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A B S T R A C T   

Atherosclerotic disease is a major cause of acute cardiovascular events. A deeper understanding of its underlying 
mechanisms will allow advancing personalized and patient-centered healthcare. Transcriptomic research has 
proven to be a powerful tool for unravelling the complex molecular pathways that drive atherosclerosis. How-
ever, low reproducibility of research findings and lack of standardization of procedures pose significant chal-
lenges in this field. In this review, we discuss how transcriptomic research can help in understanding the different 
phenotypes of the atherosclerotic plaque that contribute to the development and progression of atherosclerosis. 
We highlight the methodological challenges that need to be addressed to improve research outputs, and 
emphasize the importance of research protocols harmonization. We also discuss recent advances in tran-
scriptomic research, including bulk or single-cell sequencing, and their added value in plaque phenotyping. 
Finally, we explore how integrated multiomics data and machine learning improve understanding of athero-
sclerosis and provide directions for future research.   

1. Introduction 

According to 2022 Heart Disease & Stroke Statistical Update Fact 
Sheet Global Burden of Disease, approximately 19.1 million deaths were 
caused by cardiovascular disease (CVD) worldwide [1]. Major part of all 

CVDs is ischemic heart disease (IHD) that currently affects 244.1 million 
people globally, with mortality rates 112.37 per 100,000 [1]. Hence, 
despite significant improvements of healthcare procedures and patient 
outcomes, CVDs still remain a major public health issue with a high 
socio-economic burden. Ischemic heart disease is characterized by the 

* Corresponding author at: Cardiovascular Research Unit, Luxembourg Institute of Health, L1445, Luxembourg. 
E-mail address: yvan.devaux@lih.lu (Y. Devaux).   

1 www.cardiorna.eu; https://www.cost.eu/actions/CA21153/ 

Contents lists available at ScienceDirect 

Journal of Molecular and Cellular Cardiology Plus 

journal homepage: www.journals.elsevier.com/journal-of-molecular-andcellular-cardiology-plus 

https://doi.org/10.1016/j.jmccpl.2023.100048 
Received 6 September 2023; Accepted 11 September 2023   

mailto:yvan.devaux@lih.lu
http://www.cardiorna.eu
https://www.cost.eu/actions/CA21153/
www.sciencedirect.com/science/journal/27729761
https://www.journals.elsevier.com/journal-of-molecular-andcellular-cardiology-plus
https://doi.org/10.1016/j.jmccpl.2023.100048
https://doi.org/10.1016/j.jmccpl.2023.100048
https://doi.org/10.1016/j.jmccpl.2023.100048
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmccpl.2023.100048&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Molecular and Cellular Cardiology Plus 6 (2023) 100048

2

narrowing or blockage of major coronary blood vessels, which is pri-
marily caused by atherosclerotic plaques. Most acute coronary events 
are triggered by plaque rupture (majority of all ACS, 73 %) or plaque 
erosion, followed by coronary thrombosis and obstruction of the coro-
nary blood vessels [2]. Overall, plaque composition, plaque stability, 
and its interaction with the vascular microenvironment are the main 
factors that determine the development of acute coronary events. The 
heterogeneity of pathophysiological mechanisms of plaque destabiliza-
tion is reflected in the complexity of clinical presentations of ACS [3]. 
However, the traditional diagnostic classification of ACS does not reflect 
this disparity. Despite recent efforts, there are still no reliable bio-
markers reflecting the underlying mechanism that yields acute ischemia 
[3]. There is a gap between plaque complexity and our ability to 
recognize different plaque phenotypes in the clinical setting. Thus, new 
tools are needed to improve our understanding of plaque pathophysi-
ology, which can be translated from the bench to the bedside and help 
prevent poor outcomes in ACS. 

An important level of complexity in cellular signalling is related to 
dynamic changes in gene expression. Mounting evidence suggests that 
these dynamic changes in the transcriptome accompany pathological 
processes in many organs. In the past decade, technological advance-
ments and the use of next-generation sequencing enabled comprehen-
sive transcriptome analysis, deepening our understanding of RNA 
complexity. Special attention has been drawn to non-coding RNAs 
(ncRNAs), the significance of which is illustrated by the fact that only 
~2–3 % of human transcriptome consists of protein-coding RNAs or 
messenger RNAs (mRNAs), and over 90 % of ncRNAs [4]. NcRNAs 
contribute to eukaryotic complexity by regulating gene expression. 
NcRNAs such as microRNAs (miRNAs), long non-coding RNAs 
(lncRNAs) and circular RNAs (circRNAs) are involved in the progression 
of atherosclerosis by affecting vascular endothelium, inflammation and 
cholesterol metabolism. Detailed description of these regulatory mech-
anisms is available [5–7]. Considering the cell-specific effects that 
ncRNAs can exert on cellular functions and pathophysiological signal-
ling pathways related to atherosclerosis, it is likely that these molecules 
represent targets for future therapies or biomarkers for personalized 
healthcare and precise diagnosis of atherosclerotic CVD. However, 
multiple methodological challenges hinder the translation of findings 
from basic transcriptomics research to clinical application. In this re-
view, we underline these challenges and propose tips and tricks for the 
design of future studies with the ultimate goal to improve translational 
research and patient’s outcomes. 

