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BIFURCATIONS OF FITZHUGH-NAGUMO EXCITABLE
SYSTEMS WITH CHEMICAL DELAYED COUPLING

Dragana Ranković

Abstract. System of delayed differential equations is used to model a pair of FitzHugh-
Nagumo excitable systems with time-delayed fast threshold modulation coupling. The Hopf bi-
furcation of the stationary solution, due to coupling is completely described. The critical time
delays, that include indirect and direct Hopf bifurcations, and conditions on the parameters for
such bifurcations are found. It is shown that there is a domain for values of time lags and cou-
pling strength where instability of the equilibrium introduced by coupling can disappear due to
interaction delay.

1. Introduction

In modelling realistic neuronal networks it is useful and also important to use
explicitly the time-delays in the description of the transfer of information between
the neurons. The system of delayed differential equations (DDE’s) provide a quite
natural and common mathematical framework for such models. It is an infinite
dimensional dynamical system and its qualitative analysis requires generalization
of the tools available for finite systems.

Two general types of synaptic connection between neurons are electrical and
chemical. In our previous investigations [6, 4] we considered sigmoid and electrical
connection between neurons, namely we studied bifurcations of FitzHugh-Nagumo
systems with electrical delayed coupling. The chemical synapses are much more
common, and the synaptic transmission time is especially significant of synapses of
the chemical type. It is well known that time-delay can change qualitatively the
dynamical features of the system [5, 8].

In this paper we shell analyze two coupled FHN excitable systems with delayed

2010 AMS Subject Classification: 34K18, 37N25.
Keywords and phrases: Hopf bifurcation; Delayed differential equations.
This work was supported by the Serbian Ministry of Science Contract No. 1443.



104 D. Ranković

coupling, given by the following delay-differential equations:

ẋ1 = −x3
1 + (a + 1)x2

1 − ax1 − y1 + cf(x1, x
τ
2),

ẏ1 = bx1 − γy1,

ẋ2 = −x3
2 + (a + 1)x2

2 − ax2 − y2 + cf(x2, x
τ
1),

ẏ2 = bx2 − γy2,

(1)

where xτ
i (t) ≡ xi(t− τ), the delay τ is positive.

In order to model the coupling among neurons by a chemical synapse, we shall
use the so-called fast threshold modulation scheme proposed by Somers and Kopell
in 1993 [13] and often used by others, e.g., [3]. The form of the FTM coupling that
we shall use, is given by the following function:

f(x1, x
τ
2) = −(x1 − Vs)

1
1 + e−k(xτ

2−θs)
− Vs

1 + ekθs
.

This function explicitly includes the time delay in the synaptic transmission. The
variable parameter c is the coupling strength between the first neuron at time
t and its neighbor at some previous time t − τ , so it is real and positive. The
coupling model (1) when τ = 0 is called fast, because it does not incorporate
any real synaptic dynamics. The model exhibits either a hard or a more gradual
thresholdlike behavior, depending on the size of the parameter k, with k → ∞
corresponding to the hard threshold. The synaptic reversal potential is denoted as
Vs and x is synaptic potential. A positive or negative sign of the difference between
Vs and x, corresponds to an excitatory or inhibitory effect of the synapse. In this
paper the values of the parameters θs, Vs, and k will be held fixed as θs = −0.25,
Vs = 2, and k = 10.

The dynamics of the complex system depends on the properties of each of the
units and on their interactions. A single neuron as one unit of the complex system
displays excitable behavior. Prime example of the excitable behavior is the system
introduced by FitzHugh [9] and Nagumo et al. [12] as an approximation of the
Hodgine-Haxley model of the nerve cell membrane:

ẋ = −x3 + (a + 1)x2 − ax− y

ẏ = bx− γy,
(2)

where a, b and γ are positive parameters. We shall use the system (2) for parameter
range, when system displays the excitable behavior. Point (x, y) = (0, 0) is the
stationary solution for any value of the parameters a, b, γ. Furthermore, it is
always a stable stationary point, which could be a node, if a− γ > 2

√
b, or a focus,

when a− γ < 2
√

b. We shall restrict our attention to the case when it is the only
stationary solution. This is the case if 4b/γ > (a− 1)2.

We shall analyze local stability and bifurcations of the stationary solutions
of (1).
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2. Local stability and bifurcations of the stationary solution

In this section we study stability and bifurcations of the stationary solution
(x1, y1, x2, y2) = (0, 0, 0, 0) of the system (1) for varying values c > 0 and τ > 0.
Parameters a, b and γ are fixed on values such that each of the units displays the
excitable behavior.

