick´s first law of diffusion)

dM/dt—drug diffusion rate
D—diffusion coefficient
A—membrane surface area
h—membrane thickness
C1—concentration in the GI lumen
C2—concentration in the blood
P—partition coefficient between the lipid
membrane and GI fluids
V—uptake rate
Vmax—maximum uptake rate
Km—Michaelis–Menten constant
Csubs—substrate concentration
Ppara—paracellular permeability
ε—porosity
δ—pore length
F(r/R)—Renkin function
r—drug molecular radius
R—radius of the pore
κ(z)—electrochemical energy function
(for the charged species with z valence)

dM
dt = D×A×P

h × (C1 − C2)
(Modified Fick´s first law of diffusion)

Active transport V = Vmax×Csubs
Km+Csubs

(Michaelis-Menten equation)

Convective (paracellular) transport Ppara = ε×D
δ × F

( r
R
)
× k(z)

1−ek(z)

(Adson equation)

The total drug permeability reflects the overall drug transport via different mecha-
nisms. This value can be determined experimentally using various methods (Table 6) or
predicted using computer tools [133,134] and used as the input for PBBM. Further details
on the available models for studying drug transport across the intestinal epithelium can be
found in several comprehensive reviews [135–140].
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Table 6. Common methods for drug permeability determination.

Method Equation Denotations

Non-cell-based methods (e.g., PAMPA * test)
Papp =

dQ
dt

A×C0

Papp—apparent permeability coefficient
Peff—effective permeability
dQ/dt—permeability rate
A—membrane surface area
C0—initial drug concentration
Q—perfusion flow rate
Cin′—inlet drug concentrations adjusted for
water transport
Cout′—outlet drug concentrations adjusted for
water transport
R—radius of the perfused intestinal segment
L—length of the perfused intestinal segment

Cell-based methods (e.g., Caco-2 cells **,
MDCK cells ***)

Animal models (e.g., rat) Pe f f =
−Q×ln

( Cout′
Cin′

)
2πRL

Human studies
(e.g., Loc-I-Gut [141]) Pe f f =

Q×(Cin−Cout)
2πRLCout

* PAMPA—parallel artificial membrane permeability; ** Caco-2—human colorectal adenocarcinoma cell line;
*** MDCK—Madin–Darby canine kidney cell line.

The value corresponding to a human PBB model is the value determined in human sub-
jects, but these data are rarely available as permeability testing in humans is not routinely
performed. Alternatively, the values determined, e.g., in cell cultures or animal models,
can be converted to human permeability based on a correlation between two datasets for a
representative selection of reference compounds for which human permeability values are
available [142,143]. In such cases, the selected reference compounds should have different
permeabilities, from low to high, and the experimental data for the conversion must be
obtained in the same laboratory and with the same method. Although the permeability
conversion approach can be quite useful for PBBM, it should be used with caution as the
values obtained in non-human models may not account for all permeation mechanisms
involved in drug transport through the human intestine (e.g., PAMPA assays are only
indicative of passive diffusion, expression of transporters in cell-based methods or animal
models may not correspond to the expression in humans) [144–147]. In addition, drug
permeability may depend on the region of the GI tract, and these variations can either
be considered as region-dependent input values [148–150] or predicted based on drug
permeability in a single region and parameters reflecting GI tract characteristics [5,151,152].

The estimated drug permeability data, together with the drug dissolution rate, are
eventually used to assess the rate and extent of drug absorption. Absorption has been
described by a variety of theories and equations over the years, as outlined in a number of
reviews [16,153–156]. Most PBB models use compartmental absorption and transit (CAT)
models, such as the advanced compartmental absorption and transit (ACAT) model within
GastroPlusTM software [151] or the advanced dissolution, absorption, and metabolism
(ADAM) model within Simcyp™ PBPK Simulator [157]. These models interpret the gas-
trointestinal tract as a system of interconnected, sequential compartments described by
a variety of physiological parameters that are mapped in dynamic equations to estimate
drug transit, dissolution, and absorption. ACAT and ADAM models also take into ac-
count the possible metabolism of the drug in the gut wall, precipitation in the GI, and
luminal degradation. In addition to CAT models, PK-Sim® software is based on the “mod-
ified convection–dispersion model”, which treats the human intestine as a single tube,
but with different properties in different regions and continuous intestinal transit func-
tion [158]. The comparative evaluation of this software has been addressed in several
publications [5,159,160].

In general, all these models are able to predict drug bio-performance and mechanis-
tically explain the processes that a drug and a dosage form undergo in the GI tract, but
the criteria for estimating PBBM prediction accuracy are not clearly defined [161–164].
In addition, their predictive power depends on the complexity of in vivo processes and
interactions between drug properties and physiology, as well as their interpretation in a
PBB model. This means that any improvement in our knowledge of the in vivo processes
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governing drug absorption or mathematical equations that quantitatively describe these
processes will inevitably improve the performance of PBB models. Moreover, the choice of
input values markedly influences PBBM results, which means that increasing confidence in
the input data would also lead to more reliable prediction results.

5. In Silico Modeling of Percutaneous Drug Permeation

The skin is not only a unique physiological barrier but also an important route of
drug administration to achieve a local or systemic therapeutic effect. Topical application of
the drug ensures direct contact of the active pharmaceutical ingredients (APIs) with the
diseased skin and minimizes the risk of side effects, while application of the drug to the
intact skin for transdermal delivery is a simple and painless option that offers the possibility
of prolonged drug release as well as reduced frequency of application and fewer side effects
compared to peroral and parenteral routes. The main challenge in applying drugs to the skin
is the permeation of the active ingredient to the site of action in the skin or bloodstream at
the effective concentration. There are three generally recognized percutaneous permeation
routes: (1) through the continuous stratum corneum, (2) through the hair follicles with
the associated sebaceous glands, and (3) through the sweat ducts [165]. The percutaneous
permeation processes are not yet fully understood, and it is usually assumed that the
intact stratum corneum—the outermost layer of the skin epidermis consisting of dead,
flattened, protein-rich cells (corneocytes) arranged like building blocks and connected
by a complex lipid matrix between the corneocytes—is, paradoxically, the main route
and rate-limiting step for the permeation of APIs. In addition, skin permeation depends
on many factors, including the concentration and physico-chemical properties of the
permeating drug and pharmaceutical excipients with permeation-promoting activity, skin
characteristics (age, anatomical location, injury, disease), and environmental conditions (e.g.,
humidity, temperature) [166]. Therefore, the consideration of percutaneous permeation is
one of the key aspects in the discovery and development of topical and transdermal drug
delivery systems and, at the same time, an extremely challenging task. It can be studied
experimentally using various in vitro methods (usually using the Franz diffusion cell with
excised skin from humans, pigs, hairless rodents, guinea pigs, or artificial membranes) and
in vivo (on various animal models). The experimental methods are well accepted, but there
are ethical issues, inter- and intra-individual variation, interlaboratory differences with
limited correlation, and the complexity of transferring data obtained on animal models to
human skin [167–169]. Therefore, there is a growing need for validated and satisfactory
alternatives to elucidate skin permeation in the early phase of drug development.

The field of computational (in silico) methods for the description and prediction of
percutaneous permeability has been intensively developed for several decades. The in
silico approach is promising for overcoming the limitations of in vitro, ex vivo, and in vivo
permeability measurements in terms of ethical aspects that must be respected and insuffi-
ciently harmonized experimental protocols and conditions (i.e., intra- and inter-laboratory
variability), which makes it difficult to evaluate the results of different studies. Numerous
in silico methods (mathematical models and computer simulations) have been proposed
by various scientists and research groups as a cost-effective and less time-consuming com-
plement or alternative to experimental permeation assessment, as well as to predict the
permeation of known substances, newly synthesized molecules, or not yet synthesized
molecules [170–172].

The comprehensive reviews of in silico modeling of percutaneous penetration, perme-
ation, and absorption of the entire spectrum of chemical substances have been extensively
considered [173–178]. The models used are empirical (based on experimental data) or
mechanistic (based on physical and biochemical principles). Mechanistic models are partic-
ularly useful in analyzing the mechanism of the permeation process of actives relevant to
human skin, as well as in studying the permeation of actives in the presence of permeation
enhancers, which facilitates the design of topical/transdermal formulations. The most
commonly used models to date are quantitative structure–permeation relationship (QSPR)
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(also quantitative structure–activity relationship (QSAR)) and molecular dynamics (MD)
simulations [179,180]. The interplay of descriptors for in silico modeling of percutaneous
permeability is represented in Figure 4.
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5.1. QSPR/QSAR Models

QSPR/QSAR models describe a linear or non-linear mathematical relationship of per-
cutaneous permeation based on experimental data (empirical QSPR models) or diffusion of
the permeate at steady state (mechanistic QSPR models) with its molecular structural prop-
erties and physico-chemical characteristics (descriptors) [179,181–183]. Linear QSPR/QSAR
models are usually based on multiple linear regression (MLR), partial least squares (PLS),
linear free-energy regression (LFER), and principal component regression (PCR) [180].
Linear QSPR/QSAR models can provide reliable insight into the relationship between
percutaneous permeation and permeant descriptors such as lipophilicity and molecule size.
However, when the relationships between skin permeability and a variety of descriptors
are more complicated, nonlinear models based on machine learning perform better. The
choice of a QSPR/QSAR model depends on the expected responses, and the predictions
should be reliable [179]. QSPR/QSAR modeling enables the elucidation of the influence
of physico-chemical properties of permeants on permeation at the molecular level, as
well as the identification of permeants with challenging physicochemical properties or
the prediction of target properties of permeants that could be promising candidates for
experimental evaluation, thus facilitating the screening of chemical databases of newly
synthesized compounds or virtual libraries (prior to their synthesis). Many QSPR/QSAR
models are available in various computer software packages. Data obtained in mixed
animal and human experiments, different vehicles, on various skin sample regions, and
under different measurement conditions can be used to develop software [180]. Although
the QSPR/QSAR approach allows a relatively fast evaluation of large datasets, the in silico
predicted skin permeability depends more or less on the quality of a software database and
may vary between different models.