2. Transcriptomic research in atherosclerosis 

2.1. Human studies 

Advanced atherosclerosis samples are typically obtained during 
surgeries like carotid endarterectomies (CEA) or from autopsies. While 
carotid and leg artery samples are common, coronary artery tissues, 
rarely sampled during procedures, provide insights into plaque devel-
opment and myocardial infarction. 

Various approaches were pioneered to identify drivers of plaque 
progression and instability, as well as lesions’ ability to cause clinical 
symptoms like myocardial infarction, stroke, or ischemia to the pe-
riphery (most commonly the lower extremities). Several groups have 
chosen to assess symptoms of patients as their main criteria [8,9]. 
Importantly, the AtheroExpress consortium collected follow-up data 
from patients that underwent CEA to identify predictive markers of 
future cardiovascular events in individuals with atherosclerotic disease 
[10,11]. For this type of analysis, symptomatic patients are compared to 
asymptomatic patients. This comparison has proven quite powerful 
when identifying plaques from patients with a more aggressive athero-
sclerotic phenotype. These findings could often be linked to mechanisms 
involved in immune cell infiltration, vessel wall inflammation [12,13], 
as well as arterial remodelling which involves SMC (de)differentiation 

[14]. 
Apart from studying atherosclerosis from a clinical perspective 

(comparing symptomatic to asymptomatic patients), differential gene 
expression analysis was performed based on changes in the plaque 
phenotype. Thus, stable plaques (thicker than 200 μm) were compared 
with unstable and/or ruptured plaques (thinner than 200 μm) [15,16]. 
The biggest advantage of this type of comparison is the assessment of 
plaque phenotype in addition to evaluating patients’ symptoms. How-
ever, it is challenging to characterize the plaque phenotype in addition 
to harvesting material of sufficiently high quality and quantity to extract 
RNA for transcriptomics analysis which are sensitive to RNA degrada-
tion (e.g., RNA sequencing, PCR). 

In addition to analysing whole plaque tissue specimens, researchers 
have performed micro-dissection laser capture to determine the profile 
of distinct plaque areas, such as the necrotic core or the fibrous cap 
[17,18]. These methods enable one to determine specific RNA profiles of 
areas directly relevant to plaque stability, such as the fibrous cap which 
serves as the last line of defence by stabilizing the lesion. 

One issue affecting all studies involving human patient material is 
the lack of un-diseased, non-atherosclerotic vascular control tissue. 
Specimens from the internal mammary artery (IMA), which is 
commonly used for coronary arterial bypass graft (CABG) surgery; or 
iliac arteries from patients undergoing open surgical repair for an 
abdominal aortic aneurysm may be useful in that respect [19,20]. One 
issue with all these types of arterial tissues is that their composition 
(muscularity), the number of elastic layers, and exposure to alternating 
flow and shear stress patterns differs from coronary of carotid arteries, 
which are usually analysed in human atherosclerosis. Their embryonic 
origins also differ, reflected in differences in structural or mural cells like 
endothelial or smooth muscle cells, as well as adventitial fibroblasts 
[21]. 

Vulnerable plaque is a term that refers to unstable plaques that are 
susceptible to the physical disruption that leads to thrombosis, the for-
mation of blood clots and heart attack or stroke. However, the process of 
plaque formation and rupture is complex and multifactorial, and no 
single plaque phenotype is consistently associated with an increased risk 
of rupture. Insights from transcriptomic studies facilitated the discern-
ment of subtle variations between plaques. These studies unveil new 
determinants of plaque destabilization with potential clinical utility. 

To establish connections between global transcriptomic profiles and 
clinical features that stratify stroke risk, Matic et al., used transcriptomic 
analysis to explore correlations between carotid atherosclerosis pheno-
types and gene expression patterns [9]. The study identified subtle gene 
expression distinctions between symptomatic and asymptomatic plaque 
patients, underscoring the role of gene coordination in managing these 
disparities. Notably, more pronounced gene expression variations were 
associated with the time elapsed between symptoms and surgery, along 
with statin therapy. Statin-treated patients exhibited pathways linked to 
stable plaques, such as angiogenesis suppression and matrix metal-
loproteinase inhibition. Interestingly, statins also promoted calcification 
and inhibited tissue resorption. Additionally, plaque biology changed 
after rupture, involving swift tissue repair followed by prolonged im-
mune responses. This suggests that plaque composition is influenced not 
only by atherosclerosis progression but also by the locations of blood 
vessels. These findings shed light on the complex interplay of factors 
shaping plaque stability and vulnerability. Furthermore, it seems that 
plaque composition is not solely dependent on the progression of 
atherosclerosis, but also on locations of blood vessels. Using tran-
scriptomics, Steenamn et al. found a major difference between femoral 
and carotid atherosclerotic plaques, with femoral plaques enriched in 
genes involved in osteoblast differentiation and bone morphogenesis 
[22]. Carotid plaques were more enriched in immune response and lipid 
metabolism genes, suggesting that arterial heterogeneity may determine 
susceptibility to fibrosis and calcification. The carotid arteries are more 
prone to microcalcifications, while osteoid metaplasia is more common 
in the femoral arteries. Interestingly, the authors showed that traditional 
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cardiovascular risk factors are not associated with the type of calcifi-
cation, but with the risk of progression of atherosclerosis in peripheral 
arteries. 

