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Abstract 

Drug discovery and development is a very challenging, expensive and time-consuming 
process. Impressive technological advances in computer sciences and molecular biology have 
made it possible to use computer-aided drug design (CADD) methods in various stages of the 
drug discovery and development pipeline. Nowadays, CADD presents an efficacious and 
indispensable tool, widely used in medicinal chemistry, to lead rational drug design and synthesis 
of novel compounds. In this article, an overview of commonly used CADD approaches from hit 
identification to lead optimization was presented. Moreover, different aspects of design of multi-
target ligands for neuropsychiatric and anti-inflammatory diseases were summarized. Apparently, 
designing multi-target directed ligands for treatment of various complex diseases may offer better 
efficacy, and fewer side effects. Antipsychotics that act through aminergic G protein-coupled 
receptors (GPCRs), especially dopamine D2 and serotonin 5-HT2A receptors, are the best option 
for treatment of various symptoms associated with neuropsychiatric disorders. Furthermore, 
multi-target directed cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors are also 
a successful approach to aid the discovery of new anti-inflammatory drugs with fewer side effects. 
Overall, employing CADD approaches in the process of rational drug design provides a great 
opportunity for future development, allowing rapid identification of compounds with the optimal 
polypharmacological profile. 
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Introduction  

The process of drug discovery and development requires a lot of effort, time and 
costs. On average, it is assessed that getting a drug into the market takes 10-15 years and 
costs $2.6 billion (1). Therefore, there is a great need to accelerate the drug discovery 
process to find new therapeutics, as well as discovery methodologies. During this process, 
intensive research has to be done to find good drug candidates that will successfully get 
into preclinical and clinical trials (2). There are several main steps that are carried out 
during drug discovery. The first one is to identify and validate potential targets for a 
specific disease (3). After that, the next step is the identification of lead compound – a 
promising molecule which exhibits the desired biological or pharmacological activity. 
Subsequently, lead compounds selected from initial screening are then optimized to 
improve their potency, physicochemical and pharmacokinetic properties, as well as to 
reduce side effects (3, 4).  

In recent years, computer-aided drug design (CADD) has become increasingly 
important in the process of drug discovery and development (Figure 1) (5-8).  

 

Figure 1.  The position of CADD in the drug discovery and development pipeline 

Slika 1.  Pozicija CADD u procesu otkrića lekova 

 

It is based on different in silico methods that are used to facilitate rational drug 
design and synthesis of novel compounds. The application of these methods in early 
phases of research may reduce the number of experiments that need to be performed, but 
also enable the handling of a huge amount of data, which are beyond human analytical 
skills (9). Moreover, the utilization of CADD techniques to identify hits and select the 
best candidates for further evaluation will greatly decrease time and resource 
requirements of chemical synthesis and biological testing (10). Different computational 
methods need to be integrated properly to achieve a comprehensive study, as well as 
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accurate and effective rational drug design, and thereby to eliminate key risks before 
making an expensive investment at a late stage (1, 11). Thus, the use of CADD for three 
main purposes has become a standard practice in modern drug design: (1) filter huge data 
libraries to select compounds that can be examined experimentally; (2) guide the lead 
optimization to increase its affinity or optimize physicochemical and pharmacokinetic 
properties; (3) rational drug design of novel compounds (9).  

The introduction of CADD approaches in rational design of potent therapeutics has 
led to the improved overall efficiency of drug discovery, as well as reduced development 
times to only 6-8 years (12). 

CADD methods in drug design 

Depending on the available information about a particular target and ligands, it is 
possible to utilize different CADD strategies that can be categorized into two groups: 
structure-based drug design (SBDD) and ligand-based drug design (LBDD) methods (9, 
13). Generally, structure-based CADD methods require the 3D structure of the target of 
interest, and are most commonly used to identify key sites and binding interactions. 
However, ligand-based CADD approaches are usually based on the study of the structure-
activity relationship and are used in the absence of structural information about the target 
of interest (14). In particular, CADD methods are rapidly improving and new approaches 
are frequently developing, challenging researchers to be continually updated on the latest 
knowledge (15). In this review, commonly used CADD methods (Figure 2) will be 
presented, focusing on those used in our lab for the design of novel anti-inflammatory 
agents, as well as aminergic GPCR ligands for the treatment of neuropsychiatric 
disorders. 

 

Figure 2.  A summary of commonly used CADD methods 

Slika 2.  Prikaz najčešće korišćenih CADD metoda  
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Structure-based drug design methods 

SBDD methods use the known 3D protein structure to assist in the process of 
rational drug design. Great advances in nuclear magnetic resonance (NMR) techniques 
and X-ray crystallography have led to the discovery of more than 150,000 3D protein 
structures available in databases such as Protein Data Bank (PDB) (16, 17). Despite 
certain limitations, the availability of a large number of solved protein structures enables 
deeper insights into the ligand and protein complex including analysis of binding 
conformations, characterization of key intermolecular interactions, as well as 
identification of unknown binding sites (18). Nevertheless, if the 3D structure of the target 
of interest is not yet solved, homology modelling is the most reliable method for its 
prediction. The structure of the known homologous protein is used to generate the 3D 
structure of protein of interest from a related amino acid sequence. Once the structure is 
built, the Ramachandran plot is most commonly used for model validation (19). Programs 
such as MODELLER (20) and an on-line web server such as SWISS-MODEL (21) are 
the most frequently used for high quality protein structure predictions (22). 

Therefore, SBDD methods are widely used for molecular modifications with the 
aim of improving interactions in the binding site of the target protein and increasing the 
affinity of new ligands. The most frequently used structure-based methods in the drug 
discovery process of new drugs are molecular dynamics (MD), molecular docking, and 
structure-based virtual screening (SBVS) (16). 