For the steady-state permeation of permeable molecules through the lipid matrix of
the stratum corneum, based on the passive diffusion process from a skin region of high con-
centration to low concentration, the QSPR approach usually predicts two parameters—the
steady-state flux (Jss) and the permeability coefficient (kp). According to Fick’s first law
of diffusion at steady state [184], when the permeant concentration is kept at a constant
value and the maximum solubility of the solute in the stratum corneum is reached, and
assuming that the stratum corneum is a pseudo-homogeneous membrane whose barrier
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properties do not change with time, Jss can be defined as the permeation rate (the amount of
permeant per unit surface area of exposed skin and time) (dimensions of µg/cm2/h). Here,
kp is Jss normalized by the concentration gradient (i.e., Jss divided by the concentration of
the applied penetrant (typically in a saturated aqueous solution)) (dimensions in cm/h or
cm/s). Therefore, Jss is suitable for comparing a wide range of permeants from saturated
solutions, whereas kp depends on the diffusion coefficient, the skin-to-vehicle partition
coefficient of the permeant, and the path length [170,179].

In the early 1990s, Potts and Guy developed the first QSPR model [185] based on hu-
man skin permeability coefficients for 97 drug substances from aqueous solutions compiled
from 15 different literature sources and published by Flynn [186]. The Potts and Guy model
(PGM) is the most frequently cited and applied empirical linear QSPR model for predicting
skin permeability (logkp) based on known physico-chemical properties of a permeant–water–
octanol partition coefficient (logP) and molecular size (in terms of molecular volume or
molecular weight (MW)):

logkp = −6.3 + 0.71logP − 0.0061MW (18)

where kp is in cm/s, MW ranges from 18 to 750, and logP ranges from −3 to +6.
The PGM is used by many regulatory agencies and the U.S. Environmental Protection

Agency (EPA) as a valuable tool for assessing potential systemic absorption from skin
exposure [187]. The PGM assumes that the lipophilic stratum corneum is the rate-limiting
factor for skin permeation, meaning that increased lipophilicity (lower water solubility)
and smaller molecule size increase skin penetration. So far, logP and MW are the two most
commonly used descriptors correlated with skin permeability. However, it follows that
this model cannot be used when formulation components modulate the barrier properties
of the skin. Furthermore, the PGM assumes simple aqueous solutions of permeants,
so in some cases, the extrapolation of predictions to complex multicomponent and/or
multiphase formulations is unclear. Although the PGM has often been considered more
accurate compared to some newer and more complex mathematical models, in some cases,
it over- or under-estimated transdermal flux [188]. The inclusion of molecular volume,
polarizability, hydrogen bond donor and acceptor activities, and molar refractive index
improved the fit of the PGM to more limited datasets [189,190].

Several research groups have developed related QSPR models and a large number of skin
permeability coefficients for a range of permeants based on extensive databases [190–195], in-
dicating the importance of selecting the molecular structure (rather than lipophilicity) of the
permeant, physico-chemical properties of the vehicle and the biological system/membrane
used. Table 7 represents an overview of in silico modeling for the prediction of percutaneous
permeability from different permeant descriptors.

Cronin et al. [190] generated the QSPRs based on the literature data using least-squares
regression analysis. The QSPRs were used to calculate 47 descriptors from the relevant
physico-chemical parameters of 114 drugs and to predict and compare their permeability
coefficients through excised human skin in vitro and through a synthetic polydimethyl-
siloxane membrane. The hydrophobicity and molecular size of the penetrant influenced
the percutaneous absorption. The mechanisms of drug permeation through the studied
membranes differed significantly. Chang et al. [191] created the QSAR model for 158 chem-
ical substances with known permeability coefficients using 4 molecular descriptors (the
electrostatic interactions between the electric quadrupoles of van der Waals forces, the
octanol–water partition of the solute, the similarity of antineoplastic property, and the
abundance of carbon–nitrogen bonds at a constant topological distance) to relate the
physico-chemical properties and transdermal transport of a permeant. Patel et al. [195] de-
veloped QSARs using hydrophobicity, molecular size, and hydrogen bonding as descriptors
to determine the skin permeability coefficients of 158 compounds through excised human
skin in vitro. Although the descriptors provided an excellent fit to the data (r2 = 0.90), the
permeability data for many compounds (e.g., hydrocortisone derivatives) were erratic and
were therefore removed from the dataset. Magnusson et al. [196] suggested that for data
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analysis of permeants from water vehicles using the QSPR method, Jss is, practically, a more
relevant parameter than kp. Also, logP appeared to be a less significant parameter to im-
prove predictions, and MW alone was sufficient to describe most of the chemistry-specific
variations in the data, according to the rule that a MW below 500 Daltons is necessary for
permeate permeation through the skin.

The distribution of permeant between water and the stratum corneum is expected to
have a correlation with its lipophilicity, but this may not be trustworthy in some cases. An
empirical QSPR model was constructed by Liou et al. [197] to predict the permeability coef-
ficients of 13 non-steroidal anti-inflammatory drugs (NSAIDs) by considering the solubility
parameter (δ) of those model drugs, assuming the penetration of drugs with logP > 2 and
<2 via hydrophobic (nonpolar) and hydrophilic (polar) pathways, each of which would
encounter different properties determined by the biological parameters (transepidermal
water loss (TEWL), hydration content (HD), lipid content (SB), resonance running time
(RVM), and elasticity (EL)) of the individual skin samples. The drug characteristics (MW,
polarity factor (logP), and δ) and the measured biological parameters were the independent
variables for the construction of the QSPR model. The regression procedure (stepwise
function) in SAS 8.0 statistical software was used to obtain the relationship between the
independent variables and the dependent variable (kp). In vitro permeation of NSAIDs
through the full-thickness skin of nude mice was investigated. The predictive ability of
the developed QSPR model was demonstrated by validating a plot of the observed kp
values against the predicted kp values. The study showed that the QSPR model could be
statistically improved by incorporating δ and biological parameters and that δ could be a
more appropriate drug descriptor for predicting kp of those NSAIDs with logP < 2 with
an adjusted R > 0.90, compared to the PGM. The solubility parameter (δ) is proposed as
a possible replacement for the partition coefficient in the evaluation of skin permeability
when a solute is distributed between the stratum corneum and the water phase.

Several studies have compared the predictive ability and accuracy of the PGM with
other QSPR models using different datasets. Lian et al. [198] compared 7 models using skin
permeability data of 124 chemical compounds from different sources and concluded that
the PGM provided the second best predictions, while the best predictions were offered by
the mechanistic model of Mitragotri [199]:

logkp = 0.7logP − 0.0722MW2/3 − 5.2518 (19)

Both the PMG and Mitragotri models assume diffusion of the permeant through the
lipid matrix and predict skin permeability based on the two physicochemical properties
(logP and MW). In addition, the Mitragotri approach was derived to predict kp by using
a scaled particle theory for solute partitioning and considering diffusion through a lipid
bilayer as an isotropic phase with a tortuosity of τ:

kp = 5.6 × 10−6P0.7 exp
(
−0.1662MW2/3

)
(20)

Table 7. The representative references demonstrating the applicability of in silico modeling for the
prediction of percutaneous permeability (logkp or flux) from different permeant descriptors.

In Silico Model Considered Descriptors In Silico Evaluated Percutaneous
Permeability References

QSPR logP and molecular size (MV or MW) logP and MW of a single permeant from
aqueous solution correlated well with logkp

[185,199]

QSPR
47 descriptors from relevant
physico-chemical parameters of
114 drugs

Hydrophobicity and the molecular size of
the penetrant affected logkp

[200]

QSPR Lipid solubility of 13 corticosteroids and
sex steroids

The predicted flux of steroids was not
accurate [201]
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Table 7. Cont.