The hyperplasia and migration of smooth muscle cells (SMCs) from 
the media to the intima of the arterial wall inevitably leads to destabi-
lization of the plaque. Notably, recent advancements have significantly 
deepened our understanding of this process. Rykaczewska et al. applied 
innovative integration of plaque evaluation with ultrasound and tran-
scriptomics and unveiled a direct link between carotid plaque echoge-
nicity and distinct molecular signatures involving calcification, iron 
homeostasis, cell survival, and SMC transdifferentiation [23]. In 
particular, their study uncovered the previously unknown significance 
of BCL2-associated transcription factor 1 (BCLAF1) that emerged as a 
critical regulator repressed in echolucent, lipid-rich carotid plaques that 
are typically associated with a vulnerable patient phenotype and 
heightened cardiovascular risk. Functionally, BCLAF1 is vital for SMC 
survival and lipid-induced transdifferentiation into macrophage-like 
cells within the plaque, regulating genes including Krüppel-like factor 
4 (KLF4), BCL2, cluster of differentiation (CD36), and cluster of differ-
entiation (CD68). Additionally, transcriptomic analysis of SMCs from 
carotid plaques revealed more senescent phenotype in SMCs from 
symptomatic plaques and an osteogenic phenotype in SMCs from 
asymptomatic plaques, while TGF-β signalling was identified as the 
mechanism defining SMC phenotype, suggesting a role in plaque 
destabilization [24]. Alsaigh et al. compared transcriptome profiles of 
calcified atherosclerotic plaques in the core and proximal sections using 
single-cell RNA sequencing (scRNA-seq), showing that SMCs and 
endothelial cells are involved in calcification and extracellular matrix 
remodelling [25]. Depuydt et al. observed that My.2 macrophages ex-
press SMC actin, suggesting derivation from SMCs [26]. ScRNA-seq and 
sex-specific gene regulatory networks also suggest differences in SMC 
biology which play a role in sex-specific pathophysiology of athero-
sclerosis [27]. 

Recent studies using single-cell transcriptomics gave deeper insights 
into plaques heterogenic content of different immune cells, endothelial 
cells, smooth muscle cells etc. [28–30], and even show proof of endo-
thelial to mesenchymal transition and the gene expression profile of 
these trajectories in human atherosclerotic plaques [30]. ScRNA-seq of 
human atherosclerotic lesions revealed T cells and macrophages as the 
most abundant populations, with disrupted plaques in symptomatic 
patients enriched in effector-memory CD4+ T cells and distinctive 
macrophage phenotypes [31]. The authors found increased expression 
of PD-1, a marker of T cell exhaustion, in T cells present in atheroscle-
rotic plaques of patients with recent acute events. Inhibiting PD-1 may 
activate exhausted T cells and worsen atherosclerosis, potentially 
causing unpredictable adverse effects in cancer patients with underlying 
CVD [32]. Depuydt et al., used scRNA-seq and scATAC-seq on carotid 
plaques and identified 14 cell clusters, including 11 immune and 3 non- 
immune clusters [26]. The authors integrated GWAS and scRNA-seq 
data to identify specific cell populations involved in CVD susceptibil-
ity loci, suggesting that this approach may be useful for pinpointing drug 
targets for personalized intervention. Moreover, scRNA-seq technology 
has illuminated novel macrophage phenotypes within atherosclerotic 
plaques. For instance, CD136+ macrophages clustered around intra-
plaque microvessels, displaying elevated hypoxia-inducible factor 1- 
alpha (HIF1α) and vascular endothelial growth factor A (VEGF-A) 
expression associated with plaque progression and angiogenesis [33]. 
These macrophages exacerbated plaque inflammation by increasing 
vascular cell adhesion molecule (VCAM) expression in intraplaque 
endothelial cells. Another recent addition to the macrophage repertoire, 
as elucidated by Karamanavi et al., is the FES+ (FES proto-oncogene) 
macrophage phenotype, with potential atheroprotective properties 
[34]. 

By combining scRNA-seq of atherosclerotic tissue with sex-specific 
gene regulatory networks, Hartman et al. revealed that women had 
higher gene activity associated with mesenchymal and endothelial cells, 

while men had higher activity associated with the immune system [27]. 
Jin et al. showed that sex-specific genes correlate with both biological 
sex and plaque phenotype, notably involving fibrosis and inflammation 
pathways rather than sex-hormone responses [35]. Male- and female- 
specific key drivers were significantly associated with unstable-specific 
genes, suggesting a connection to biological sex, potentially due to 
shared common genes. Functional pathway analysis revealed JAK-STAT 
predominance in unstable plaques and profibrotic EGFR and TGFβ 
pathways in stable plaques. Additionally, distinct patterns emerged in 
inflammation and profibrotic pathways within the intersects of 
unstable-male and stable-female genes. Unexpectedly, androgen and 
estrogen pathways showed opposing associations with these intersects. 
Genes driven solely by biological sex exhibited enrichment in cate-
cholamine secretion and muscle cell contraction terms, revealing sex- 
dependent processes and underlining the importance of sex differences 
in atherosclerosis mechanisms. 