Molecular dynamics  

It is well known that the protein-ligand interactions are followed by significant 
conformational changes of both molecules. MD simulation is a widely used method for 
studying the motions of atoms and molecules, providing valuable insights into structure 
and dynamics (23). It allows a deeper analysis of the protein-ligand interactions over a 
period of time, in order to reproduce the actual behaviour of all the atoms in a 
biomolecular system, taking into account the flexibility of structures and the effects of 
solvents (24). Once the forces exerted on each atom have been calculated, the principles 
of Newton's laws of motion are used to predict the position of these atoms as a function 
of time (24, 25). Molecular interaction potentials, which are typically parameterized by 
quantum chemical calculations combined with experimental data, are used to define the 
atomic forces that modulate molecular movement (25, 26). These parameters, called the 
force-field, describe the influence of bonded or non-bonded interactions to the general 
function (27, 28). Considering the large number of calculations that are required, MD 
simulations need high performance computing resources, such as multiple GPU based 
PCs, cluster computing resources or supercomputers, depending on the MD system setup. 
In addition, if computational resources are limited, in some cases they can be saved by 
employing the implicit solvent model instead of explicit as it was show to be 
computationally faster for small systems (29). Although systems without a solvent are 
inexpensive, they are not realistic, since the solvent plays an important role in protein 
structure determination. Finally, the obtained trajectory describes the atomic-level 
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configuration of the simulated system at every point in time, which presents a particular 
challenge for experimental methods. MD simulations provide valuable information for 
studying various functional processes such as: conformational changes, ligand binding, 
or membrane transport. Moreover, they are likely to play an increasingly important role 
in the lead optimization. Several programmes for MD simulation are available, such as: 
AMBER (30), CHARMM (31), GROMACS (32), and NAMD (33). 

Molecular docking 

Molecular docking is a frequently used CADD technique for the analysis of ligand-
protein interactions. Starting from the high-resolution X-ray, NMR or homology-
modelled structure, it aims to predict the predominant binding mode 
(conformation/orientation i.e., poses) and free binding energy of small molecules (34, 
35). Molecular docking consists of two basic components: sampling algorithm to explore 
conformations and scoring function to rank each predicted pose (36). There are two major 
categories of sampling algorithms, systematic and stochastic (37). Scoring functions are 
used not only to identify the binding pose but also to rank obtained conformations. 
Additionally, they estimate complex binding energy and can be classified into empirical, 
force field based, or knowledge based (38). Generally, there are three ways of docking 
small molecules into the protein structure: (1) rigid docking, where both ligand and 
protein are treated as rigid, (2) flexible-rigid docking is widely used method where protein 
conformation is fixed, while the ligand is considered to be flexible, and (3) flexible 
docking, where conformations of both the ligand and protein are flexible, which is more 
accurate but challenging (39). Ideally, the obtained results should be in concordance with 
the experimental binding mode, which could be validated with root mean square deviation 
(RMSD) (40). Results obtained through a successful molecular docking study can be 
employed for virtual screening (VS) on large libraries of compounds, structure–activity 
relationship analysis, or lead optimization. Over the last decades, a large number of 
programmes for molecular docking have been developed, while the most frequently used 
ones are AutoDock (41), AutoDock Vina (42), GOLD (43), and GLIDE (44) from the 
Schrödinger suite (45, 46). 

Virtual screening  

Virtual screening is a computational method widely applied in the early stages of 
the drug discovery process. Generally, it is an essential tool for the screening of small 
molecule libraries in order to identify lead-like compounds with potential biological 
activity against a target of interest (47). VS techniques can be categorized into two major 
groups: ligand-based virtual screening (LBVS) and structure-based virtual screening 
(SBVS). LBVS is mainly used in cases where the 3D structure of the target is unknown. 
This method relies on a comparison of the chemical structures (similarity search), 
pharmacophoric features (pharmacophore mapping) or molecular descriptors of the 
known compounds to those from scanned databases (48, 49). Essentially, it is based on 
the theory that similar compounds possess a similar behaviour. For the second group of 
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VS – SBVS, protein 3D structure is the main requirement. This approach involves the 
docking of each ligand from a database into the protein binding site. Subsequently, the 
scoring function ranks the selected ligands based on their affinity for the target (49, 50). 
Therefore, VS makes significant contributions to processes of drug discovery, in 
particular in hit identification and lead optimization (51).  

Ligand-based drug design methods 

Ligand-based methods or indirect methods are generally used when the structure of 
the selected target is unidentified. In this case, the rational design of new compounds is 
based on the study of 2D or 3D structures of ligands known to interact with a target of 
interest. One of the commonly employed LBDD techniques is the quantitative structure-
activity relationship (QSAR) approach that predicts biological activity from chemical 
structures (9). In general, it is based on the assumption that compounds with common 
structures also have similar physicochemical properties and consequently have similar 
binding modes (52).  

Quantitative structure-activity relationship  

QSAR modelling is one of the major computational methods, used in medical 
chemistry for more than 50 years (53). It is based on statistics that form an empirical 
relationship between the structural features of studied compounds and their 
experimentally determined biological activity (52). The general workflow of QSAR 
modelling can be divided into three phases: the first is to collect a group of examined 
ligands and to calculate molecular descriptors that affect biological activity, then model 
building, and finally model validation (54). 2D-QSAR and 3D-QSAR are the most 
common approaches for model building. The first method considers the geometrical and 
topological properties but excludes 3D conformation of the compound. On the other hand, 
3D-QSAR method focuses on the spatial properties of the compound, which may be 
crucial for distinguishing stereoisomers (55). Nevertheless, the representation of the 
molecular structure by calculated physicochemical and 3D structural descriptors is a 
critical step for the further model development for predicting small molecule-receptor 
interactions (56). Statistical methods are employed to select the most important molecular 
descriptors, as well as to gain further insights into the key structural features (53, 54). 
Subsequently, different internal and external validation methods can be utilized to 
confirm the predictive power and stability of the created QSAR model (57). Finally, the 
model can be used to modify existing compounds and improve their activities, as well as 
to predict the activity of newly designed compounds. Therefore, 3D-QSAR is a powerful 
tool for establishing the relationship between the structure and activity of examined 
compounds, but it can also be used for database screening to find new active molecules 
(10, 15).   
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In silico ADMET (absorption, distribution, metabolism, excretion, 
 toxicity) prediction 

In silico ADMET profiling of compounds is one of the most significant steps in the 
process of drug discovery (58). Having early information on pharmacokinetic properties, 
metabolism and potential toxicity is crucial in order to avoid the risk of late-stage failures, 
as well as to guide the lead optimisation by increasing its drug-like properties. Moreover, 
ADMET data may be analysed by building predictive QSAR models to search for 
correlations between the activity and a wide variety of ADMET descriptors (58-60). 
Currently, there are many commercially available as well as free-to-use programmes that 
can be used for in silico ADMET profiling, such as: Swiss-ADME (61), ADMET 
Predictor (62), Schrodinger-QikProp (63) and many others (58, 59).  