2.1. Instantaneous coupling τ = 0
Consider the system (1) in the case of instantaneous coupling.

ẋ1 = −x3
1 + (a + 1)x2

1 − ax1 − y1 + cf(x1, x2),
ẏ1 = bx1 − γy1,

ẋ2 = −x3
2 + (a + 1)x2

2 − ax2 − y2 + cf(x2, x1),
ẏ2 = bx2 − γy2,

(3)

Theorem 2.1. Stationary solution (x1, y1, x2, y2) = (0, 0, 0, 0) of the system
(3) is:

1◦ for a − γ > 2
√

b, stable node-node for every 0 < c < a−γ−2
√

b
q−p and for every

a−γ−2
√

b
q−p < c < a+γ

q−p , stable focus-node;

2◦ for a − γ < 2
√

b, stable focus-focus for every 0 < c < 2
√

b−a+γ
p+q and for every

2
√

b−a+γ
p+q < c < a+γ

q−p , stable focus-node.
In both of these cases 1◦ and 2◦ system has subcritical Hopf bifurcation for

parameter value

c = c0 =
a + γ

q − p
.

Proof. Local stability of the stationary solution is determined by analyzing the
system linearized at (x1, y1, x2, y2) = (0, 0, 0, 0).

ẋ1 = −ax1 − y1 + c
∂f

∂x1
(0, 0)x1 + c

∂f

∂x2
(0, 0)x2,

ẏ1 = bx1 − γy1,

ẋ2 = −ax2 − y2 + c
∂f

∂x1
(0, 0)x2 + c

∂f

∂x2
(0, 0)x1,

ẏ2 = bx2 − γy2.

(4)

Linear part of (4), 

−a− cp −1 cq 0

b −γ 0 0
cq 0 −a− cp −1
0 0 b −γ




where p =
1

1 + ekθ
, q =

kV ekθ

(1 + ekθ)2
implies the following characteristic equation:

∆(λ) ≡ ∆1(λ)∆2(λ) = 0 (5)
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where
∆1(λ) = λ2 + (a + cp + γ − cq)λ + (a + cp− cq)γ + b,

∆2(λ) = λ2 + (a + cp + γ + cq)λ + (a + cp + cq)γ + b
(6)

with solutions

λ1,2 =
1
2
[−(a + cp + γ − cq)±

√
(a + cp− γ − cq)2 − 4b],

λ3,4 =
1
2
[−(a + cp + γ + cq)±

√
(a + cp− γ + cq)2 − 4b].

(7)

The sign of the real part of the four eigenvalues (7) determines the stability type
of the trivial stationary point. If a − γ > 2

√
b, the point is stable node-node for

every 0 < c < a−γ−2
√

b
q−p , and if c is larger the eigenvalue λ1,2 becomes complex and

the point becomes stable focus-node. Otherwise, if a−γ < 2
√

b, the point is stable
focus-focus for every 0 < c < 2

√
b−a+γ
p+q and for larger c the eigenvalue λ3,4 becomes

real and the point is again stable focus-node. Now, for any parameter a, b and γ
eigenvalues λ1,2 becomes pure imaginary for

c = c0 =
a + γ

q − p
,

where

d = sgn
(

dReλ1,2

dc

)

c=c0

= sgn
(

q − p

2

)
> 0.

The type of bifurcation at c = c0 is analyzed by reducing the system (3) on
the corresponding center manifold. The first step is to transform the coordinates
(x1, y1, x2, y2) into the new ones (x, y, z, t), by using the eigenvectors correspondents
to eigenvalues λ1,2,3,4. This transformation is given with the following equations

x1 = y + z + t,

y1 = −ωx + γy − b

λ3 + γ
z − b

λ4 + γ
t,

x2 = y − z − t,

y2 = −ωx + γy − b

λ3 + γ
z − b

λ4 + γ
t,

where ω =
√

b− γ2 (b > γ2 for considered values of parameters). The system (3),
in the new coordinates and for c = c0 is:

ẋ = −ωy + f1(x, y, z, t),

ẏ = ωx + f2(x, y, z, t),

ż = λ3z + g1(x, y, z, t),

ṫ = λ4t + g2(x, y, z, t)