Although scRNA-seq gives deep insights into cellular composition of 
atherosclerotic plaques, it is limited in its inability to provide informa-
tion about the spatial location of cells within a plaque. In the study by 
Sun et al. gene expression signatures in distinct regions of human carotid 
plaques were analysed using various techniques including histology, 
scanning electron microscopy, RNA sequencing, and spatial tran-
scriptomics [36]. By focusing on longitudinal blood flow direction 
(proximal, most stenotic, and distal regions), the researchers revealed 
that plaque ruptures rarely emerge distally to the most stenotic region, 
uncovering a unique gene expression pattern associated with 
atherosclerosis-related diseases. This spatial transcriptomics approach 
not only broadened the understanding of molecular mechanisms un-
derlying plaque rupture but also allowed the localization of specific gene 
expressions within plaque tissue sections, such as MMP9, immuno-
globulin kappa constant, and phospholamban. This technique revealed 
that MMP9 was prominently expressed in unstable shoulders, a common 
rupture site, and showed co-localization with integrin alpha X (ITGAX), 
a marker for proinflammatory macrophages, contributing to the for-
mation of rupture-prone plaques. 

Transcriptomic signatures of atherosclerotic plaques can also pro-
vide valuable clinical information. Mokry et al. performed a tran-
scriptomic analysis of 654 advanced human carotid plaques and were 
able to distinguish five dominant types of plaque [37]. Plaques with the 
most severe clinical symptoms expressed a number of genes related to 
inflammation, neutrophil degranulation, matrix changes and meta-
bolism. The results were validated in 162 samples of coronary artery 
plaques confirming that the fibro-inflammatory type of plaque was 
strongly associated with coronary ischaemic events. Transcriptomics 
can also complement imaging techniques to provide a holistic view of 
patient conditions. Integrating molecular insights with carotid 
computed tomography angiography (CTA) enables linking imaging 
biomarkers to underlying pathophysiological processes [38]. Advancing 
this approach, recent investigations harnessed computer-based CTA 
image analysis to define plaque morphology, forging correlations be-
tween visual characteristics, symptomatology, and molecular profiles 
from corresponding carotid endarterectomy (CEA) samples [38]. This 
approach pioneered a profound connection between carotid plaque 
morphology and biological traits, shedding light on the intricate inter-
play between appearances and underlying mechanisms. Furthermore, 
the emergence of “virtual transcriptomics” as a concept that bridges 
gene expression insights with non-invasive imaging data augments the 
potential for enhanced clinical applications, promising a more 
comprehensive understanding of disease processes and patient-specific 
needs. This concept was presented by Buckler et al. that employed ma-
chine intelligence to integrate CTA images and transcriptomics from 
carotid endarterectomies of 40 patients with carotid stenosis [39]. Their 
innovative approach involved novel software to analyse CTA images for 
precise plaque morphology characterization and extraction of plaque 
transcriptomes from microarrays. Mathematical modelling predicted 
gene expression patterns, identifying 414 coding and noncoding RNAs 
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linked to plaque morphology. The models’ predictive accuracy was 
validated using CTA images from separate patients and corresponding 
transcriptomes. Thus, transcriptomic characterization of plaques can 
provide valuable data that can be used for better stratification of pa-
tients, improved diagnosis and tailored treatments. 

2.2. Animal studies 

Despite significant differences related to their plasma lipid and li-
poprotein profiles and their vascular anatomy relative to humans, small 
rodents have been used extensively in atherosclerosis studies for various 
reasons: a) short life cycle, b) large numbers of progeny produced many 
times a year, c) easy in experimentation, d) low cost, e) easy genetic 
manipulation, f) plethora of strains with different genetic backgrounds 
and predisposition to various diseases. Mice are resistant to develop-
ment of advanced atherosclerotic plaques even after feeding with 
Western diets, mainly due to absence of atherogenic lipoproteins such as 
low-density lipoproteins (LDL) in their plasma [40]. Contrary to 
humans, the main circulating lipoprotein in the mouse plasma is high 
density lipoproteins (HDL) due to the lack of expression of the gene 
encoding the plasma lipid transfer protein Cholesteryl Ester Transfer 
Protein (CETP) which transfers cholesteryl esters from HDL to very low 
density lipoproteins (VLDL)/LDL in exchange for triglycerides [41]. The 
increase of HDL in the plasma confers atheroprotections due to its many 
anti-atherogenic functions including reverse cholesterol transport, anti- 
inflammatory, anti-oxidant, anti-thrombotic and many others [42]. 