In Silico Model Considered Descriptors In Silico Evaluated Percutaneous
Permeability References

QSPR MV, logP, and MP
The accuracy in the predicted permeability
logkp was demonstrated with 60 molecules,
including small molecules and steroids

[181]

QSAR Hydrophobicity, molecular size, and
hydrogen bonding of 158 compounds

The descriptors provided an excellent fit to
the permeability data for most compounds
except hydrocortisone derivatives

[195]

QSPR

logP, MW, MV, and the melting point of
betamethasone dipropionate, clobetasol
propionate, fluorouracil, flurandrenolide,
ketoconazole, lidocaine, metronidazole,
tacrolimus monohydrate and tazarotene
(formulated in propylene glycol and
commercial formulations)

The QSPR models were useful for skin
permeability assessment, although
discrepancies were observed for tazarotene,
tacrolimus, ketoconazole, and
metronidazole

[200]

QSPR

MW, logP, and δ (assuming the
penetration of drugs with logP > 2 and <2
via nonpolar and polar pathways,
respectively) of 13 non-steroidal
anti-inflammatory drugs (NSAIDs), and
biological parameters (TEWL, HD, SB,
RVM, and EL) of individual skin samples

Inclusion of δ and biological parameters
improved statistically the QSPR model for
predicting logkp of NSAIDs with logP < 2

[197]

QSPR/QSAR
integrated with

molecular docking

MW, MV, predicted logP, total polarity
surface, and hydrogen bond of the
phytosterols (campesterol, β-sitosterol,
and stigmasterol)

The predicted logkp was the greatest for
β-sitosterol, followed by campesterol and
stigmasterol. The in vivo study (mice)
confirms the capacity of topically applied
β-sitosterol as an antipsoriatic agent

[182]

QSPR/QSAR
integrated with

molecular docking

Molecular size (the number of resveratrol
subunits) and physico-chemical
properties (MV, logP, hydrogen bond
(H-bond) number, and total surface
polarity) of resveratrol and its oligomers

Oligomers with higher numbers of
subunits have higher docking scores and
are predicted to bind stratum corneum
lipids more strongly; ε-viniferin was
identified as a promising antipsoriatic
agent that accumulated at higher levels in
psoriasis-like mouse skin

[183]

QSAR

logP of the drug (haloperidol) and
descriptors of 49 terpenes (MW, logP,
boiling point, melting point, the terpene
type, and the functional group of each
enhancer)

The ideal terpene enhancer for haloperidol
has at least one or combinations of the
following properties: larger logP, liquid
state at room temperature, with an ester or
aldehyde (but not acid) functional group,
and is neither a triterpene nor tetraterpene

[193]

Membrane-interaction
QSAR (MI-QSAR)

MI-QSAR descriptor (the difference in
the integrated cylindrical distribution
functions over the phospholipid
monolayer model, in and out of the
presence of the skin penetration enhancer
(∆Σh(r)) developed for two datasets of 61
and 42 penetration enhancers

Explained 70–80% of the variance in skin
penetration enhancement across each of the
two training sets to predict skin
permeability enhancement for
hydrocortisone and hydrocortisone acetate

[202]

QSPR

Donor/acceptor interactions, van der
Waals forces, HBD–π interactions, and
hydrogen bonding in complexes of four
APIs (5-fluorouracil, hydrocortisone,
estradiol, and diclofenac sodium) and
34 terpenes

The satisfactory correlation between the
predicted molecular properties of modeled
complexes or examined terpenes and the
permeation enhancement effects

[203]
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Table 7. Cont.

In Silico Model Considered Descriptors In Silico Evaluated Percutaneous
Permeability References

ANN-based QSAR

logP, MW, steric energy, van der Waals
area, van der Waals volume, dipole
moment, highest occupied molecular
orbital, and lowest unoccupied molecular
orbital of 35 newly synthesized
O-ethylmenthol derivatives

logP, steric energy, and the lowest
unoccupied molecular orbital significantly
affected the prediction of ketoprofen
enhancement factor (penetration rate with
enhancer:penetration rate without
enhancer) (Ef) and total irritation
score (TIS)

[204]

ANN and RSM
Vehicle composition (water (W), ethanol
(E), propylene glycol (P), their binary and
ternary mixtures)

RSM and ANN coincided very well in the
prediction of the most suitable mixtures
(W:E:P (20:60:20), W:E (40:60), and W:P
(50:50)) to increase flux and reduce lag time
of percutaneously applied melatonin

[205]

ANN and differential
evolution (DE))

Statistically significant descriptors of
potential permeability enhancers of
insulin included: average 1-electron
reactivity index for a carbon atom,
minimum 1-electron reactivity index for
an oxygen atom, Kier and Hall index
(order 1), RNCS relative negative charged
SA (SAMNEG*RNCG) [Zefirov’s PC],
and total dipole of the molecule.

The compounds with greater
hydrophobicity and reactivity, as well as
low dipole moments and capacity to form
intermolecular bonds with stratum
corneum lipids, could be promising
insulin-specific permeability enhancers

[206]

logP—partition coefficient between water and octanol; MV—molecular volume; MW—molecular weight;
δ—solubility parameter; TEWL—transepidermal water loss; HD—hydration content; SB—lipid content;
RVM—resonance running time; EL—elasticity; MP—the solubility of the permeant in both polar and non-
polar solvent.

Alonso et al. [200] evaluated the skin permeability of 20 marketed topical drugs using
the PGM and Barrat model (BM) [181] and an in vitro assay with an artificial membrane
(Skin-PAMPA). The BM uses a linear PCR approach and considers the molecular volume
(MV) instead of the MW, as well as the solubility of the permeating agent in polar and non-
polar solvents (MP) as additional parameters for the calculation of the skin permeability
coefficient (logkp):

logkp = 0.82logP − 0.0093MW − 0.039MP − 2.36 (21)

The accuracy of the predicted permeability of the BM was demonstrated with 60 molecules,
including small molecules and steroids [181]. In addition, in the study by Alonso et al. [200],
9 APIs formulated in propylene glycol (PG) and commercial formulations (betamethasone
dipropionate 0.5 mg/g cream (Diproderm), clobetasol propionate 0.5 mg/g cream (Clovate),
fluorouracil 50 mg/g cream (Efudix), flurandrenolide 0.5 mg/g cream (Cordran), ketocona-
zole 20 mg/g cream (Fungarest), lidocaine 20 mg/g cream (Dermovagisil), metronidazole
7.5 mg/g gel (Rozex), tacrolimus monohydrate 1 mg/g ointment (Protopic), and tazarotene
1 mg/g gel (Zorac)), were tested in Franz cells using human or porcine whole skin samples.
The APIs were classified according to their determined/predicted skin permeability. The
aim of the study was to translate different physico-chemical properties of the APIs into a
wide range of skin permeabilities to enable the prediction of skin permeability using the
in silico and in vitro models. The physico-chemical properties (logP, MW, and MV) were
calculated for all APIs, and the melting point was measured. The mathematical models
studied were comparable and useful for the evaluation of skin permeability, although
discrepancies were observed for some drugs (tazarotene, tacrolimus, ketoconazole, and
metronidazole), which can be explained by the differences in the methods and the variety
of physico-chemical properties of the compounds.
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Burli et al. [188] investigated the ability of the PGM and Cleek and Bunge´s model
(CBM) [201] to predict the transdermal flux of 13 corticosteroids and sex steroids (estradiol,
progesterone, fluocinolone acetonide, dexamethasone, cortisone, corticosterone, desoxy-
cortone, dehydroepiandrosterone, androstenedione, testosterone, hydrocortisone, 17-OH
progesterone, and testosterone acetate) and their accuracy is compared with previously
published in vivo data on percutaneous absorption following topical administration of
the steroids dissolved in acetone in Caucasian individuals (ages 21–50) [207]. The PGM
was used to predict the permeability coefficient (kp). In vivo flux (Jivv) was calculated from
previous experimental in vivo data as follows:

Jivv = maximal absorption rate × applied dose (22)

the maximal absorption rate was in %/hour, whereas the applied dose was 4 µg/cm2

(4000 ng/cm2).
The CBM takes lipid solubility into account and has been shown to be more suitable

for lipophilic substances than the PGM. The PGM correlated significantly with the in vivo
data, but the flux of most steroids studied was overestimated (by a factor of 2.5 up to a
factor of 60) and, in one case (testosterone acetate), underestimated (by a factor of 5). The
observed statistical differences between the predicted and in vivo derived results could be
related to the following factors: anatomical variations (variations in the amount of stratum
corneum and skin thickness), rubbing and washing of the skin (washing-in and washing
out), shunt diffusion (diffusion involving hair follicles, sebaceous and sweat glands), age
differences, variability of PGM parameters between laboratories, variability of in vivo data,
sample size (only 13 steroids). In addition, the PGM was developed for the evaluation
of percutaneous penetration of chemical substances in water-based vehicles and under
steady-state conditions, while the in vivo study used steroids in acetone and finite single-
dose kinetics. CBM fitting for kp may allow better predictability than PGM due to the
low water solubility of steroids. The general observation of the study was that the flux
of steroids predicted by the mathematical models considered was not accurate, probably
because they do not take into account volatility, lipid solubility, hydrogen bonding effects,
drug metabolism, and protein binding aspects.