(8)
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where

f1(x, y, z, t) =
γ

2ω
(F (y + z + t, y − z − t) + F (y − z − t, y + z + t)),

f2(x, y, z, t) =
1
2
(F (y + z + t, y − z − t) + F (y − z − t, y + z + t)),

g1(x, y, z, t) = − λ3 + γ

2(λ4 − λ3)
(F (y + z + t, y − z − t)− F (y − z − t, y + z + t)),

g2(x, y, z, t) =
λ4 + γ

2(λ4 − λ3)
(F (y + z + t, y − z − t)− F (y − z − t, y + z + t))

and where

F (x1, x2) = cf(x1, x2) + cpx1 − cqx2 − x3
1 + (a + 1)x2

1.

The center manifold with parameter ε = c− c0 is:

W c(0) = {(x, y, z, t, ε) | z = h1(x, y, ε), t = h2(x, y, ε), ‖(x, y, ε)‖ < η,

hi(0, 0, 0) = 0, Dhi(0, 0, 0) = 0, i = 1, 2}
Using the fact that the center manifold is invariant under the dynamics generated
by (8), we obtain

ẋ = −ωy + f1(x, y, h1, h2, ε),

ẏ = ωx + f2(x, y, h1, h2, ε),

ż = Dh1ẋ = λ3h1 + g1(x, y, h1, h2, ε),

ṫ = Dh2ẏ = λ4h2 + g2(x, y, h1, h2, ε)

which yields the following quasilinear partial differential equation for h1 and h2:

Dh(x, y, ε)
([

0 −ω
−ω 0

] [
x
y

]
+

[
f1(x, y, h1, h2, ε)
f2(x, y, h1, h2, ε)

])
−

[
λ3 0
0 λ4

] [
h1

h2

]
−

[
g1

g2

]
= 0 (9)

Using the theorem about approximation of the center manifold [2] we obtain
h1(x, y, ε) = 0 and h2(x, y, ε) = 0. Hence,

W c
loc(0) = {(x, y, z, t) | z = 0, t = 0}

or in the old coordinates the center manifold is in fact a plane given by equations
x1 = x2 and y1 = y2. The dynamics on the center manifold is then given by

ẋ = −ωy +
γ

ω
F (y, y, ε),

ẏ = ωx + F (y, y, ε)

where

F (y, y, ε) = (c0 + ε)f(y, y) + (c0 + ε)py − (c0 + ε)qy − y3 + (a + 1)y2.
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After using the method of normal forms [1, 7, 11], and change of coordinates x =
r cos θ, y = r sin θ the dynamics on the center manifold for small ε is given by the
normal form of the Hopf bifurcation

ṙ = dεr + αr3 + O(ε2r, εr3, r5),

θ̇ = ω + eε + βr2 + O(ε2, εr2, r4),
(10)

where ω =
√

b− γ2, d = q−p
2 , e = −γ(q−p)

2ω ,

α =
1
16

[
c0k

2ekθ(1 + kV − 4kV ekθ + e2kθ(kV − 1)
(1 + ekθ)4

− 6
]

+
γ

16ω2

[
2(a + 1)− c0k

2V ekθ(1− ekθ)
(1 + ekθ)3

]2

β =
γ

16ω

[
6− c0k

2ekθ(1 + kV − 4kV ekθ + e2kθ(kV − 1)
(1 + ekθ)4

]

− 1
48ω3

[
2(a + 1)− c0k

2V ekθ(1− ekθ)
(1 + ekθ)3

]2

(5γ2 − 2ω2).

Since d > 0 and α > 0 stationary point for c = c0 has subcritical Hopf bifurcation
and that completes the proof of the theorem.

Thus, whatever the stability type of the stationary point in the uncoupled
case might be, there is the corresponding value of the coupling constant c such
that the point becomes focus-node. Then for small values ε = c − c0 less then
zero, the stationary point is stable and surrounded with an unstable limit cycle.
This limit cycle disappears through subcritical Hopf bifurcation when c reach the
value c0. Than, for small ε = c − c0 > 0 stationary point becomes unstable.
Furthermore, numerical calculations shows that at some value c less than c0 system
has the stable stationary solution surrounded by a unstable limit cycle, which is
surrounded by stable limit cycle. This unstable limit cycle disappear and stationary
solution becomes unstable at c = c0 due to Hopf bifurcation. However the Hopf
bifurcation does not affect the stability of the large limit cycle. The stable limit
cycle disappears for some value of the coupling constant c = c1 larger than c0, when
there appears other stable stationary solutions.