Two mouse models that have been used extensively for atheroscle-
rosis translational research are mice lacking the LDL receptor (LDLR− /−

mice) and mice lacking apolipoprotein E (apoЕ− /− mice). In LDLR− /−

mice (mimicking familial hypercholesterolemia in humans), mild 
atherosclerotic lesions develop on a chow diet but strong acceleration in 
plaque development is observed on a western type diet [43]. The limi-
tations of this model is that plaques develop primarily in the aorta (not 
in coronary arteries as in humans) and that plaques do not rupture and 
lead to thrombosis. ApoЕ− /− mice do not express apolipoprotein E 
(apoE), a 34 kDa protein that is produced by many tissues including the 
liver, by macrophages and the brain and associates with lipoprotein 
particles such as VLDL, chylomicrons and HDL facilitating their clear-
ance via the LDL receptor [43]. Although this model has been widely 
used for understanding the pathophysiology of atherosclerosis, it has 
several limitations compared to humans with the most notable being the 
absence of thrombotic occlusion in the coronary arteries causing MI. 
This could be due to anatomical differences such as smaller vessels and 
lower surface tension compared to the humans [44]. Plaque rupture 
rarely occurs in this model and only in the brachiocephalic arteries and 
the aorta. Mice models with plaques that are more close to human 
atherosclerotic lesions can be generated with genetic perturbations 
including a mutant form of fibrillin 1 (Fbn1 C1039G+/− ) [45] or 
expressing a combination of the human apoE*3 Leiden mutant (apoE*3- 
Leiden) and CETP genes [46]. An alternative, less complicated and 
easier to generate, mouse model of atherosclerosis that has been 
developed recently is the administration of adeno-associated viruses 
(AAVs) expressing human Proprotein convertase subtilisin/kexin type 9 
(PCSK9) [47]. PCSK9 is a serine protease that is secreted by the liver and 
other tissues and binds strongly to the LDL receptor in the endosomes 
preventing its recycling and reducing its life cycle [48]. Overexpression 
of PCSK9 via AAVs in combination with the administration of a high fat 
diet and partial carotid ligation caused significant reduction of the LDLR 
on the plasma membrane in the liver and accumulation of LDL in plasms, 
similarly to the LDLR − /− mice [49]. A serious drawback of the mouse 
models described above is the absence of atherosclerosis in the coronary 
arteries, which is a characteristic clinical feature in humans. To over-
come this problem and achieve coronary atherosclerotic plaque devel-
opment, investigators generated mice with double deficiency in both the 
apoE and the LDLR genes (LDLR− /− /apoE− /− mice). These mice devel-
oped atherosclerosis in the aorta and coronary arteries after feeding with 

a fat diet. They also suffered from MI which is a rare clinical charac-
teristic in mouse models of atherosclerosis [50]. Coronary atheroscle-
rosis was also achieved in a series of mouse models that combined 
deficiency of either the LDLR or the apoE genes with the gene encoding 
the HDL receptor SR-BI (Scavenger receptor Class B Type 1) [51,52], or 
genes that interact with or are activated by SR-BI in endothelial cells 
such as the endothelial nitric oxide synthase (eNOS) [53] and the PDZ 
containing 1 (PDZK1) [54]. 

Yang et al. [55] studied the atherosclerotic plaque transcriptome in 
wild-type mice fed a chow diet and in apoE− /− mice fed with a Western 
type diet for 20 weeks. They identified 96 differentially expressed genes 
(DEGs) in advanced atherosclerotic plaque compared with early plaque 
and 838 DEGs in ruptured atherosclerotic plaque compared with stable 
plaque. Using bulk and scRNA-seq, Kim et al. [56] showed that non- 
foamy rather than foamy macrophages have pro-inflammatory roles in 
apoE− /− and LDLR− /− mice. Using single cell transcriptomics, Winkels 
et al. characterized leukocytes from chow diet- and Western diet-fed 
Apoe− /− and Ldlr− /− mice aortas in order to generate an immune 
cell atlas of atherosclerotic plaques [57]. They detected 11 principal 
leukocyte clusters with distinct phenotypic and spatial characteristics. 
Gene set enrichment analysis showed that lipid metabolism, prolifera-
tion, and cytokine secretion were confined to specific clusters. Pheno-
typic switching is a pathological process in which smooth muscle cells 
(SMCs) dedifferentiate, migrate, and transdifferentiate into other cell 
types and contribute to atherosclerosis. This mechanism was studied at 
the single cell level by Pan et al. by combining SMC fate mapping and 
scRNA-seq of mouse atherosclerotic plaques [58]. The authors showed 
that SMCs transitioned to an intermediate cell state during atheroscle-
rosis termed “SEM” (stem cell, endothelial cell, monocyte)] in which 
they were multipotent and could differentiate into macrophage-like and 
fibrochondrocyte-like cells. The method of laser capture microdissection 
(LCM) allows the isolation of individual cell populations from tissue 
sections with the use of lasers and combined with RNA amplification 
(due to small RNA concentration in the captured samples) and micro-
array techniques has been applied to measurement of gene expression in 
atherosclerotic lesions in mice [59,60]. 

Rats are more convenient models for atherosclerosis research due to 
their larger size compared to mice, but their major drawback is 
complexity of genetic manipulation. Recently, using the zinc finger 
technology, LDLR− /− rats have been generated that develop extended 
atherosclerosis only after the administration of Paigen diet [61] for a 
long period (50 weeks) [62]. The same technology was used to generate 
apoE − /− rats which develop extended atherosclerosis with the 
administration of a Paigen diet for 64 weeks [63]. 