The need to correlate skin permeability with a variety of permeation descriptors and
parameters that account for the effects of different solvents/delivery vehicles on the perme-
ation process has encouraged the development of non-linear SPQR models, using machine
learning algorithms such as artificial neural networks (ANN), neural fuzzy algorithms, deci-
sion trees, decision forests, random forests, support vector machines, Gaussian regressions,
k-nearest-neighbor regression, ridge regression, and conformal prediction [179,180]. In
addition to the descriptors from the PGM, some of the descriptors considered in nonlinear
QSPR analysis are permeant solubility, dipole moment, polarizability, solvation free energy,
number of hydrogen acceptor and donor bonds, the sum of the charges of the nitrogen
and oxygen atoms and the sum of the charges of the hydrogen atoms bound to nitrogen or
oxygen atoms, as well as the octanol–water partition coefficient measured at a certain pH
value. Numerous studies have been published over the last three decades, often demon-
strating the superiority of non-linear models over linear models. Nevertheless, a number of
challenges have been recognized that currently limit the applicability of non-linear models,
including the tendency to overfit and model the error inherent in the data, as well as limited
mechanistic insight. The need to develop and apply specialized expertise and/or programs
for data processing and correct interpretation is often criticized [170]. In a very recent study,
Vidović et al. [208] applied various QSPR statistical models available online to predict
percutaneous permeability in a group of 24 newly synthesized succinimide derivatives
(1-aryl-3-methylsuccinimides (Series C) and 1-aryl-3-ethyl-3-methylsuccinimides (Series
D)) with antibacterial and antifungal activity. Skin-PAMPA was also performed using an
isopropyl myristate/silicone oil mixture (3:7) membrane and PBS buffer solutions with
a pH of 7.4 in the donor and acceptor sections of the MultiScreen Trans-port Receiver
Plate (Millipore, Burlington, MA, USA) to determine the apparent permeability coeffi-
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cient (Papp-skin). The determined Papp-skin values were compared with the in silico
predicted skin permeability and lipophilicity using three different prediction models: the
free online tool SwissADME [209] (to calculate logarithm of the partition coefficient (iLogP,
XLOGP3, WLOGP, MLOGP, SILICOS-IT logP, and Consensus LogP) and logkp (cm/s))
and the program pkCSM [210] and the PreADMET online server [211] (to calculate logkp
(cm/h)). Data classification analysis was performed with the statistical techniques of prin-
cipal component analysis (PCA) and hierarchical cluster analysis (HCA) using the program
Statistica v.12 (StatSoft Inc., Tulsa, OK, USA, 2012). The sum of ranking differences (SRD), a
non-parametric method introduced by Héberger and Kollár–Hunek, was used to rank the
analyzed compounds in terms of their in silico lipophilicity and percutaneous permeability
as well as in vitro estimated percutaneous permeability. All compounds are considered to
have relatively good skin permeability at a pH of 6, while 2 compounds containing carboxyl
groups attached to the main core were found to ionize and have limited permeation at a
pH of 7.4. A statistically significant correlation was found between the in silico predicted
logkp values and the Papp-skin values, as well as between Papp-skin and the calculated
logP data. PCA, HCA, and SRD data analysis of the in silico logkp and calculated logP data
revealed that lipophilicity is an important (but not the only) physico-chemical characteristic
for passive percutaneous permeation of the succinimide derivatives studied. Although the
combination of mathematical predictions and experimental assessment of skin permeability
provides a clearer insight into the probability of percutaneous permeation of a molecule
and thus offers a screening of potential bioactive compounds for cutaneous application, it
does not allow insight into the permeation mechanism.

With the aim of overcoming the limitations of single linear and non-linear approaches,
the recent study by Wu et al. [212] predicted the skin permeability coefficient and in-
vestigated the intrinsic permeation mechanism using a novel two-QSAR approach [213]
comprising machine learning-based hierarchical support vector regression (HSVR) [214]
and linear PLS. A compilation of published data on the permeability of 96 compounds
from human skin sampled ex vivo was generated. There was an apparent bi-linear rela-
tionship between logkp and logP (i.e., logkp initially increased with logP and then decreased
at logP ≥ 4), which cannot be properly captured by linear models alone, so the non-linear
machine learning approach was included. The mock test was performed to calibrate the
derived HSVR and PLS models to the compounds studied by Soriano–Meseguer et al. [215],
of which 23 were included. The HSVR model obtained a better association between the
measured logP and the predicted logkp than PLS, while the PLS model showed relevance
for the interpretation of skin permeation mechanisms. Furthermore, PLS and HSVR were
compared with the skin permeation calculator (SPC) [216] developed by the U.S. Center for
Disease Control and Prevention (CDC). SPC was applied to the 96 compounds studied, and
skin permeation could be predicted for 80% of the compounds, showing limited applicabil-
ity compared to PLS and HSVR. The study recommends the synergistic use of predictive
HSVR and interpretable PLS models to facilitate drug discovery and development by
predicting skin permeability.

Recent studies show the integration of molecular docking with the QSPR method.
Chang et al. [182] investigated QSPR/QSAR for the phytosterols (campesterol, β-sitosterol,
and stigmasterol) to evaluate how their physico-chemical properties affect their skin trans-
port and ability to alleviate psoriasiform inflammation. In silico molecular modeling of the
physico-chemical properties and molecular docking of phytosterols to stratum corneum
lipids (ceramides, palmitic acid, cholesteryl sulfate, and cholesterol) was performed. The
physico-chemical properties of the phytosterols (MW, MV), predicted logP value, total
polarity surface, and hydrogen bonding (H-bonding)) were estimated from the molecular
structures outlined using Discovery Studio 2021 (Dassault Systems, Paris, France). Docking
simulation was applied to measure the negative CDOCKER energy between the phytos-
terols and the lipids of the stratum corneum, reflecting the bond strength. The in silico
predicted skin permeability (logkp) of three phytosterols was calculated using an online
server [217]. The in vitro permeation test on excised porcine skin was performed according
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to OECD 428 guidelines [218]. The tested phytosterols possessed an H-bond acceptor and
an H-bond donor and showed high lipophilicity. The values of the oil/water partition
coefficient calculated using molecular modeling and the predicted partition coefficient
were highest for β-sitosterol. The highest skin permeability was predicted for β-sitosterol,
followed by campesterol and stigmasterol. The anti-inflammatory activity of the phytos-
terols in the activated keratinocytes was comparable, but a phytosterol structure without
a double bond at C22 and with methyl moiety on C24 (campesterol) was more effective
in the macrophage-based study. The order of absorption by porcine skin was β-sitosterol
(0.33 nmol/mg), campesterol (0.21 nmol/mg), and stigmasterol (0.16 nmol/mg). The
therapeutic index was determined by multiplying the percentage of cytokine/chemokine
suppression by skin absorption, and the highest value was recorded for β-sitosterol. The
in vivo animal study in mice confirms the beneficial effect of topically applied β-sitosterol
as a potentially potent antipsoriatic agent. Cheng et al. [181] demonstrated the usefulness
of in silico molecular modeling and docking (Discovery Studio 4.1, Accelrys, San Diego,
CA, USA) to investigate the influence of molecular size and physico-chemical proper-
ties of resveratrol glycoside (polydatin) and resveratrol oligomers (ε-viniferin (dimer),
ampelopsin C (trimer), and vitisin A (tetramer)) on cutaneous absorption. In addition,
in vitro tests (using the Franz cell and the porcine skin membrane) and in vivo tests (using
imiquimod-treated mice) were performed to identify the promising antipsoriatic drug
candidate for topical therapy. The effect of the number of resveratrol subunits on skin
absorption was investigated to determine the QSPR. The physico-chemical properties of
resveratrol and its oligomers (molecular volume, estimated lipophilicity (logP), number of
hydrogen bonds (H-bonds), and overall surface polarity) were predicted using Discovery
Studio 4.1. The compounds were superimposed on the stratum corneum lipids to estimate
the ligand-binding interactions by calculated molecular docking and to identify possible
interactions between the permeants and stratum corneum lipids. Negative CDOCKER
values, indicating a stronger affinity between the permeant and lipids, were calculated
by docking simulation. In silico modeling revealed that oligomers with a higher number
of subunits had higher docking values and were more likely to bind to lipids due to the
higher MW and H-bond numbers. Therefore, the monomers (resveratrol and polydatin)
exhibited a higher flux through the lipids of the stratum corneum to viable skin than
the larger oligomers. In contrast, the in vivo absorption of the oligomers, especially the
tetramer (but not the monomers), was significantly increased in barrier-damaged skin.
The study identified ε-viniferin as a promising antipsoriatic agent that accumulated at
higher concentrations in psoriasis-like mouse skin, alleviated psoriasiform symptoms, and
reduced hyperplasia and inflammation more effectively than resveratrol.

5.2. MD Simulations

MD simulation is a computer approach for simulating, recording, calculating, and
analyzing the physical movements of interacting atoms and molecules. It is suitable for
analyzing the dynamic interactions between different molecules and the evolution of
complex systems. MD simulations, as an experimentally independent approach for the
prediction of percutaneous permeability, offer the possibility to recreate a skin barrier model
and tend to increase the number of variables considered [180]. Although MD simulations
trained without experimental data are used to predict permeability coefficients, a correlation
between calculated and experimental results is required to verify the usefulness of the MD
model used. Furthermore, the MD simulations can assist in the interpretation of in vitro
skin permeability data. The MD simulations of the stratum corneum lipids are based on
the well-characterized forces between atoms and molecules, which allow a simulation of
their collective behavior.

The MD simulations of the structure and dynamics of the skin lipid barrier, permeation
of different molecules across simple model membranes, and penetration enhancement
mechanisms of chemical permeation enhancers (e.g., DMSO, ethanol, and oleic acid) are
reviewed in detail elsewhere [180,219]. Several research groups have shown that MD
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simulations have the potential to provide insights into the process of interaction between
different permeants and the simulated lipid membranes and a better understanding of
their permeability through the biological membrane at the molecular level [220–222]. The
reliability of MD simulations to predict the permeability of active compounds based on the
knowledge of the molecular structure of the permeant is based on the understanding of the
molecular organization of the skin barrier. The greatest attention is paid to the composition
and architecture of the human stratum corneum [223].

The current application of MD methodology is limited by the heterogeneity of the
composition of the intercellular lipids of the stratum corneum and by insufficiently un-
derstood aspects of the physical state of lipids within the barrier. As the current MD
simulation approach is mainly focused on the stratum corneum and not on the whole skin,
the applicability of this in silico strategy to elucidate the permeation process through the
viable epidermis and dermis has not been sufficiently explored [224].