Successful application of CADD approaches in the discovery of 
 aminergic GPCR ligands for treatment of neuropsychiatric disorders 

GPCRs are the most frequently studied receptors for the discovery of new ligands. 
A number of successful examples of the application of CADD strategies have been 
reported in the area of aminergic GPCRs. These receptors belong to rhodopsin like 
GPCRs, class A, and they are targets for 25% of current drugs (64). In this review, an up-
to-date summary of the CADD approaches used in discovery of ligands binding to a 
specific subfamily of aminergic GPCRs, namely dopamine and serotonin receptor family 
was provided. Both receptors play an essential role in physiology and pathophysiology of 
various brain disorders, including depression, schizophrenia, anxiety, Parkinson’s disease 
and many others (65-68). Atypical antipsychotics, generally known as antagonists of 
dopamine D2 and serotonin 5-HT2A receptors are used to alleviate the symptoms 
associated with these conditions (69-71). However, for an effective treatment, a balanced 
modulation of these receptors and specific activity and selectivity profile of the drug is 
crucial. Therefore, research and development of new antipsychotics with good efficacy, 
selectivity, and reduced side effects may present a significant advance in the therapy of 
neuropsychiatric disorders.  

Among all, the aminergic GPCR subfamily is the most extensively studied and 
many high-resolution crystal structures are available (17, 72). Today, the GPCR database 
(GPCRdb, http://gpcrdb.org) provides detailed information about the sequence, mutations 
and structures of GPCRs which could be valuable for various types of analyses (72). The 
combination of structural analyses with the information of QSAR studies may provide 
complementary research to gain a deeper insight into the knowledge of receptor-ligand 
complexes (73-75).   

Serotonin 5-HT2A and dopamine D2 receptors are among the most attractive 
therapeutic targets for different brain disorders. As mentioned above, structural 
information is required to gain insights into protein activities, as well as for SBDD study. 
Many studies have been performed using the homology modelling method to create 3D 
structures of 5-HT2A and D2 receptors until their crystal structures were solved (76, 77). 



232 

 

 

Recently, several high-resolution 3D structures of these receptors complexed with the 
agonist, inverse agonist or antagonist have been generated (Table I) (78-84). In a relevant 
number of articles described below, different CADD approaches were successfully 
employed in order to rationally design novel promising compounds for selected receptors. 

 

Table I Crystal structures of 5-HT2A and D2 receptors from GPCRdb 

Tabela I Kristalne strukture 5-HT2A i D2 receptora preuzete iz GPCRdb 

 

5-HT
2A 

receptor 

PDB ID State Resolution Ligand name Function Reference 

6WHA Active 3.40 25-CN-NBOH Agonist (78) 

6WGT Inactive 3.40 Lysergide  Agonist (78) 

6WH4 Inactive 3.40 CHEMBL428892  Inverse agonist (78) 

6A94 Inactive 2.90 Zotepine  Antagonist (79) 

6A93 Inactive 3.00 Risperidone Antagonist (79) 

D
2 

receptor 

7JVR Active 2.80 Bromocriptine  Agonist (80) 

7DFP Inactive 3.10 Spiperone  Antagonist (81) 

6VMS Active 3.80 Bromocriptine Agonist (82) 

6LUQ Inactive 3.10 Haloperidol  Antagonist (83) 

6CM4 Inactive 2.90 Risperidone  Inverse agonist (84) 

 

In 2017, Lin et al. examined arylpiperazine derivatives as promising 5-HT2A 
receptor antagonists by an integrated use of 3D-QSAR analysis, molecular docking and 
MD simulation (85). Firstly, they employed comparative molecular field analyses 
(CoMFA) and comparative molecular similarity indices analyses (CoMSIA) in a 3D-
QSAR study to select the most important structural features that affect their biological 
activity (85). Even though CoMFA/CoMSIA methods are frequently used in 3D-QSAR 
modelling, they are largely dependent on the structure alignment, which presents their 
main limitation. Besides, molecular docking (using GOLD software) followed with MD 
simulation (using GROMACS software) was used to analyse the binding mode of the 
examined ligands to the 5-HT2A receptor. The obtained results revealed that H-bonds with 
D3.32 and S3.36, two π-π stacking interactions with W3.28 and F6.52, and hydrophobic 
interaction are the most important for high-affinity binding. Lastly, using compound 1 
(13) from Figure 3 as a template, new potential arylpiperazine antagonists were designed 
based on the obtained results.  
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Figure 3.  Structures of novel multi-target antipsychotics adopted from references  

 85 (1), 90 (2), 93 (3), 100 (4, 5), 102 (6, 7), 104 (8), 105 (Lumateperon)  

 and 106 (SEP-363856) 

Slika 3.  Strukture novih višeciljnih antipsihotika preuzete iz referenci 85 (1), 90 (2), 

 93 (3), 100 (4, 5), 102 (6, 7), 104 (8), 105 (Lumateperon)  

 and 106 (SEP-363856) 
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More recently, a similar procedure was used to design potent dual antagonists of D2 
and 5-HT2A receptors (86). Zhang et al. used structures of ziprasidone, risperidone, and 
brexpiprazole to design novel pyridopyrimidinone derivatives (86). In this study, 
CoMFA, CoMSIA, Topomer CoMFA and HQSAR (hologram quantitative structure 
activity relationship) models were successfully built and used for further visualization. 
The obtained results revealed that the modification of region A with bulkier substituents 
may decrease the activity of studied antagonists, while the introduction of nitrogen atom 
at position b may lead to an increase in the activity (Figure 4) (86). Afterwards, a 
molecular docking study performed with SYBYL-X software was used to validate the 
created models (87). In summary, it demonstrated that the salt bridge with Asp residue 
(D3.32), as well as hydrogen bonding, Van der Waals, and hydrophobic interactions 
maintain the stability of both complexes. Additionally, pharmacophore-based VS model 
was used to search the ZINC12 database to find out new dual antagonists by using the 
UNITY Flex program (88). Selected compounds were docked into D2 and 5-HT2A 
receptors, and four of them were chosen for further optimization. MD simulation was also 
used to confirm obtained docking results. In conclusion, combining LBVS and molecular 
docking, as well as 3D-QSAR approach with SBDD methods presents a promising tool 
for future rational drug design of new compounds and creating new opportunities for 
innovation in medicinal chemistry.  