Let us now discuss the zero solution of (5). Such solution would imply that
c = aγ+b

γ(q−p) . For all physically relevant values of parameters a, b and γ such that
the isolated unit shows excitable behavior, this value of c is always larger than c1,
i.e. there is nonzero stable stationary solution. So we disregard such solutions of
the characteristic equation (5), and concentrate only on the Hopf bifurcations.

2.2. Delayed coupling τ > 0

Consider the system (1) in the case of delayed coupling. As in the previous
case, local stability of stationary solution is determined by analyzing the system
linearized at (x1, y1, x2, y2) = (0, 0, 0, 0).
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Theorem 2.2 The system (1) undergoes a Hopf bifurcation at equilibrium
(x1, y1, x2, y2) = (0, 0, 0, 0) for critical time delays given by:

1◦ If sin(ωτ) = −ω3
±+(b−γ2)ω±
cq(ω2

±+γ2)
> 0, then

τ j
1,± =

1
ω±

[
2jπ + arccos

(a + cp)ω2
± + γ(b + aγ + cpγ)
cq(ω2± + γ2)

]
, j = 0, 1, 2 . . .

and if sin(ωτ) = −ω3
±+(b−γ2)ω±
cq(ω2

±+γ2)
< 0 then

τ j
1,± =

1
ω±

[
(2j + 2)π − arccos

(a + cp)ω2
± + γ(b + aγ + cpγ)
cq(ω2± + γ2)

]
, j = 0, 1, 2 . . .

2◦ If sin(ωτ) = ω3
±−(b−γ2)ω±
cq(ω2

±+γ2)
> 0 then

τ j
2,± =

1
ω±

[
2jπ + arccos

−(a + cp)ω2
± − γ(b + aγ + cpγ)

cq(ω2± + γ2)

]
, j = 0, 1, 2 . . .

and if sin(ωτ) = ω3
±−(b−γ2)ω±
cq(ω2

±+γ2)
< 0 then

τ j
2,± =

1
ω±

[
(2j + 2)π − arccos

−(a + cp)ω2
± − γ(b + aγ + cpγ)

cq(ω2± + γ2)

]
, j = 0, 1, 2 . . .

where

ω± =

√
−A±√A2 − 4B

2

A = (a + cp)2 + γ2 − 2b− c2q2, B = (b + aγ + cpγ)2 − c2q2γ2,

p =
1

1 + ekθ
, q =

kV ekθ

(1 + ekθ)2
.

Proof. Linearization of the system (1) at (x1, y1, x2, y2) = (0, 0, 0, 0)

ẋ1 = −ax1 − y1 − cpx1 + cqxτ
2 ,

ẏ1 = bx1 − γy1,

ẋ2 = −ax2 − y2 + cqxτ
1 − cpx2,

ẏ2 = bx2 − γy2.

(11)

where p = − ∂f
∂x1

(0, 0) = 1
1+ekθs

and q = ∂f
∂x2

(0, 0) = kVsekθs

(1+ekθs )2
. Substitution xi(t) =

Aie
λt, yi(t) = bie

λt, xi(t− τ) = Aie
λ(t−τ), i = 1, 2, results in a system of algebraic

equations for constants Ai and Bi. This system has a nontrivial solution if the
following is satisfied:

∆(λ) ≡ ∆1(λ)∆2(λ) = 0 (12)
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where

∆1(λ) = λ2 + (a + cp + γ)λ + (a + cp)γ + b− cqλe−λτ − cqγe−λτ ,

∆2(λ) = λ2 + (a + cp + γ)λ + (a + cp)γ + b + cqλe−λτ + cqγe−λτ
(13)

Equation (12) is the characteristic equation and corresponds to the system (11).
Infinite dimensionality of the system is reflected in the transcedental character of
(12). However, the spectrum of the linearization of (1) is discrete and can be divided
into infinite-dimensional hyperbolic and finite-dimensional nonhyperbolic parts [10].
As in the finite-dimensional case, the stability of the hyperbolic stationary point
is determined by the signs of the real part of the roots of (12). Exceptional roots,
equal to zero or with zero real part, correspond to the finite-dimensional center
manifold where the local stability depends on the nonlinear terms.