Rabbits develop atherosclerosis faster than other experimental ani-
mals, mostly due to the absence of hepatic apolipoprotein B expression 
[64]. Watanabe-heritable hyperlipidemic (WHHL) rabbit develop aortic 
and coronary atherosclerosis. The aortic lesions are characterized by 
ample intimal thickening, foam cells and a fibrotic component, a his-
tologic appearance similar to human lesions ([65,66]. Transcriptomic 
analyses on rabbit atherosclerotic lesions identified network of several 
lncRNAs and miRNAs that could be used as prospective biomarkers of 
atherosclerosis progression [67]. 

The Golden Syrian hamster presents many similarities with the 
human lipid metabolism. At more advanced stages of atherosclerosis, 
the plaques in hamsters are characterized by accumulation of extracel-
lular unesterified cholesterol, calcium deposition and necrosis. Similar 
to humans, male hamsters are being more susceptible to an atherogenic 
diet than females. Recently, Barbalata et al. performed a microarray 
miRNA profiling in tissues of hyperlipidemichamsters. They reported a 
dysregulation of miRNAs expression with a discrete distribution in the 
heart-liver axis [68]. 

There are several limitations that limit the translatability of mouse 
model transcriptomics in atherosclerotic coronary heart disease. These 
limitations include: a) incomplete genome annotation in mice [69,70]; 
b) less conserved sequences of lncRNAs compared to protein-coding 
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genes [71]; c) lncRNAs are usually expressed at lower level than protein- 
coding genes and often in a very tissue-specific manner [71,72]; d) there 
is considerable heterogeneity in plaque composition and structure in the 
different mouse models and in very few models rupture-prone plaques 
can be found, in contrast to human ASCAD patients, where plaque 
rupture is common. The main challenges in the translational potential of 
animal transcriptomics studies are summarized at Fig. 1. 

3. Methodological challenge in transcriptomic research 

3.1. Bulk RNA sequencing 

RNA extraction from atherosclerotic plaques can be challenging due 
to their highly necrotic and acellular nature, as well as increased levels 
of reactive oxygen species (ROS) caused by inflammation and intra- 
plaque haemorrhage [73]. Classical phenol-based methods or silica 
column isolation kits can be used for RNA purification, but contami-
nating agents such as heparin must be considered [74]. RNA quantifi-
cation and quality checks performed using spectrophotometry, 
electrophoresis, and RNA integrity number (RIN) values are essential 
steps prior to downstream analysis methods [75]. More basic techniques 
such as RT-qPCR, digital PCR and in situ hybridisation techniques are 
still being extensively used for RNA quantification. Major limitations 
and advances of these techniques are presented on the Fig. 2. However, 
in this review we will keep focus on more advanced and comprehensive 
methods. 

In the past decade, bulk RNA sequencing has become the standard 
tool for identifying and quantifying changes in transcript levels in a 
variety of biological contexts. It has, for the first time, enabled a truly 
hypothesis-free analysis of a RNA sample (prior screens usually relied on 
microarrays, where discovery of biological effects was limited to the 
existing probe set). By now, a variety of specific protocols has been 
developed in order to target particular classes of RNAs with Illumina- 
type libraries. Before sequencing, proper library preparation is crucial, 
including target enrichment. To avoid overrepresentation of abundant 
ribosomal RNAs (rRNAs) and reduce sequencing depth, rRNA transcripts 
should be removed [76]. Alternatively, poly(A) enrichment can be used 
for sequencing protein-coding RNAs and some poly(A)-tailed lncRNAs 
[77]. However, rRNA-depletion is better suited for ncRNA research as it 
allows quantification of ncRNAs without a poly(A) tail, including pre- 
mRNA and circular ncRNAs [77]. Recent advances in protocols that 
enable simultaneous RNA sequencing of the small and long transcripts 

from the same total RNA extract enable a more comprehensive analysis 
of transcriptome [78]. In the context of atherosclerotic plaque research, 
one of the limiting factors is related to the availability of the proper 
samples that could be used for RNA sequencing. Indeed, human plaques 
are very hard to obtain, especially those from coronary arteries. The 
final result depends on the origin of the plaque and the amount of sur-
rounding tissues sampled through the procedure. On the other hand, the 
sensitivity of RNA sequencing enables the generation of comprehensive 
data from a small and limited amount of sample. In addition, RNA 
sequencing can be used for the discovery of stably expressed genes to use 
as housekeeping genes [79]. Housekeeping genes can also be identified 
using Genorm or Normfinder [79], and the most stable gene(s) can be 
utilized for the normalization of qPCR data. In addition to sequencing by 
synthesis methods, Oxford Nanopore Technologies developed method 
for direct RNA sequencing. This technology enable very long reads (tens 
and even hundreds of kilobases in length, albeit with overall higher error 
rates than short reads) and detection of RNA modification. 