 

 

 

Figure 4.  General structure of compounds used in Zhang et al. study (86) 

Slika 4.  Opšta struktura jedinjenja proučavanih u studiji objavljenoj od strane  

 Zhang et al. (86) 

 

Kumar et al. also employed LBVS to create a new library of 5-HT2A receptor 
antagonists using 2D/3D similarity search of ZINC database (InstJChem and Screen3D 
softwares, ChemAxon Ltd., Budapest, Hungary) (89). All the selected ligands were 
docked into a 5-HT2A receptor, using GOLD software, whereas MD simulations 
(GROMACS software) were used to verify the stability of the formed complexes.  

Moreover, a group of novel potential antipsychotics was identified through a VS 
approach. Kaczor et al. successfully implemented SBVS of the Enamine compound 



235 

 

 

database to find dopamine D2 receptor ligands (90). Multistep VS workflow from the 
Schrodinger software suite was used for hits docking (91). As a result, 21 compounds 
were selected as the best candidates for further experimental validation. Ten molecules 
were identified that have an additional affinity for the 5-HT2A receptor, which made them 
good starting points for further optimization studies. Compound 2 (D2AAK1) was 
selected as the most promising compound from this VS study (Figure 3). Additional in 
silico, in vitro and in vivo studies confirmed that D2AAK1 is a multi-target ligand of 
aminergic GPCRs, with neuroprotective properties and pro-cognitive activity, therefore 
providing a new therapeutic option for the treatment of multifactorial brain disorders (92-
94). Since in vitro studies showed the affinity of D2AAK1 for dopamine D1 and D3 
receptors, as well as for serotonin 5-HT1A and 5-HT2A receptors, molecular dynamics 
(using Desmond) and molecular docking (using GLIDE) studies were used to reveal its 
interactions and binding poses with these targets at the molecular level. The results of 
molecular docking were in agreement with the binding mode of aminergic GPCR ligands 
previously described in literature, while MD simulations were mainly used to examine 
how D2AAK1 modulated the inactive conformation of the examined receptors. The 
obtained results were in concordance with in vitro studies, suggesting that this compound 
is an antagonist or partial agonist at these receptors based on the obtained specific 
conformations. Overall, this implies that such in silico methods may be used for 
assessment of the intrinsic efficacy of the compounds at GPCRs. Furthermore, the same 
team designed some new analogues of D2AAK1, whereas compound 3 (5) from Figure 
3 with the most favourable multi-target profile was chosen for further molecular 
modelling, in vitro and in vivo studies (93). Finally, it can be concluded that VS plays a 
prominent role in the drug discovery process for the identification of new bioactive 
molecules and has already contributed to the compounds on the market (95). 

Zięba and co-workers analysed dopamine D2 receptor antagonists employing the 
LBDD method (96). Taking into account that molecular alignment presents a crucial 
factor in CoMFA model building, they performed a 3D-QSAR analysis for structurally 
unrelated compounds using molecular docking-based alignment. The studied compounds 
were aligned by electrostatic interaction between the positively charged nitrogen of the 
ligand and the polar D3.32 residue, as it was described as essential for aminergic 
receptors, as well as by equivalent substituents of structurally different compounds (97). 
GLIDE programme from the Schrödinger software was used for the docking study, while 
the 3D-QSAR CoMFA model was built with SYBYL-X. In this context, the obtained 
results were used to discuss the structure–activity relationship of the studied ligands based 
on their interactions with the receptor. 

In a recent investigation, Radan et al. integrated a number of CADD methods, 
including MD simulation, molecular docking, and 3D-QSAR modelling in order to 
analyse the 3D-structure of the pharmacophore and binding kinetics of structurally 
different 5-HT2A receptor antagonists (98). Based on chemical structures, dataset 
compounds were separated into three clusters representing dibenzodiazepine,                            
1,2-benzoisothiazole and sulfonylpyridine derivatives. Structure-based methods were 
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used not only to examine how structurally different antagonists bind and modulate 
activity of this receptor, but also to generate their virtually bioactive conformations. 
Firstly, a complex of each cluster representative with 5-HT2A receptor was submitted to 
50 ns long MD simulation to obtain their inactive, antagonist-bound conformations. The 
obtained conformations were further used for docking studies in order to generate 
virtually bioactive conformations of all studied ligands, as well as to investigate their 
binding modes in the active site of the receptor. MD simulation was performed with the 
NAMD software, while docking studies were performed with both AutoDock Vina and 
GOLD programs. Afterward, the predicted bioactive conformers were utilized to develop 
3D-QSAR models by using the Pentacle program and therefore to gain further insights 
into the structural requirements that affect their antagonistic activity on 5-HT2A receptor 
(99). Overall, the results obtained through performed LBDD and SBDD studies as well 
as ADMET profiling may provide information that can be used for further optimization 
of compounds as well as for rational drug design. A summary of the aforementioned 
process is depicted in Figure 5.  

 
Figure 5.  Overview of Radan et al. study (98) 

Slika 5.  Skicirani prikaz studije objavljene od strane Radan et al. (98) 

 

In an effort to provide better efficiency and fewer adverse effects of drugs in 
treatment of complex neuropsychiatric disorders, many studies employed the multi-target 
approach in drug design and synthesis. It is currently a hot topic in GPCR-oriented 
research and some examples are described below.  

Zaręba et al. reported new bulky analogues of arylpiperazine (LCAP- long chain 
arylpiperazines) as multi-functional antidepressants (100). The activities of new ligands 
were assessed both by in vitro testing as well as by using the molecular docking method. 
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Among a number of synthesized compounds, five were classified as dual ligands for D2 
and 5-HT1A receptors, and two of them, compounds 4 (5.3a) and 5 (5.4) from Figure 3, 
showed the most favourable properties. In recent studies, 5-HT1A receptor was described 
as a promising target of novel antidepressants (101). Through the application of the 
molecular docking method they aimed to clarify SAR (structure-activity relationship) 
analysis and concluded that the studied compounds showed very similar binding mode 
for 5-HT1A receptor, while different conformations were observed in the D2 receptor 
binding pocket. Since ligand 5 (5.4) showed the highest affinity for the D2 receptor, it was 
explained by the largest number of hydrophobic interactions in the binding site compared 
to others.  