An important aspect of percutaneous permeation that can be tackled using MD simu-
lations concerns the identification of the particular area or pathway of the skin barrier that
represents the limiting step for the permeation process of a given API. Machado et al. [225]
performed the MD simulation with a Martini force field to simulate the percutaneous trans-
port of ascorbyl tetraisopalmitate, a hydrophobic and non-oxidizable vitamin C derivative,
through the infundibulum and stratum corneum of the human hair follicle. MD simulation
involves fine-grained (FG) simulation (i.e., simulation at the atomic scale where each atom
is considered in the interaction process) and coarse-grained (CG) (simulation by grouping
atoms) and considering four main types of the interaction sites: polar (P), nonpolar (N),
apolar (C), and charged (Q). Further transformations were performed using the g_fg2cg
algorithm implemented in the GROMACS 3.3.1 package in conjunction with the Gro-
mos53a6 force field. The models of the infundibulum and the stratum corneum, including
the realistic concentrations of the typical lipid components, were built with the program
CELLmicrocosmos 2.2. For comparison, the two membrane models were compared, and
the permeating molecules were placed between the two membranes in the same system.
The models adopted took into account the increased permeation of hydrophobic substances
within the infundibulum membrane, while the stratum corneum delays this permeation.
This comparative study revealed that the ascorbyl tetraisopalmitate molecule has a higher
affinity to the stratum corneum and, therefore, preferentially permeates this membrane,
while in the infundibulum, it has a lower affinity and higher mobility, suggesting that
permeation to deeper skin layers is more likely in the infundibulum than in the stratum
corneum. It was indicated that the penetration of a single molecule required more time
and was accelerated by increasing the permeation concentration. Moreover, this is the
MD simulation where the specific thermodynamic conditions, such as pressure and skin
temperature, were introduced, leading to a more accurate representation of the biological
membrane under consideration.

MD simulations can provide insight into the mechanisms underlying the influence of
chemical permeation enhancers, including the partition of the permeation enhancer in the
barrier [226]. For this purpose, MD simulations are a good complement to other in silico
and experimental methods.

5.3. In Silico Modeling of Skin Permeation in the Presence of Permeation Enhancers

Most in silico models are created to predict the passive skin permeation of a single
permeant, often from an aqueous solution, and thus deviate from the real situation of
in vivo administration of the dosage form (usually a mixture of one or more APIs and more
than one pharmaceutical excipient) on the skin surface. For successful drug development,
it is necessary to evaluate the permeability of APIs in relation to the composition of the
vehicle, including the potential permeation-enhancing effect of the vehicle ingredients [200].
Li et al. [227] applied in silico molecular modeling and molecular docking methods to study
the molecular interactions and explore the molecular mechanism of percutaneous absorp-
tion enhancement of sorbitan monooleate in vitro and in vivo for the optimized olanzapine
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transdermal patch. The geometry optimization of sorbitan monooleate, olanzapine, and
the pressure-sensitive adhesive was performed by condensed-phase optimized molecular
potentials for atomistic simulation studies (COMPASSII) force field, and the potential
sites of hydrogen bonding interactions between the optimized structures were observed.
The molecular modeling experiment showed the competition between the drug and the
penetration enhancer in forming hydrogen bonds with the polymer. Sorbitan monooleate
weakened the hydrogen bonding between olanzapine and the pressure-sensitive adhesive,
thereby reducing the cohesive interaction between the polymer chains and promoting the
release of olanzapine. Furthermore, molecular docking showed that sorbitan monooleate
can interact with the polar head groups of the skin lipids (ceramides), increasing their
fluidity and the percutaneous absorption of olanzapine.

The selection of already known and the design of new chemical permeation enhancers
to facilitate percutaneous permeation of APIs is of great interest to the pharmaceutical
industry [202]. The ongoing challenge is to clarify the influence of permeability enhancers
due to the complex and probably multiple mechanisms that influence the permeation
process. The results of experimental studies suggest at least three mechanisms: (1) en-
hancement of the API partitioning in the stratum corneum; (2) interactions of the enhancer
with stratum corneum lipids leading to a disruption of their highly ordered structure
and improving paracellular permeation; (3) interactions of the enhancer with intracellular
proteins of corneocytes enhancing transcellular transport. In silico approaches expand the
knowledge about the effect of chemical penetration enhancers on percutaneous permeation
at the molecular level and provide evidence for the rational selection of such excipients.
There have been several attempts to analyze the permeation processes in the presence of
terpenes [228–232].

Kang et al. [193] used an MLR-based QSAR model to predict the activity of 49 ter-
penes and terpenoids, including monoterpenes, sesquiterpenes, diterpenes, triterpenes,
and tetraterpenes with various functional groups such as hydrocarbons, alcohols, aldehy-
des, esters, ketones, and oxides, respectively, in enhancement of the in vitro permeability
coefficients of haloperidol from a 5% solution in propylene glycol through excised human
stratum corneum. The solubility of haloperidol in propylene glycol and kp were determined
experimentally. The in vitro permeability test was performed using standardized experi-
mental protocols in the same set of automated flow-through diffusion cells. In addition, kp
was calculated using a nonlinear regression model. Haloperidol is a small hydrophobic
molecule. Apart from the drug lipophilicity (logP), all the other predictors were qualitative
variables. A first-order MLR model was used to construct a QSAR model linking kp to
the logP and the descriptors of the terpenes (MW, logP, boiling point, melting point, the
terpene type, and the functional group of each enhancer). The best regression model based
on stepwise selection was:

log kp = −9.13 + 0.344 log P + 0.616Liquid − 4.84Tri − 7.37Tetra + 2.03Aldehyde
+1.49Ester − 5.36Acid

(23)

where “Liquid”, “Tri” and “Tetra”, “Aldehyde”, “Ester”, and “Acid” are indicator variables
standing for liquid terpene, triterpene, tetraterpene, aldehyde, ester, or acid functional
groups, respectively.

Equation (23) indicates that terpenes with higher logP values are more effective en-
hancers than those with lower logP values, probably because they mix more easily with
the stratum corneum lipids, and their extraction or transition reduces the barrier strength.
At the same time, compounds with large logP permeate faster than those with small logP
values. In addition, the ideal terpene enhancer should possess at least one or a combina-
tion of the following properties: hydrophobicity, liquid state at room temperature, with
an ester or aldehyde functional group (but not acid), and is neither a triterpene nor a
tetraterpene. Interestingly, the inclusion of MW and hydrogen bonding as common descrip-
tors affecting the kp of permeants did not improve the developed regression model. The
authors proposed the developed QSAR model for the prediction of the skin permeation
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enhancement of APIs with similar physico-chemical properties as haloperidol by other
terpene enhancers. Drakulić et al. [203] used a computational study of interactions of four
APIs (5-fluorouracil, hydrocortisone, estradiol, and diclofenac sodium) and 34 terpenes
to investigate their permeation enhancer influence. Molecular modeling indicated com-
plexation via donor/acceptor interactions, van der Waals forces, HBD–π interactions, and
hydrogen bonding between the APIs and the hydrocarbon and oxygen-containing terpenes,
respectively, altering the physico-chemical properties of the APIs, as a possible mechanism
to enhance penetration. The QSPR based on simple MLR achieved a satisfactory correlation
between the predicted molecular properties of the modeled complexes or investigated
terpenes and the permeation enhancement effects.

Several studies have addressed the application of ANN in predicting the permeability
of APIs in the presence of permeation enhancers [179]. ANN is a machine-learning approach
inspired by the structure of a neural network of the human brain, which consists of intercon-
nected units (neurons). The mutual influence of the neurons is influenced by the values of
the connections (weights). The architecture of ANN models varies from one- or two-layer
unidirectional to complex multidirectional feedback layers. Although the ANN strategy is
used to model processes that cannot be successfully considered with conventional mod-
eling approaches, ANN models also have certain limitations. The experimental design
and data collection are time-consuming, and ANN models are not suitable for elucidating
the mechanistic aspect of the observed correlation. No special computers are required to
obtain a reliable ANN model, but the user must have the necessary expertise and sufficient
experience in the field of ANN modeling [233,234]. Nevertheless, there are examples in the
literature of empirical ANN models that have shown useful and accurate prediction of skin
permeability based on physico-chemical properties (MW, logP, Abraham descriptors) of
numerous compounds, including APIs [235–237]. For example, Degim et al. [236] predicted
the skin permeability of etodolac, famotidine, nimesulide, nizatidine, and ranitidine using
a network trained with a dataset derived from the literature, and the predicted permeability
agreed well with the experimental results. Tsuneji Nagai´s group successfully applied
an ANN to optimize the amount of ethanol and O-ethylmenthol (causative factors) in
a ketoprofen hydrogel formulation with respect to the response variables (penetration
rate, lag time, and total irritation score (TIS)) in the late 1990s [238,239]. In addition, an
ANN-based QSAR approach was applied to investigate the effect of 35 newly synthesized
O-ethylmenthol derivatives on the percutaneous absorption of ketoprofen in vivo in male
Wistar rats [204]. The calculated parameters (logP, MW, steric energy, van der Waals area,
van der Waals volume, dipole moment, highest occupied molecular orbital, and lowest un-
occupied molecular orbital) were used as derivative descriptors. Among them, logP, steric
energy, and the lowest unoccupied molecular orbital significantly affected the prediction of
enhancement factor (penetration rate with enhancer:penetration rate without enhancer)
(Ef) and TIS (output variables). The predicted Ef and TIS values were in good agreement
with the values obtained from in vivo percutaneous absorption experiments. In the study
by Kandimalla et al. [205], the response surface method (RSM) and ANN were used to
optimize the composition of the vehicle (water (W), ethanol (E), propylene glycol (P), and
their binary and ternary mixtures) suitable to increase the flux and decrease the lag time of
percutaneously applied melatonin. The prediction tools were a special quadratic model
(RSM) and a back-propagation algorithm (ANN). RSM and ANN prediction of the best
mixtures agreed very well. A non-linear QSPR model established by Yerramsetty et al. [206]
used the ANN algorithm and an evolutionary algorithm (differential evolution (DE)) to
predict the permeability enhancement of insulin when combined with 48 compounds with
different functional groups as potential permeability enhancers. These compounds were
identified using a virtual design algorithm, which combines genetic algorithms (GAs) and
QSPR models to search for permeability enhancer descriptors. DE algorithms were applied
to find the best descriptors and the best neural network architecture. In vitro permeation
experiments using Franz diffusion cells were performed to quantify the effect of perme-
ability enhancers. For ANN training, 35 compounds were used, while the remaining and
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additional 12 compounds reported in the literature were included in the validation set.
The hybrid DE/ANN algorithm provided a good prediction for insulin permeability in
the presence of the compounds studied. The statistically significant descriptors included:
average 1-electron reactivity index for a carbon atom, minimum 1-electron reactivity index
for an oxygen atom, Kier and Hall index (order 1), RNCS relatively negatively charged SA
(SAMNEG*RNCG) [Zefirov’s PC], and total dipole of the molecule. The results obtained
suggest that compounds with greater hydrophobicity and reactivity, as well as low dipole
moments and the capacity to form intermolecular bonds with stratum corneum lipids,
could be promising insulin-specific permeability enhancers.