Bifurcations due to a nonzero time lag occur when some of the roots of (12)
cross the imaginary axes. Let us first discuss the nonzero pure imaginary roots.
Substitution λ = iω into ∆1 gives

sin(ωτ) =
−ω3 + (b− γ2)ω

cq(ω2 + γ2)
,

cos(ωτ) =
(a + cp)ω2 + γ(b + (a + cp)γ)

cq(ω2 + γ2)

(14)

or into ∆2 gives

sin(ωτ) =
ω3 − (b− γ2)ω

cq(ω2 + γ2)
,

cos(ωτ) =
−(a + cp)ω2 − γ(b + (a + cp)γ)

cq(ω2 + γ2)
.

(15)

Squaring and adding the above two pairs of equations, (14) and (15), results in the
same equation

ω6 + (A + γ2)ω4 + (Aγ2 + B)ω2 + Bγ2 = 0, (16)

where

A = (a + cp)2 + γ2 − 2b− c2q2, B = (b + aγ + cpγ)2 − c2q2γ2.

Since ω2 6= −γ2, the term ω2 + γ2 can be factored out from (16) to obtain

ω4 + Aω2 + B = 0. (17)

Solutions of (17) give the frequencies ω± of possible nonhyperbolic solutions

ω± =

√
−A±√A2 − 4B

2
.

The corresponding critical time lag follows from (14) and (15). Consider the pair
of equations (14) we obtain 1◦ in the statement of the theorem, and consider the
pair of the equations (15) we obtain 2◦ in the statement of the theorem.



Bifurcations of FitzHugh-Nagumo excitable systems 111

We denote any bifurcation value of the time lag by τc. Differentiation of the
characteristic equation

∆1(λ(τ), τ) ·∆2(λ(τ), τ) = 0

gives (
∂∆1

∂λ
∆2 + ∆1

∂∆1

∂λ

)
dλ

dτ
= −∂∆1

∂τ
∆2 −∆1

∂∆2

∂τ

and

sgn
(

dRe λ

dτ

)

τ=τc

= sgn

{
Re

(
dλ

dτ

)−1
}

τ=τc

= sgn
(

2ω2 + A

c2q2(ω2 + γ2)

)
.

Substitution of ω = ω± finally gives(
dRe λ

dτ

)

τ=τ+

> 0,

(
dRe λ

dτ

)

τ=τ−

< 0.

The formulas for critical time-lags give bifurcation curves in plane (τ, c) for
fixed values of parameters a, b and γ. For the first few j = 0, 1, 2, and for parameters
a, γ and b fixed at some typical values, the bifurcation curves are shown in Fig. 1.

0.6 0.8 1 1.2 1.4
c

10

20

30

40

50

60

70

80

t

Fig. 1. First few branches of the bifurcation curves τc(c) given by Theorem 2.2, for param-

eters a = 0.25, b = 0.02, γ = 0.02. The grey ones corresponds to the curves denoted as τ+ and

the curves denoted as τ− are black.

The expressions for ω± in Theorem 2.2 are valid if coupling constant c satisfies
A2 − 4B > 0. For the other values of c we proved the following theorem.

Theorem 2.3. If the parameter c in the system (1) satisfies

A2 − 4B < 0 (18)

where

A = (a + cp)2 + γ2 − 2b− c2q2, B = (b + aγ + cpγ)2 − c2q2γ2,

p =
1

1 + ekθ
, q =

kV ekθ

(1 + ekθ)2
,

than the trivial stationary solution is stable for all time lags τ > 0.
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Proof. Let us start with the characteristic function (13) in the form

φ(z) = [(z + γ)(z + a + cp) + b]2 − c2q2(z + γ)2e−2zτ

and consider the following expression:

f(z) =
φ(z)
P4(z)

= 1− c2q2(z + γ)2

P4(z)
e−2zτ ,

where P4(z) = [(z+γ)(z+a+cp)+b]2 is actually squared the characteristic function
of the single noncoupled unit.

Consider contour CR in the complex half plane Re z > 0, formed by segment
[−iR, iR] of imaginary axis and semicircle with radius R centered at the origin.
We assumed that the system (2) has only one stationary solution (x, y) = (0, 0)
(4(b/γ) > (a − 1)2) which is always stable. Then we can conclude that the poly-
nomial P4(z) has no zeros in the half plane Re z > 0. In that case, the number of
poles of f(z) is Pc = 0. Using the argument principle we infer the number of zeros
NCR

of f(z). If limR→∞NCR
= 0, then all the roots of the characteristic function

φ(z) satisfy Re z < 0. Thus, we need to find the condition on parameter c, such
that the image of contour CR when R →∞ by the function does not encircle point
z = 0. For such values of parameter c the variation of the argument is zero, so
limR→∞NCR = 0.