In order to search for potential multi-target antipsychotics, Zhu et al. designed new 
aryl-piperazine ligands based on FW01 (compound 6 from Figure 3), which is a potent 
agonist of the 5-HT1A receptor discovered by dynamic pharmacophore-based VS in their 
previous study (102, 103). They employed molecular hybridization strategy with the aim 
of synthesizing new derivatives with dual D2 and 5-HT2A antagonistic activity. In this 
context, the D2 receptor binding pocket was divided into the orthosteric binding site 
(OBS), and a second binding site (SBS) and new compounds were designed so as to 
enhance binding interactions compared to the FW01 compound. The designed 
compounds were further analysed through an in vitro study, and compound 7 (9f) was 
selected as a potent dual D2 and 5-HT2A receptors antagonist, with no activity on 5-HT1A 
receptor (Figure 3). A molecular docking study (using GOLD software) confirmed the 
obtained results and revealed strong interactions of compound 7 with D3.32, T3.37 and 
T7.39 in the D2 receptor binding site, and with D3.32, T3.37, S5.46 and L45.52 in the 5-
HT2A receptor binding site, whereas unfavourable interaction was determined within the 
5-HT1A receptor binding site. Overall, this compound makes a good candidate for further 
optimization and design of novel dual antagonists.  

Another series of multi-target ligands was recently investigated by Shi et al. (104). 
They synthesized triazolopyridinone derivatives and evaluated their affinity for the 5-
HT2A, 5-HT1A and D2 receptors through in vitro and molecular docking studies. The 
multi-receptor affinity profile of compound 8 (S1) from Figure 3 was especially 
promising and was selected for further preclinical investigation. 

In December 2019, the Food and Drug Administration (FDA) approved 
lumateperone (Figure 3) as potent dual 5-HT2A/D2 receptor antagonists, for the treatment 
of schizophrenia in adults (105). Also, this drug is under clinical trials for other 
neurological and neuropsychiatric disorders. An interesting compound, SEP-363856 
(Figure 3), is currently undergoing clinical trials for the treatment of schizophrenia (106). 
It is a unique compound with a non-D2/5-HT2A mechanism of action discovered with in 
vitro screening. Even though the mechanism of action is not yet completely revealed, data 
show that agonism at both TAAR1 and 5-HT1A receptors is essential to its efficacy (107). 
Trace amine-associated receptors (TAARs) are aminergic GPCRs located in the brain and 
periphery with an important role in human physiology and pathophysiology (108). 
Overall, the design of multi-target drugs in a rational way remains a great challenge, due 
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to the necessity to balance the affinity to all desired targets and reducing affinity to off-
targets. Nevertheless, it  is currently the best option for the treatment of complex 
neuropsychiatric disorders. 

Successful application of CADD approaches in the discovery of dual 
 COX-2 and 5-LOX inhibitors for treatment of inflammatory diseases 

Many inflammatory disorders are caused by the excessive production of 
arachidonic acid cascade mediators by cyclooxygenase and lipoxygenase pathways. Non-
selective non-steroidal anti-inflammatory drugs (NSAIDs) block the activity of both 
cyclooxygenase-1 and cyclooxygenase-2 enzymes. They are used in the therapy of 
numerous inflammatory conditions, like temporary pain, osteoarthritis, rheumatoid 
arthritis (prolonged use). Traditional NSAIDs were associated with a lot of side effects 
(primarily gastrointestinal); thus, selective COX-2 inhibitors (coxibs) were introduced. 
Unfortunately, both traditional NSAIDs and coxibs are linked with increased 
cardiovascular risk. It is assumed that the inhibition of cyclooxygenase pathway could 
switch the metabolism to LOX pathway and cause an overproduction of inflammatory 
mediators. Therefore, dual inhibition of COX-2 and 5-LOX enzymes represents a 
reasonable approach used in the development of safer drugs with anti-inflammatory 
activity. The available crystal structures of enzyme-ligand complexes provide 
information about key interactions between the substrate and the active site of enzyme, 
which are important in computer-aided development of new drugs (Table II) (109-112). 
The design of dual COX-2 and 5-LOX inhibitors has been performed by the modification 
of the already known NSAIDs (introducing LOX pharmacophores) or by using 
computational techniques in order to obtain new scaffolds (113). 

 

Table II  Crystal structures of COX-2 and 5-LOX enzymes from PDB database 

Tabela II  Kristalne strukture COX-2 i 5-LOX enzima preuzete iz PDB baze podataka 

 

COX-2 
enzyme 

PDB ID Resolution Ligand name Function  Reference 

5IKV 2.51 Flufenamic acid Inhibitor (109) 

6COX 2.80 SC-558 Inhibitor (110) 

1CX2 3.00 SC-558 Inhibitor (110) 

5-LOX 
enzyme 

3O8Y 2.40 /  / (111) 

3V99 2.25 Arachidonic acid Substrate (112) 

 

The most studied compounds with dual COX-2 and 5-LOX inhibitory activity are 
di-tert-butylphenol derivatives. It was demonstrated that 2,6-di-tert-butylphenol which 
contains a substituent in the C4 position is important scaffold for dual inhibition of COX-
2 and 5-LOX enzymes (Figure 6). It was assumed that the phenol moiety, which contains 
antioxidant properties, was important for anti-inflammatory activity. Considering radical 
scavenging activity, these compounds could potentially be useful in the therapy of 
radical-mediated disorders like cancer and allergic conditions. Some compounds were 
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involved in clinical trials at some point in time (tebufelone, R-830, BF389, darbufelone 
(CI-1004) and S2474) (114-118). Many subsequent studies relied on this information. 
Some of di-tert-butylphenol derivatives that act as COX and 5-LOX dual inhibitors were 
developed according to performed structure-activity relationship (SAR) studies, such as 
darbufelone, S-2474, tebufelone and others (Figure 6) (115, 118). 