The good predictive ability of the QSPR approach for single API solutions is well
demonstrated. However, the QSPR model needs to be re-trained for formulations contain-
ing one or more excipients and does not provide insight into the mechanisms of permeation
affected by chemical permeation enhancers. The MD simulations are a valuable addition to
the QSPR methodology, allowing us to understand the location and orientation of excipi-
ents in the skin barrier structure at their most likely concentrations and how they interact
with the barrier and influence the permeability of one or more APIs [224]. This can be a
valuable tool for the selection of suitable excipients and the development of formulations
tailored for a specific API. Lundborg et al. [224] proposed a new MD simulation using
GROMACS 2021 and the second beta version of GROMACS 2022, which allows efficient
sampling of the free energy and local diffusion coefficient to predict the skin permeabil-
ity of 20 permeants with Mr between 18 and 300 gmol−1 and logP from 2.1 to 4.6. In
addition, the penetration-enhancing effect of the chemical penetration enhancers DMSO,
ethanol, and urea was analyzed. The simulations performed used the atomistic model of
the human skin barrier structure originally called 33/33/33/75/5/0.3, corresponding to
the relative composition in molar % ceramides/molar % cholesterol/molar % free fatty
acids/relative amount of cholesterol on ceramide sphingoid side/molar % acyl ceramide
EOS (included in the relative ceramide concentration)/water molecules per lipid (not
included in the molar % concentrations of the lipids). The predicted properties of the
permeating agents were in good agreement with the experimental in vitro skin permeation
data (logkp). Such MD models enabled an understanding of the mechanisms of the effects
of chemical penetration enhancers at the molecular level. For example, the permeability
of codeine will be enhanced by a permeation enhancer acting in the ceramide fatty acid
chain region rather than in the sphingoid chains. Iyer, with coworkers, combined classical
and 4D fingerprint intramolecular QSAR descriptors to build two QSAR models [240,241].
The different mechanisms of skin permeation enhancement were proposed for datasets in
which were varied the polarity and size of both the enhancer and the reference penetrant.
The largest differences were between polar and nonpolar penetrants. Continued research
focused on the development of membrane-interaction QSAR (MI-QSAR) models for two
datasets of 61 and 42 penetrant enhancers to predict the improvement in skin permeability
for hydrocortisone and hydrocortisone acetate [202]. The MI-QSAR model uses a model
membrane (a phospholipid monolayer or bilayer) based on MD simulations, and a new
MI-QSAR descriptor was developed, namely, the difference in the integrated cylindrical
distribution functions over the phospholipid monolayer model, in and out of the presence
of the skin penetration enhancer (∆Σh(r)). The new descriptor was dominant in the opti-
mized MI-QSAR models of both training sets. The MI-QSAR models were compared with
QSAR models created for the same two datasets using only classical intramolecular QSAR
descriptors. The new MI-QSAR descriptor reduces the size and complexity of the MI-QSAR
models in comparison with classic QSAR models. The MI-QSAR models indicated that the
skin penetration enhancer alters the structure and organization of the monolayer, which
is constantly changing, so that the enhanced penetration is due to the creation of large
or small “holes” in the monolayer. This alteration in the structure and dynamics of the
membrane monolayer caused by each embedded skin penetration enhancer is captured
by the new MI-QSAR descriptor. Stronger non-polar penetration enhancers cause larger
“holes” in the monolayer. The MI-QSAR models explain 70–80% of the variance in skin
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penetration gain in each of the two training sets and are stable predictive models using
recognized diagnostic measures of robustness and predictability.

6. Conclusions

In summary, the bio-performance of drugs, which includes release, dissolution, per-
meation, and absorption, is essential for their in vivo efficacy and bioavailability. In silico
MIDD tools are increasingly important for understanding and optimizing these processes.
While mechanistic models, often based on Fick’s law of diffusion, provide fundamental in-
sights, their simplifications can lead to discrepancies between predictions and observations.
Empirical models, on the other hand, are data-driven and form mathematical relationships
based on experimental data using advanced techniques such as computational fluid dy-
namics. However, the complexity of drug release dynamics poses a challenge for both types
of models. Recent advances in artificial intelligence, molecular dynamics simulations, and
imaging techniques offer promising opportunities for more accurate modeling, particularly
in percutaneous permeation studies.

Looking to the future, there is potential to integrate these advanced computational
methods with evolving AI algorithms to improve predictive accuracy and interpretability.
Further development in this area promises not only more efficient drug formulation and
delivery but also a deeper understanding of the intricate interplay of factors that influence
the bio-performance of drugs. This development underscores the importance of ongoing
research and innovation in the field of in silico modeling for pharmaceutical development.
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11. Krstevska, A.; Ðuriš, J.; Ibrić, S.; Cvijić, S. In-depth analysis of physiologically based pharmacokinetic (PBPK) modeling utilization
in different application fields using text mining tools. Pharmaceutics 2022, 15, 107. [CrossRef]

https://doi.org/10.1002/cpt.1363
https://www.ncbi.nlm.nih.gov/pubmed/30653670
https://www.fda.gov/drugs/development-resources/model-informed-drug-development-paired-meeting-program
https://www.fda.gov/drugs/development-resources/model-informed-drug-development-paired-meeting-program
https://doi.org/10.5937/arhfarm71-32479
https://doi.org/10.1038/nrd4128
https://www.ncbi.nlm.nih.gov/pubmed/24287782
https://doi.org/10.1016/j.ejps.2013.09.008
https://www.ncbi.nlm.nih.gov/pubmed/24060672
https://doi.org/10.1517/17425255.2012.664636
https://www.ncbi.nlm.nih.gov/pubmed/22432718
https://doi.org/10.3390/pharmaceutics12010074
https://www.ncbi.nlm.nih.gov/pubmed/31963448
https://doi.org/10.1016/j.xphs.2018.10.033
https://doi.org/10.1002/cpt.539
https://doi.org/10.1208/s12248-023-00831-4
https://doi.org/10.3390/pharmaceutics15010107


Pharmaceuticals 2024, 17, 177 31 of 39

12. Miller, N.A.; Reddy, M.B.; Heikkinen, A.T.; Lukacova, V.; Parrott, N. Physiologically based pharmacokinetic modelling for first-in-
human predictions: An updated model building strategy illustrated with challenging industry case studies. Clin. Pharmacokinet.
2019, 58, 727–746. [CrossRef] [PubMed]

13. Feng, K.; Leary, R.H. Toward personalized medicine with physiologically based pharmacokinetic modeling. Int. J. Pharmacokinet.
2017, 2, 1–4. [CrossRef]

14. Hartmanshenn, C.; Scherholz, M.; Androulakis, I.P. Physiologically-based pharmacokinetic models: Approaches for enabling
personalized medicine. J. Pharmacokinet. Phar. 2016, 43, 481–504. [CrossRef] [PubMed]

15. Marsousi, N.; Desmeules, J.A.; Rudaz, S.; Daali, Y. Usefulness of PBPK modeling in incorporation of clinical conditions in
personalized medicine. J. Pharm. Sci. 2017, 106, 2380–2391. [CrossRef]

16. Lin, L.; Wong, H. Predicting oral drug absorption: Mini review on physiologically-based pharmacokinetic models. Pharmaceutics
2017, 9, 41. [CrossRef] [PubMed]

17. Markl, D.; Zeitler, J.A. A review of disintegration mechanisms and measurement techniques. Pharm. Res. 2017, 34, 890–917.
[CrossRef] [PubMed]

18. DDDPlusTM. Available online: https://www.simulations-plus.com/software/dddplus/ (accessed on 13 August 2023).
19. Massimo, G.; Santi, P.; Colombo, G.; Nicoli, S.; Zani, F.; Colombo, P.; Bettini, R. The suitability of disintegrating force kinetics

for studying the effect of manufacturing parameters on spironolactone tablet properties. AAPS PharmSciTech 2003, 4, 50–56.
[CrossRef] [PubMed]