It is enough to consider the image of segment [−iR, iR] by the function

ωτ (z) ≡ c2q2(z + γ)2

P4(z)
e−2zτ ,

because the image of the semicircle shrinks to a point as R →∞. Since |ωτ (iy)| < 1
if and only if |ω0(iy)| < 1, we now consider only |ω0(iy)|.

Since

|ω0(iy)| =
∣∣∣∣

cq(iy + γ)
(iy + γ)(iy + a + cp) + b

∣∣∣∣
2

=
c2q2(γ2 + y2)

y4 + ((a + cp)2 + γ2 − 2b)2y2 + (aγ + cpγ + b)2

we obtain that |ω0(z) < 1| is equivalent with

y4 + Ay2 + B > 0. (19)

where A and B are given by the same formula as in (17), i.e.,

A = (a + cp)2 + γ2 − 2b− c2q2, B = (b + aγ + cpγ)2 − c2q2γ2.

A2−4B < 0 is satisfied for all c, consequently (19) is true so the stationary solution
is stable for all τ > 0.

Let us now discuss A2 − 4B < 0, condition in Theorem 2.3. For c = 0 this
condition is equivalent with condition on parameter a, b and γ, (a − γ) < 2

√
b,
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i.e., when uncoupled units have focus-focus stationary point. In that case in the
coupled system there is the range on parameter c, c ∈ (0, cτ ) when the stationary
point is stable for any τ (see fig. 1). For some value cτ we have ω = ω+ = ω−
so our bifurcation curves given by Theorem 2.2 should coincide in this point. In
the other case we don’t need Theorem 2.3 because for all small c > 0 condition
A2 − 4B < 0 is not satisfied. In both of this cases we have range on parameter c,
c ∈ (cτ , c0) or in the other case c ∈ (0, c0) when increasing the time lag τ results in
the destabilization of the stationary point.

Next we consider the range of coupling c ∈ (c0, c1). Then, for sufficiently small
τ > 0, there is only one pair of roots of (12) in the right half plane, and the other
roots have negative real parts. There is an unstable stationary solution and the
stable limit cycle.

3. Summary and conclusions

We have performed an analysis of bifurcations of the stationary solution of a
model of two coupled FitzhHugh-Nagumo excitable systems.

Bifurcation analysis of the system of ordinary differential equations, shows
that the instantaneous coupling can introduce instability of the stationary solution.
This result is given in Theorem 2.1. There is the critical value of the coupling
constant c = c0 when system has subcritical Hopf bifurcation. We explicitly get
the equations that determines the dynamics on the center manifold. For small and
negative parameter ε = c − c0 in the plane x1 = x2, y1 = y2 there is unstable

limit cycle with radius
√
−dε

α , and stable stationary solution. From numerical
calculations we know that for the same values of the parameter ε, there is a stable
limit cycle with bigger radius than the unstable. The unstable limit cycle acts as
a threshold. For small and positive ε the unstable limit cycle disappears and the
stationary solution is unstable.

Further results of analyzes of the system of delayed differential equations are
given in Theorems 2.2 and 2.3. For small coupling constant and small time lags
there is only one attractor in the form of the stable stationary solution. Theorem 2.3
proves that in the case when uncoupled units have focus-focus stationary solution
there is the range on parameter c ∈ (0, cτ ) when the stationary solution is stable for
any value of the time lag. From the bifurcation curves given in Theorem 2.2 we know
that for c ∈ (cτ , c0) in one case or for c ∈ (0, c0) in the other and small time lags
the stable stationary point is the only attractor. But, as time lag is increased the
stationary solution becomes unstable due to Hopf bifurcation. Further increasing
of the time lag τ could lead to stabilization of the stationary point. For c > c0 the
stationary solution is unstable. For small τ there is only one pair of the roots of
characteristic equation in the right half plane. Increasing the τ , every critical value
denoted with τ+ gives us one more pair of the roots with positive real parts or one
more unstable direction and critical values τ− turns one unstable direction into the
stable direction. In the fig. 1 we can see that for small values c − c0 there is the
region in (c, τ) plane where the stationary solution could be stable.
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Our results are important in modelling neuronal dynamics with synaptic delays
explicitly included.
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