Bulk RNA sequencing can overlook cellular heterogeneity and in-
teractions in complex systems such as atherosclerotic plaques, resulting 
in averaged gene expression data that fails to provide a complete picture 
of tissue transcriptome complexity. Deconvolution methods can help 
dissect the cellular components found in a bulk transcriptome, but 
currently require prior knowledge of tissue composition [80]. Single cell 
RNA sequencing (scRNA-seq) can identify gene signatures necessary for 
accurate deconvolution, allowing previously generated bulk RNA 
sequencing data to be deconvoluted. Efforts are underway to develop 
deconvolution methods that do not require prior tissue composition 
knowledge [28,81]. 

3.2. ScRNA-seq 

Gene expression variation among cells in a bulk sample masks 
essential changes, necessitating the assessment of individual cell tran-
scriptomes. Microfluidic devices compartmentalize single cells prior to 
RNA-seq library preparation, with conventional RNA-seq methods. 
scRNA-seq systems have existed for about 5 years, enabling new studies 
and data availability from different biological contexts. Recently, a 
method was developed for sequencing small amounts of RNA from live 
cells without lysing them, enabling longitudinal single-cell tran-
scriptomics [82]. The main challenges in the wider use of scRNA-seq 
technologies include: 

Fig. 1. The translational potential of animal transcriptomics studies (advantages are presented in green and limitations in red) (Created with BioRender). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.2.1. Costs 
scRNA-seq cost is a major barrier to adoption by healthcare pro-

viders, as it is an order of magnitude more expensive than bulk RNAseq. 
However, new microfluidic devices with more reagent flexibility and 
multi-omic data collection are being developed, and as they become 
more widely adopted, costs are expected to decrease [83,84]. 

3.2.2. Cell viability 
10× Chromium protocols previously required high cell viability and 

limited sample types for scRNA-seq. New developments include the 10×
Visium CytAssist, enabling scRNA-seq of FFPE tissue samples and 
designed for spatial transcriptomics. 

3.2.3. Flexibility 
Proprietary commercial kits for scRNA-seq focus on capturing pol-

yA+ mRNA, excluding small RNAs, tRNAs, and lncRNAs. Open protocols 
and new companies entering the field may resolve this issue. Long-read 

single-cell sequencing is also possible with 10× cell compartmentali-
zation and Oxford Nanopore sequencing [85]. 

3.2.4. Complexity of data 
scRNA-seq data analysis is complex due to the presence of heterog-

enous subsets of transcripts representing single cells in a multi- 
dimensional space of expression data, batch effects, and the need for 
identifying specific cell clusters. However, new software tools are 
addressing these challenges, which will likely consolidate and become 
more user-friendly in the future. 

4. Deep plaque phenotyping through integration of 
transcriptomics with other omics approaches (multiomics 
approach) 

In the past several years the technologies for different omics analysis 
have become more available, which led to combined omics (genomics, 

Fig. 2. Advantages (green) and limitations (red) of traditional and novel RNA quantification methods. (Created with BioRender). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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epigenetic, (epi)transcriptomic, proteomic, metabolomic) analysis in the 
same set of samples. By using this so-called multiomics approach and 
integrating all the data, it is now possible to put transcriptomic data into 
wider biological context and discover additional levels of complexity. In 
the study by Matic et al., this integrative approach was developed to 
identify biomarkers for carotid atherosclerosis by analysing tran-
scriptomic and proteomic profiles of plaques and plasma from patients 
with carotid stenosis undergoing surgery [86]. Biliverdin reductase B 
(BLVRB) was found to be enriched in both plaques and plasma of pa-
tients with carotid atherosclerosis, particularly associated with intra-
plaque haemorrhage (IPH). This discovery introduces BLVRB as a 
potential biomarker for identifying end-stage vulnerable plaques and 
individuals at higher risk of stroke. Building upon this approach, Jin 
et al., performed an integrative analysis to construct a predictive model 
distinguishing low- and high-risk carotid artery lesions by utilizing 
transcriptomic, proteomic, and peptidomic profiles from human carotid 
artery plaques [87]. The study demonstrated the effectiveness of this 
model across independent plaques and highlighted the role of serum 
response factor-driven regulatory gene/protein network in peri-rupture 
remodelling, particularly associated with intimal processes related to 
intraplaque haemorrhage. 

In order to extract relevant information from multiomics data, 
advanced computational techniques such as machine learning have 
become an important tool in biomedical data analysis. Machine learning 
is a subfield of artificial intelligence with the main aim to iteratively 

learn from data in order to identify complex patterns and insights 
without explicitly being programmed to do so. The machine learning 
pipeline starts with the collection of data from various sources (e.g. 
multiomics data, clinical data). Afterwards, data preprocessing is per-
formed which includes data cleaning, data integration, formatting, 
transformation, etc. This is followed by the feature selection process. 
Dataset is then split into distinct training and test datasets. Training 
dataset is used for model development which includes selecting and 
building the best machine learning model. Afterwards, performance of 
the model is evaluated using the test dataset, and if necessary, model 
performance is improved. Finally, the acquired knowledge is ready to be 
applied to the problem at hand (Fig. 3). 