 

 

Figure 6.  General structure (2,6-di-tert-butyl-1-hydroxy-benzene substituted in the  

 C4 position) and structures of dual COX-2/5-LOX inhibitors (darbufelone  

 (116), S-2474 (117) and tebufelone (114)) 

Slika 6.  Opšta struktura (2,6-di-terc-butil-1-hidroksi-benzen supstituisan u položaju  

 C4) i strukture dualnih COX-2/5-LOX inhibitora (darbufelon (116), S-2474  

 (117) i tebufelon (114)) 

 

Ghatak et al. reported that newly designed di-tert-butyl phenol derivatives (di-tert-
butyl phenylhydrazone based compounds: DTPSAL, DTPBHZ, DTPINH and 
DTPNHZ; Figure 7) showed a significant inhibition of COX-2 and 5-LOX enzymes and 
demonstrated cytotoxicity against human colorectal cancer (CRC) cell lines (119). 
Molecular docking studies were performed with the aim of obtaining information about 
interactions with protein residues within the active sites of COX-2 and 5-LOX enzymes 
and for the evaluation of the efficacy of synthesized dual inhibitors. For this purpose, 
AutoDock Vina software was used. As a result, compounds DTPBHZ and DTPSAL 
showed the best fit in the protein pocket of COX-2 enzyme with binding energies -10.1 
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Kcal/mol and -9.7 Kcal/mol, respectively. Compound DTPSAL exhibited binding energy 
of -8.2 Kcal/mol when docked to 5-LOX enzyme (PDB ID: 3O8Y) and this value was 
lower than the binding energy of darbufelone (already known dual inhibitor, -7.73 
Kcal/mol). It can be concluded that all novel di-tert-butyl phenol compounds have high 
binding affinities for COX and LOX active sites, which is in compliance with in vitro 
results. 

 

 

Figure 7.  Structures of di-tert-butyl phenylhydrazone ligands: DTPBHZ, DTPSAL,  

 DTPNHZ and DTPINH adopted from refrence 119 

Slika 7.  Strukture di-terc-butil fenilhidrazon liganada: DTPBHZ, DTPSAL,  

 DTPNHZ and DTPINH preuzete iz reference 119 

 

Lino et al. developed new dual COX and 5-LOX inhibitor LQFM-091 (di-tert-
butylphenol compound) obtained from darbufelone and nimesulide (Figure 8) (120). A 
colorimetric screening assay and molecular docking study were performed with the aim 
of explaining the underlying mechanism of action. COX-1, COX-2 and 5-LOX crystal 
structures were obtained from the PDB database. Avogadro was used for structure 
drawing, Gaussian (MP2) for the calculation of partial charges and AutoDockTools4 for 
final structure preparation (121, 122). The molecular docking study was performed using 
DockThor and Vina (123). Both programs succeeded to pose LQFM-091 near or in the 

active sites of enzymes. A visual comparison between the best-ranked LQFM-091 poses 
and poses of darbufelone and nimesulide was carried out using PyMOL (The PyMOL 
Molecular Graphics System, version 1.8). LigPlot+ v1.4.5 was used for the estimation of 
interactions between the protein and ligand (124). Darbufelone, nimesulide and LQFM-
091 were similarly docked into the active sites of enzymes. In conclusion, the molecular 
docking study revealed that LQFM-091 interacted with important residues for the 
catalytic activity of all tested enzymes in a similar manner as darbufelon and nimesulide. 
In addition, in vitro studies showed that LQFM-091 is a dual COX and 5-LOX inhibitor, 
which confirmed the molecular docking results.  
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Figure 8.  Design of di-tert-butylphenol compound LQFM 091 from darbufelone and  

 nimesulide adopted from reference 120  

Slika 8.  Dizajn di-terc-butilfenol jedinjenja LQFM 091, iz darbufelona i nimesulida,  

 preuzeto iz reference 120 

 

Dihydrodimethylbenzofuran (DHDMBF) is metabolite of di-tert-butylphenol 
tebufelone which showed an anti-inflammatory activity comparable to tebufelone. It was 
demonstrated that 5-keto-substituted DHDMBFs have in vitro COX-2 and 5-LOX 
inhibitory activity and potent in vivo analgesic and anti-inflammatory activity when 
administered orally (125). The general structure of DHDMBF (compound 9) analogues 
is presented in Figure 9.  
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Figure 9.  Structures of novel dual COX-2 and 5-LOX inhibitors adopted from  

 references 125 (9), 125 (10, 11, 12), 131 (13, 14, 15), 137 (16, 17) and  

 140 (18, 19, 20) 

Slika 9.  Strukture novih dualnih COX-2 and 5-LOX inhibitora preuzete iz referenci  

 125 (9), 125 (10, 11, 12), 131 (13, 14, 15), 137 (16, 17) and  

 140 (18, 19, 20) 

 

Zheng et al. performed homology modelling and MD simulations of 5-LOX 
enzyme, as well as 3D-QSAR studies and molecular docking on DHDMBFs analogues 
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(COX-2 and 5-LOX dual inhibitors) in order to reveal a common binding mode in COX-
2 and 5-LOX enzymes, explain conclusions from SAR studies and create highly 
predictive QSAR models which could be used in the development of new compounds that 
act as dual inhibitors (126). They created a homology model of the human 5-LOX enzyme 
by using the X-ray structure of the 15-LOX enzyme as a prototype. MODELLER was 
used for the creation of ten 5-LOX models. Further optimization of these models was 
performed via a conjugate gradient minimization scheme, followed by a restrained 
simulated annealing MD simulation (127). Based on the obtained results, a representative 
5-LOX model was selected. COX-2 crystal structure was downloaded from PDB (PDB 
ID: 6COX). Further equilibration of the 3D model was performed using the AMBER 7.0 
program (4-ns MD simulation). As a result, iron ligand residues, which are important for 
the 5-LOX activity, were precisely aligned. High reliability of the created final 5-LOX 
model was indicated by the high score. Twenty-seven DHDMBFs analogues from 
literature were docked into the active sites of both enzymes. The prediction of binding 
free energies of the docked compounds was performed by using the Auto Dock 3.0.3. 
programme, after structure optimization. The predicted binding free energies (both 
enzymes) for all compounds were in a good correlation with the experimental inhibitory 
activities (-logIC50). Twenty-one DHDMBF analogues were selected for CoMFA and 
CoMSIA studies, according to the binding conformations acquired from the performed 
molecular docking study. These studies were carried out with the aim of creating models 
which could be used for the design of new dual inhibitors. In conclusion, the performed 
modelling provided an explanation of binding modes of DHDMBF analogues within 
COX-2 and 5-LOX enzymes, while the 3D-QSAR study provided models that could be 
used in the development of novel potent dual inhibitors.  