20. Siepmann, J.; Siepmann, F. Mathematical modeling of drug dissolution. Int. J. Pharm. 2013, 453, 12–24. [CrossRef]
21. Takano, R.; Sugano, K.; Higashida, A.; Hayashi, Y.; Machida, M.; Aso, Y.; Yamashita, S. Oral absorption of poorly water-soluble

drugs: Computer simulation of fraction absorbed in humans from a miniscale dissolution test. Pharm. Res. 2006, 23, 1144–1156.
[CrossRef]

22. Gan, Y.; Baak, J.P.; Chen, T.; Ye, H.; Liao, W.; Lv, H.; Wen, C.; Zheng, S. Supersaturation and Precipitation Applicated in Drug
Delivery Systems: Development Strategies and Evaluation Approaches. Molecules 2023, 28, 2212. [CrossRef]

23. O’Dwyer, P.J.; Litou, C.; Box, K.J.; Dressman, J.B.; Kostewicz, E.S.; Kuentz, M.; Reppas, C. In vitro methods to assess drug
precipitation in the fasted small intestine—A PEARRL review. J. Pharm. Pharmacol. 2019, 71, 536–556. [CrossRef] [PubMed]

24. Li, J.; Spivey, N.; Silchenko, S.; Gonzalez-Alvarez, I.; Bermejo, M.; Hidalgo, I.J. A differential equation based modelling approach to
predict supersaturation and in vivo absorption from in vitro dissolution-absorption system (idas2) data. Eur. J. Pharm. Biopharm.
2021, 165, 1–12. [CrossRef]

25. Kambayashi, A.; Yasuji, T.; Dressman, J.B. Prediction of the precipitation profiles of weak base drugs in the small intestine using a
simplified transfer (“dumping”) model coupled with in silico modeling and simulation approach. Eur. J. Pharm. Biopharm. 2016,
103, 95–103. [CrossRef] [PubMed]

26. Kleppe, M.S.; Forney-Stevens, K.M.; Haskell, R.J.; Bogner, R.H. Mathematical models to explore potential effects of supersaturation
and precipitation on oral bioavailability of poorly soluble drugs. AAPS J. 2015, 17, 902–917. [CrossRef] [PubMed]

27. Chirumamilla, S.K.; Banala, V.T.; Jamei, M.; Turner, D.B. Mechanistic PBPK modelling to predict the advantage of the salt form of
a drug when dosed with acid reducing agents. Pharmaceutics 2021, 13, 1169. [CrossRef] [PubMed]

28. Hens, B.; Pathak, S.M.; Mitra, A.; Patel, N.; Liu, B.; Patel, S.; Jamei, M.; Brouwers, J.; Augustijns, P.; Turner, D.B. In silico modeling
approach for the evaluation of gastrointestinal dissolution, supersaturation, and precipitation of posaconazole. Mol. Pharm. 2017,
14, 4321–4333. [CrossRef] [PubMed]

29. Jakubiak, P.; Wagner, B.; Grimm, H.P.; Petrig-Schaffland, J.; Schuler, F.; Alvarez-Sánchez, R. Development of a unified dissolution
and precipitation model and its use for the prediction of oral drug absorption. Mol. Pharm. 2016, 13, 586–598. [CrossRef]

30. Patel, S.; Zhu, W.; Xia, B.; Sharma, N.; Hermans, A.; Ehrick, J.D.; Kesisoglou, F.; Pennington, J. Integration of precipitation kinetics
from an in vitro, multicompartment transfer system and mechanistic oral absorption modeling for pharmacokinetic prediction of
weakly basic drugs. J. Pharm. Sci. 2019, 108, 574–583. [CrossRef]

31. Kobayashi, Y.; Ito, S.; Itai, S.; Yamamoto, K. Physicochemical properties and bioavailability of carbamazepine polymorphs and
dihydrate. Int. J. Pharm. 2000, 193, 137–146. [CrossRef]

32. Maragos, S.; Archontaki, H.; Macheras, P.; Valsami, G. Effect of cyclodextrin complexation on the aqueous solubility and
solubility/dose ratio of praziquantel. AAPS PharmSciTech 2009, 10, 1444–1451. [CrossRef]

33. Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules 2018,
23, 1161. [CrossRef] [PubMed]

34. Zhao, L.; Orton, E.; Vemuri, N.M. Predicting solubility in multiple nonpolar drugs–cyclodextrin system. J. Pharm. Sci. 2002, 91,
2301–2306. [CrossRef] [PubMed]

35. Li, T.; Guo, R.; Zong, Q.; Ling, G. Application of Molecular Docking in Elaborating Molecular Mechanisms and Interactions of
Supramolecular Cyclodextrin. Carbohydr. Polym. 2022, 276, 118644. [CrossRef] [PubMed]

36. Das, S.; Nath, S.; Singh, T.S.; Chattopadhyay, N. Cavity Size Dependent Stoichiometry of Probe–Cyclodextrin Complexation:
Experimental and Molecular Docking Demonstration. J. Photochem. Photobiol. A Chem. 2020, 388, 112158. [CrossRef]

37. Mithani, S.D.; Bakatselou, V.; TenHoor, C.N.; Dressman, J.B. Estimation of the increase in solubility of drugs as a function of bile
salt concentration. Pharm. Res. 1996, 13, 163–167. [CrossRef] [PubMed]

38. Bakatselou, V.; Oppenheim, R.C.; Dressman, J.B. Solubilization and wetting effects of bile salts on the dissolution of steroids.
Pharm. Res. 1991, 8, 1461–1469. [CrossRef] [PubMed]

https://doi.org/10.1007/s40262-019-00741-9
https://www.ncbi.nlm.nih.gov/pubmed/30729397
https://doi.org/10.4155/ipk-2016-0014
https://doi.org/10.1007/s10928-016-9492-y
https://www.ncbi.nlm.nih.gov/pubmed/27647273
https://doi.org/10.1016/j.xphs.2017.04.035
https://doi.org/10.3390/pharmaceutics9040041
https://www.ncbi.nlm.nih.gov/pubmed/28954416
https://doi.org/10.1007/s11095-017-2129-z
https://www.ncbi.nlm.nih.gov/pubmed/28251425
https://www.simulations-plus.com/software/dddplus/
https://doi.org/10.1208/pt040217
https://www.ncbi.nlm.nih.gov/pubmed/12916899
https://doi.org/10.1016/j.ijpharm.2013.04.044
https://doi.org/10.1007/s11095-006-0162-4
https://doi.org/10.3390/molecules28052212
https://doi.org/10.1111/jphp.12951
https://www.ncbi.nlm.nih.gov/pubmed/29956338
https://doi.org/10.1016/j.ejpb.2021.05.003
https://doi.org/10.1016/j.ejpb.2016.03.020
https://www.ncbi.nlm.nih.gov/pubmed/27012902
https://doi.org/10.1208/s12248-015-9748-2
https://www.ncbi.nlm.nih.gov/pubmed/25851513
https://doi.org/10.3390/pharmaceutics13081169
https://www.ncbi.nlm.nih.gov/pubmed/34452130
https://doi.org/10.1021/acs.molpharmaceut.7b00396
https://www.ncbi.nlm.nih.gov/pubmed/28817288
https://doi.org/10.1021/acs.molpharmaceut.5b00808
https://doi.org/10.1016/j.xphs.2018.10.051
https://doi.org/10.1016/S0378-5173(99)00315-4
https://doi.org/10.1208/s12249-009-9346-7
https://doi.org/10.3390/molecules23051161
https://www.ncbi.nlm.nih.gov/pubmed/29751694
https://doi.org/10.1002/jps.10210
https://www.ncbi.nlm.nih.gov/pubmed/12379915
https://doi.org/10.1016/j.carbpol.2021.118644
https://www.ncbi.nlm.nih.gov/pubmed/34823758
https://doi.org/10.1016/j.jphotochem.2019.112158
https://doi.org/10.1023/A:1016062224568
https://www.ncbi.nlm.nih.gov/pubmed/8668668
https://doi.org/10.1023/A:1015877929381
https://www.ncbi.nlm.nih.gov/pubmed/1808607


Pharmaceuticals 2024, 17, 177 32 of 39

39. Kesisoglou, F.; Wu, Y. Understanding the effect of API properties on bioavailability through absorption modeling. AAPS J. 2008,
10, 516–525. [CrossRef] [PubMed]

40. Mathias, N.R.; Crison, J. The use of modeling tools to drive efficient oral product design. AAPS J. 2012, 14, 591–600. [CrossRef]
41. Wei, H.; Dalton, C.; Di Maso, M.; Kanfer, I.; Löbenberg, R. Physicochemical characterization of five glyburide powders: A BCS

based approach to predict oral absorption. Eur. J. Pharm. Biopharm. 2008, 69, 1046–1056. [CrossRef]
42. Lu, A.T.; Frisella, M.E.; Johnson, K.C. Dissolution modeling: Factors affecting the dissolution rates of polydisperse powders.