Even though machine learning has been applied to analyse a variety 
of biomedical data, it has not yet been widely used to analyse tran-
scriptomics data. However, its use is constantly expanding, largely 
because of the large amount of availability of transcriptomic data and 
the ability of machine learning algorithms to uncover intricate re-
lationships within the data by complementing conventional statistical 
approaches of transcriptomic data analysis. So far, machine learning has 
been used for the analysis of transcriptomic data including in Parkin-
son’s diseases [88] and colorectal cancer [89]. In the context of CVD, 
machine learning enabled better classification and prediction of 
atherosclerotic disease based on the large number of clinical data and 
blood-based biomarkers [90,91]. 

More so than its usage in transcriptomic research, application of 

Fig. 3. Using machine learning for integration of transcriptomic with other omics data. (Created with BioRender).  
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machine learning to multiomics data is still in its infancy. As outlined in 
[92], one of the main reasons for this are the challenges of integrating 
multiomics datasets such as the occurrence of missing values and class 
imbalance, which are common problems to many machine learning 
datasets. Others are specific to biological data such as to the noisiness 
and complexity of omics datasets, and high-dimension, low-sample size 
problem, a problem that often leads to building a machine learning 
model that does not generalize well on the new unseen data. Omics data 
may also vary in data dimensionality or data types such as numerical, 
categorical, continuous, discrete, etc., which must be properly managed. 
For example, genomics and transcriptomics dataset may have tens of 
thousands of variables, and proteomics dataset may have only a few 
thousands, which may cause imbalance in the learning process. Overall, 
application of machine learning techniques to multiomics research will 
certainly be more frequent in coming years as a result of the expanding 
availability of biological data, including from the atherosclerotic plaque. 

The development of machine learning methods to evaluate single- 
cell omics data has been a very active area of research in recent years 
due to the widespread deployment of single-cell omics technology and 
the large volume of produced data. In the review of current de-
velopments in machine learning techniques for studying single-cell 
transcriptomic and epigenomics data, Raimundo et al. [93] argue that 
a great majority of machine learning based tools have been simply im-
ported from other disciplines with some aspects unsuited for biological 
data, hence reducing their performance. Additionally, it is still unclear 
whether machine learning models will be able to overcome the technical 
constraints that now exist for single cell genomics techniques, such as 
batch effects and dropouts. Hence, several conceptual and technical 
hurdles need to be resolved before machine learning becomes a useful 
tool aiding in the deconvolution of complex transcriptomics and mul-
tiomics datasets towards a deeper understanding of the molecular 
pathways gearing atherosclerosis development. 

5. Future perspectives and conclusions 

Characterization of atherosclerotic plaque represents an important 
step forward in the management of atherosclerotic cardiovascular dis-
ease. A better understanding of the complex interplay between various 
mechanisms within the plaque and the molecular changes that occur 
during disease progression may provide new targets for intervention and 
lead to the development of novel diagnostic and therapeutic tools, 
allowing for earlier detection and intervention. 

Transcriptomic research has revealed novel players in the process of 
atherosclerosis. It has enhanced understanding of the cellular hetero-
geneity of the plaque, and has led to a better characterization of plaques. 
Further advancements in the protocols for bulk RNA sequencing 
deconvolution and scRNA-seq will deepen our knowledge of the plaque 
cellular complexity and develop more precise plaque categorisations 
that will pave the way to precision medicine approaches. A limitation of 
scRNA-seq is its inability to provide information about the spatial 
location of cells within a plaque. However, the development of spatial 
transcriptomics has enabled the high-throughput mapping of mRNA 
expression in tissues, including plaques, which enhance our under-
standing of the molecular mechanisms underlying plaque formation and 
progression. Moreover, the integration of transcriptomics data with 
other omics data can provide a more comprehensive picture of the 
molecular changes occurring in the plaque. To optimize outputs of 
multiomics strategies with machine learning approaches, reliable algo-
rithms are needed, and this will require an understanding of how to 
incorporate the requirements of these algorithms into study design. For 
example, currently there are no recommendations on how to calculate 
study power when multiple omics analysis is planned. In addition, since 
risk factors such as age, sex, diabetes as well as environmental factors 
such as pollution and socio-demographic situation can have a significant 
impact on the overall disease phenotype, they should not be overlooked 
when designing studies on atherosclerosis. 

Before being able to translate transcriptomics research findings to 
clinical application, there is an unmet need for thorough data validation 
and methodological harmonization. This applies to atherosclerosis as 
well as to any other biomedical research field. Thus, an important step is 
to create a research environment that facilitates collaboration, data 
sharing and harmonization. This will enable researchers to pool re-
sources and expertise, and to conduct large-scale studies that are not 
feasible for individual researchers or institutions. By working together, 
scientists will be more equipped to overcome the challenges posed by 
the study of atherosclerotic plaque (complex multifactorial mechanism, 
low amount of material for transcriptomics analysis, low availability in 
human …). Moreover, the development of large-scale data sharing ini-
tiatives will allow researchers to access and analyse large amounts of 
data, leading to new discoveries and insights into plaque biology. 
Collaborative work is a leitmotiv of the members of the CardioRNA and 
AtheroNET COST Actions who drafted this manuscript. 
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coding RNAs in the atherosclerotic plaque. Atherosclerosis 2017;266:176–81. 
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