It was found that darbufelone acts as an inhibitor of growth of non-small cell lung 
cancer cell lines. Despite this discovery, di-tert-butyl phenols and their prodrugs di-tert-
butyl benzoquinones remained incompletely investigated. Misra et al. synthesized three 
di-tert-butyl benzoquinone inhibitors attached to hydrazide side chain, named BQBH, 
BQNH and BQIH (compounds 10, 11 and 12, respectively in Figure 9) (128). These 
derivatives were docked into COX-2 and 5-LOX enzymes. They were also evaluated for 
inhibitory activities on both enzymes and cytotoxicity against colon cancer cell lines. The 
crystal structures for COX-2 and 5-LOX enzymes were downloaded from PDB site (PDB 
ID COX-2: 6COX; 5-LOX: 3O8Y). The AutoDock-Vina was used to dock BQBH, 
BQNH, BQIH and darbufelone in the active sites of targeted enzymes. In the case of 
docking to the COX-2 enzyme, calculated binding energies were in the range from -6.8 
to -7.2 Kcal/mol and the best result was obtained for BQNH. For the 5-LOX enzyme, 
calculated binding energies for BQNH, BQIH, darbufelone and BQBH were in the range 
from -7.0 to -8.4 Kcal/mol, respectively. The molecular docking study indicated that all 
the tested compounds interact with amino acid residues within the active sites of both 
enzymes. Compound BQNH expressed the highest binding energy in both enzymes. In 
vitro tests confirmed that di-tert-butyl benzoquinones analogues are effective COX and 
5-LOX inhibitors (128).  
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Ruiz et al. tested the dual COX and 5-LOX inhibitory activity of 24 mono-, 2,6-di-
tert-butyl and unsubstituted phenols taken from the literature (115). Twenty compounds 
were di-ortho substituted phenols (tert-butyl groups in ortho positions), which is an 
essential scaffold for antioxidant activity, while various substituents were introduced in 
para position of the phenol. The remaining four compounds, with mono or unsubstituted 
ortho positions (tert-butyl or methyl groups), were also considered in order to test the 
effect of tert-butyl groups in ortho positions. The conformational variability of the 
compounds was investigated. A conformational study was carried out after molecular 
mechanics (MM) calculations (for building up initial geometries) and it was performed 
using semi-empirical AM1 method (incorporated in MOPAC 6.0 ESP program). 
Geometry optimization of minimum energy conformations (HF/6-31G(d) ab initio level) 
was performed using GAUSSIAN-94 program (129). The possible active conformations 
were selected using molecular superimposition between minimum energy conformations 
and the optimized conformations of active dual inhibitor tebufelone. According to the 
performed conformational analysis, molecular flexibility could be important for the 
modulation of COX and 5-LOX inhibitory activity. MEPMIN program was used for the 
drawing of molecular electrostatic potential maps (MEP) (130). GRID program was used 
for the representation of favorable interaction regions for each compound. For this 
purpose, various probes such as hydrophobic (DRY), water (OH2), ferric and ferrous iron 
cation (Fe3+ and Fe2+) were used. It can be concluded that di-tert-butyl phenol analogues 
can occupy four common minimum energy conformations that show a correct fit with the 
structure of tebufelone. The presence of electron-donating substituents (tert-butyl group 
in ortho positions of the phenol ring) favours phenoxyl radical formation and the 
hydrophobic interactions within the active sites of COX and LOX enzymes according to 
the performed QSAR studies. High EHOMO (energy of the highest-occupied molecular 
orbital) and low ferric cation interaction energies were calculated for the most active dual 
inhibitors, which indicates a probable Fe redox mechanism for LOX inhibition. The 
predictive ability of the suggested QSAR equations was tested with selective dual COX 
and 5-LOX inhibitors.  

Pommery et al. synthesized and in vitro tested diarylpyrazole derivatives for COX-
2 and 5-LOX inhibitory activity (131). They also performed molecular modelling 
approach and proposed a set of SAR data important for further investigations of this group 
of compounds.  

Revathi et al.  perfomed a QSAR study on 1,5-diarylpyrazoles in order to obtain 
information about the structural features important for COX-2 and 5-LOX inhibitory 
activity (132). The inhibitory activities of 1,5-diarylpyrazole derivatives (compounds 13 
and 14, Figure 9) on COX-1, COX-2 and 5-LOX enzymes were taken from literature 
(131). CS ChemOffice version 8.0 (133) and Dragon program (134) were used for 
modelling the study (structures drawing and computation of molecular descriptors), while 
VALSTAT (135) was used for regression analysis. At first, the structures were optimized 
using molecular mechanics (MM2), then re-optimized via Austin model-1 (AM1) method 
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using MOPAC and the geometry optimization of the lowest energy structure was 
performed using the EF routine. Molecular descriptors were calculated in the Dragon 
program. The obtained data were further transferred to VALSTAT to find a correlation 
between independent (molecular descriptors) and dependent variables (pIC50 values) 
using the sequential multiple linear regression analysis method. As a result of the 
performed QSAR study, important information about structural insights was obtained. Hy 
(hydrophilic factor) and Mor17v (3D molecular representation of structure based on 
electron diffraction code) are the descriptors essential for the development of more 
selective COX-2 and 5-LOX dual inhibitors.  

Thiazole and thiazolidinone scaffolds can be found in many of pharmacologically 
active compounds. Liaras et al. explored the effects of thiazole and thiazolidinone 
derivatives on COX and LOX enzymes (136). According to the performed study, these 
compounds could be an encouraging initial point for the future development of potent and 
safer COX and LOX inhibitors.  