Pharm. Res. 1993, 10, 1308–1314. [CrossRef]
43. Dali, M.V.; Carstensen, J.T. Effect of change in shape factor of a single crystal on its dissolution behavior. Pharm. Res. 1996, 13,

155–162. [CrossRef] [PubMed]
44. Gao, Y.; Glennon, B.; He, Y.; Donnellan, P. Dissolution kinetics of a bcs class ii active pharmaceutical ingredient: Diffusion-based

model validation and prediction. ACS Omega 2021, 6, 8056–8067. [CrossRef] [PubMed]
45. Cao, H.; Jia, X.; Li, Y.; Amador, C.; Ding, Y. CFD-DNS simulation of irregular-shaped particle dissolution. Particuology 2020, 50,

144–155. [CrossRef]
46. Zhang, K.; Zhou, Z.Q.; Han, P.D.; Sun, Z.G.; Xi, G. Dissolution characteristics of solutes with different shapes using the moving

particle semi-implicit method. Phys. Fluids 2022, 34, 117104. [CrossRef]
47. Assunção, M.; Vynnycky, M.; Moroney, K.M. On the dissolution of a solid spherical particle. Phys. Fluids 2023, 35, 053605.

[CrossRef]
48. Gigliobianco, M.R.; Casadidio, C.; Censi, R.; Di Martino, P. Nanocrystals of poorly soluble drugs: Drug bioavailability and

physicochemical stability. Pharmaceutics 2018, 10, 134. [CrossRef]
49. Wu, Y.; Loper, A.; Landis, E.; Hettrick, L.; Novak, L.; Lynn, K.; Chen, C.; Thompson, K.; Higgins, R.; Batra, U.; et al. The role of

biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: A Beagle dog model predicts improved
bioavailability and diminished food effect on absorption in human. Int. J. Pharm. 2004, 285, 135–146. [CrossRef]

50. Zhang, H.; Xia, B.; Sheng, J.; Heimbach, T.; Lin, T.H.; He, H.; Wang, Y.; Novick, S.; Comfort, A. Application of physiologically
based absorption modeling to formulation development of a low solubility, low permeability weak base: Mechanistic investigation
of food effect. AAPS PharmSciTech 2014, 15, 400–406. [CrossRef]

51. Colombo, G.; Politis, S.; Rossi, A. Technologies and Mechanisms for Oral Modified Release by Monolithic and Multiparticulate
Delivery Systems. In Oral Drug Delivery for Modified Release Formulations; Kostewicz, E.S., Vertzoni, M., Benson, H.A., Roberts,
M.S., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2022; pp. 119–136. [CrossRef]

52. Peppas, N.A.; Narasimhan, B. Mathematical models in drug delivery: How modeling has shaped the way we design new drug
delivery systems. J. Control Release 2014, 190, 75–81. [CrossRef]

53. Siepmann, J.; Siepmann, F. Modeling of diffusion controlled drug delivery. J. Control Release 2012, 161, 351–362. [CrossRef]
54. Jain, A.; King, D.; Pontrelli, G.; McGinty, S. Controlling release from encapsulated drug-loaded devices: Insights from modeling

the dissolution front propagation. J. Control Release 2023, 360, 225–235. [CrossRef]
55. Chakravarty, K.; Dalal, D.C. A two-phase model for drug release from microparticles with combined effects of solubilisation and

recrystallisation. Math. Biosci. 2016, 272, 24–33. [CrossRef] [PubMed]
56. Wang, W.; Ye, Z.; Gao, H.; Ouyang, D. Computational pharmaceutics-A new paradigm of drug delivery. J. Control Release 2021,

338, 119–136. [CrossRef] [PubMed]
57. Siepmann, J.; Streubel, A.; Peppas, N.A. Understanding and predicting drug delivery from hydrophilic matrix tablets using the

“sequential layer” model. Pharm. Res. 2002, 19, 306–314. [CrossRef] [PubMed]
58. Geraili, A.; Mequanint, K. Systematic studies on surface erosion of photocrosslinked polyanhydride tablets and data correlation

with release kinetic models. Polymers 2020, 12, 1105. [CrossRef] [PubMed]
59. Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A.D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C.N. pH sensitive hydrogels

in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 2017, 9,
137. [CrossRef] [PubMed]

60. Kashkooli, F.M.; Soltani, M.; Souri, M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static
and dynamic targeting strategies. J. Control Release 2020, 327, 316–349. [CrossRef]

61. Kashkooli, F.M.; Jakhmola, A.; Hornsby, T.K.; Tavakkoli, J.J.; Kolios, M.C. Ultrasound-mediated nano drug delivery for treating
cancer: Fundamental physics to future directions. J. Control Release 2023, 355, 552–578. [CrossRef]

62. Iturrioz-Rodríguez, N.; Correa-Duarte, M.A.; Fanarraga, M.L. Controlled drug delivery systems for cancer based on mesoporous
silica nanoparticles. Int. J. Nanomed. 2019, 14, 3389–3401. [CrossRef]

63. Davoodi, P.; Lee, L.Y.; Xu, Q.; Sunil, V.; Sun, Y.; Soh, S.; Wang, C.H. Drug delivery systems for programmed and on-demand
release. Adv. Drug Deliv. Rev. 2018, 132, 104–138. [CrossRef]

64. Sirousazar, M. Mathematical modeling of drug release in a phase-transient temperature-responsive drug delivery system in
spherical coordinates. J. Macromol. Sci. B 2019, 58, 890–907. [CrossRef]

65. Kubinski, A.M.; Shivkumar, G.; Georgi, R.A.; George, S.; Reynolds, J.; Sosa, R.D.; Ju, T.R. Predictive Drug Release Modeling
Across Dissolution Apparatuses I and II using Computational Fluid Dynamics. J. Pharm. Sci. 2023, 112, 808–819. [CrossRef]

66. Lou, H.; Hageman, M.J. Investigating the Influence of Tablet Location Inside Dissolution Test Apparatus on Polymer Erosion and
Drug Release of a Surface-Erodible Sustained-Release Tablet Using Computational Simulation Methods. AAPS PharmSciTech 2021,
22, 99. [CrossRef]

https://doi.org/10.1208/s12248-008-9061-4
https://www.ncbi.nlm.nih.gov/pubmed/19002590
https://doi.org/10.1208/s12248-012-9372-3
https://doi.org/10.1016/j.ejpb.2008.01.026
https://doi.org/10.1023/A:1018917729477
https://doi.org/10.1023/A:1016010207729
https://www.ncbi.nlm.nih.gov/pubmed/8668667
https://doi.org/10.1021/acsomega.0c05558
https://www.ncbi.nlm.nih.gov/pubmed/33817465
https://doi.org/10.1016/j.partic.2019.08.003
https://doi.org/10.1063/5.0120966
https://doi.org/10.1063/5.0144883
https://doi.org/10.3390/pharmaceutics10030134
https://doi.org/10.1016/j.ijpharm.2004.08.001
https://doi.org/10.1208/s12249-014-0075-1
https://doi.org/10.1002/9781119772729.ch7
https://doi.org/10.1016/j.jconrel.2014.06.041
https://doi.org/10.1016/j.jconrel.2011.10.006
https://doi.org/10.1016/j.jconrel.2023.06.019
https://doi.org/10.1016/j.mbs.2015.11.006
https://www.ncbi.nlm.nih.gov/pubmed/26631511
https://doi.org/10.1016/j.jconrel.2021.08.030
https://www.ncbi.nlm.nih.gov/pubmed/34418520
https://doi.org/10.1023/A:1014447102710
https://www.ncbi.nlm.nih.gov/pubmed/11934238
https://doi.org/10.3390/polym12051105
https://www.ncbi.nlm.nih.gov/pubmed/32408683
https://doi.org/10.3390/polym9040137
https://www.ncbi.nlm.nih.gov/pubmed/30970818
https://doi.org/10.1016/j.jconrel.2020.08.012
https://doi.org/10.1016/j.jconrel.2023.02.009
https://doi.org/10.2147/IJN.S198848
https://doi.org/10.1016/j.addr.2018.07.002
https://doi.org/10.1080/00222348.2019.1666528
https://doi.org/10.1016/j.xphs.2022.10.027
https://doi.org/10.1208/s12249-021-01979-y


Pharmaceuticals 2024, 17, 177 33 of 39

67. Walsh, J.P.; Ghadiri, M.; Shirazian, S. CFD approach for simulation of API release from solid dosage formulations. J. Mol. Liq.
2020, 317, 113899. [CrossRef]

68. Schütt, M.; Stamatopoulos, K.; Batchelor, H.K.; Simmons, M.J.; Alexiadis, A. Modelling and Simulation of the Drug Release
from a Solid Dosage Form in the Human Ascending Colon: The Influence of Different Motility Patterns and Fluid Viscosities.
Pharmaceutics 2021, 13, 859. [CrossRef] [PubMed]

69. D’Arcy, D.M.; Healy, A.M.; Corrigan, O.I. Towards determining appropriate hydrodynamic conditions for in vitro in vivo
correlations using computational fluid dynamics. Eur. J. Pharm. Sci. 2009, 37, 291–299. [CrossRef] [PubMed]

70. D’Arcy, D.M.; Corrigan, O.I.; Healy, A.M. Evaluation of hydrodynamics in the basket dissolution apparatus using computational
fluid dynamics—Dissolution rate implications. Eur. J. Pharm. Sci. 2006, 27, 259–267. [CrossRef] [PubMed]

71. D’Arcy, D.M.; Liu, B.; Bradley, G.; Healy, A.M.; Corrigan, O.I. Hydrodynamic and species transfer simulations in the USP 4
dissolution apparatus: Considerations for dissolution in a low velocity pulsing flow. Pharm. Res. 2010, 27, 246–258. [CrossRef]
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