In a study performed by Geronikaki et al. (137), CADD approach (PASS software 
(138)) was used in order to predict the biological activity of 573 in silico designed 
compounds (thiazole/benzothiazoles and benzoisothiazoles) and the obtained results were 
further analyzed by the Pharma Expert software (139). Anti-inflammatory activity was 
predicted for thirty-one compounds, while twenty-two were nonspecific COX and 
specific 5-LOX inhibitors. These twenty-two compounds were 2-(thiazole-2-ylamino)-5-
phenylidene-4-thiazolidinone derivatives. Nine of them were selected for biological 
assays and eight derivatives expressed anti-inflammatory activity in in vitro experiments 
(Figure 7). According to the results of the performed in vitro experiments, compounds 16 
(2) and 17 (5) from Figure 9 showed the highest anti-inflammatory activity. The most 
active compounds were docked to COX-2 and 15-LOX enzymes with the aim of obtaining 
information about binding modes. GOLD 3.0.1 software was used for the molecular 
docking study. Goldscore (GS), ChemScore (CS), PLP 1 and 2, LigScore 1 and 2 and 
PMF scoring functions were used in order to find the best pose. The docking results 
provided a good explanation about the inhibitory activity of the most active compounds.  

Kaur et al. designed and synthesized analogues of aspirin in order to evaluate dual 
COX-2 and 5-LOX inhibitory activity (140). The design was based on the assumption 
that the replacement of acetoxy moiety of aspirin with a sulfohydroxamic moiety 
(SO2NHOR: R=H, CH2Ph, Me) would lead to the development of new compounds with 
a more potent activity. It was presumed that sulfohydroxamic moiety acts as a COX-2 
pharmacophore (similar to celecoxib, a selective COX-2 inhibitor), 5-LOX 
pharmacophore (similar to 5-LOX inhibitors - iron chelators) and nitric oxid (NO) donor, 
inducing vascular smooth-muscle relaxation. According to in vitro studies, compounds 
18 (11), 19 (12) and 20 (16) act as selective and highly potent COX-2 inhibitors, while 
compounds 18 (11) and 20 (16) also expressed high 5-LOX inhibitory activity (Figure 9). 
Compounds 18 (11) and 20 (16) with unsubstituted SO2NHOH moiety appeared to be 
good NO donors. In order to explore the interactions into active sites of COX-1, COX-2 
and 5-LOX enzymes (PDB ID: COX-1: 1EQG, COX-2: 6COX, 5-LOX: 3O8Y), 
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molecular docking studies were performed. The ArgusLab 4.0.1 software was used for 
structure building, structure geometry optimization (using semiempirical quantum 
mechanical method PM3) and docking (141). Active sites of selected monomeric 
structures of enzymes were defined around the ligand. Docking was based on a grid-based 
algorithm and a simulation was performed between flexible ligand parts and the enzyme. 
The shape scoring function determined ligand orientation, while final positions were 
ranked according to the lowest energy values. Discovery studio 3.0. was used for visual 
inspection of interactions within the active region of the 5-LOX enzyme (142). The results 
of the performed molecular docking studies were in accordance with the experimental 
biological data.  

Just a few dual COX-2 and 5-LOX inhibitors were involved in clinical trials as anti-
inflammatory agents; among them, only licofelone entered phase III, while tenidap was 
withdrawn due to hepatotoxicity (143). Although these compounds have not been 
registered yet, they might represent a worthy therapeutic alternative to classical NSAIDs 
in the treatment of various inflammatory conditions and a wide variety of diseases. 

Conclusion  

Nowadays, CADD approaches form an integral part of the drug discovery process. 
In general, they are divided into ligand-based and structure-based drug design 
approaches, while their integration may provide more extensive information in the design 
of novel therapeutics. LBVS methods are usually combined with molecular docking to 
identify potential lead molecules from huge compound libraries as promising starting 
points for further ligand optimization studies. MD simulations offer valuable insights into 
protein structure and dynamics, therefore providing a variety of information for further 
LBDD and SBDD methods. Since the protein undergoes conformational changes upon 
binding different classes of ligands, utilizing MD simulation may be crucial in defining 
the appropriate biding site for a molecular docking study. Furthermore, the integration of 
3D-QSAR and molecular docking methods in rational drug design presents a beneficial 
strategy for the development of highly predictive models. 3D-QSAR models are 
generated on the basis of virtually predicted bioactive conformations, enabling more 
trustworthy results of the structure-activity relationship analysis. Finally, the results 
obtained through applications of various CADD methods may be used for structural 
modification and design of novel compounds, as well as for guiding experimental studies. 
Both computational and experimental methods are complementary approaches which 
have important roles in drug discovery. The rationalization of the drug design process 
combining these methods will result in deeper and more innovative research of novel 
potential therapeutics. This review provided a brief introduction to computational 
approaches and their uses to identify potential drug candidates that might be used as future 
therapeutics for neuropsychiatric and inflammatory diseases.   
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Apstrakt 

Proces otkrića i razvoja lekova je veoma zahtevan, skup i dugotrajan. Veliki tehnološki 
napredak u molekularnoj biologiji i kompjuterskim naukama je omogućio primenu metoda 
kompjuterski potpomognutog dizajniranja lekova (CADD) u različitim fazama procesa otkrića i 
razvoja lekova. Danas CADD predstavlja efikasnu i nezamenljivu alatku, koja se široko koristi u 
medicinskoj hemiji za racionalni dizajn i sintezu novih jedinjenja. U ovom preglednom radu biće 
prikazani CADD pristupi koji se najčešće koriste od procesa identifikacije hit jedinjenja do 
optimizacije lead jedinjenja. Pored toga, biće predstavljeni različiti aspekti u dizajnu višeciljnih 
liganada za neuropsihijatrijske i inflamatorne bolesti. Pokazano je da su ova jedinjenja veoma 
efikasna u lečenju složenih bolesti zbog veće efikasnosti i manje neželjenih efekata koje izazivaju. 
Antipsihotici koji deluju preko aminergičnih G-protein spregnutih receptora (GPCR), posebno 
preko dopaminskih D2 i serotoninskih 5-HT2A receptora, predstavljaju najbolju opcija za lečenje 
različitih simptoma povezanih sa neuropsihijatrijskim poremećajima. Pored toga, dizajn i sinteza 
dualnih inhibitora ciklooksigenaze-2 (COX-2) i 5- lipoksigenaze (5-LOX) takođe predstavlja 
uspešan pristup u otkrivanju novih antiinflamatornih lekova sa manje neželjenih efekata. Na kraju 
se može zaključiti da primena CADD metoda u procesu racionalnog dizajniranja lekova pruža 
značajnu priliku za dalji napredak jer omogućava brzu identifikaciju jedinjenja sa optimalnim 
polifarmakološkim profilom. 

 
Ključne reči: CADD, 5-HT2A, D2, COX-2, 5-LOX 

 

 


