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Abstract 

While experimental animal investigation has historically been the most conventional 
approach conducted to assess drug safety and is currently considered the main method for 
determining drug toxicity, these studies are constricted by cost, time, and ethical approvals. Over 
the last 20 years, there have been significant advances in computational sciences and computer 
data processing, while knowledge of alternative techniques and their application has developed 
into a valuable skill in toxicology. Thus, the application of in silico methods in drug safety 
assessment is constantly increasing. They are very complex and are grounded on accumulated 
knowledge from toxicology, bioinformatics, biochemistry, statistics, mathematics, as well as 
molecular biology. This review will summarize current state-of-the-art scientific data on the use 
of in silico methods in toxicity testing, taking into account their shortcomings, and highlighting 
the strategies that should deliver consistent results, while covering the applications of in silico 
methods in preclinical trials and drug impurities toxicity testing.  
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Introduction 

Animal studies have historically been the most conventional approach conducted to 
assess drug toxicity and are currently considered the main method for assessment of 
possible toxic effects of drug candidates (1, 2). Yet these studies are constricted by cost, 
time, and ethical considerations (1). Nevertheless, as stated by the U.S. Environmental 
Protection Agency (US EPA), around 20,000 to 100,000 animal study requests are 
submitted annually, including species like mice, rats, rabbits, guinea pigs, dogs etc. (3). 
In order to predict nine different hazard classifications, traditional testing uses up to 57% 
of the total animals in safety testing in Europe, or almost 600,000 animals annually (4). 
In accordance with Registration, Evaluation, Authorisation and Restriction of Chemicals 
(REACH) directive and the European Chemicals Agency (ECHA) objective to promote 
non-animal testing methods and other alternatives, experiments on vertebrates are only 
allowed as a last resort. Usually, in vitro tests are also conducted in order to assess drug 
safety, together with a range of toxicities and adverse drug effects. Recently, the 
development of in vitro models such as “organ on a chip” has become one of the major 
aims to reduce the overall cost of analysis (5). Nevertheless, these approaches are time-
consuming and still not developed enough. With the aim of further reducing animal 
testing by 2035, the US EPA recommended in silico modeling for assessing various 
toxicity end-points of the tested compounds, particularly drug candidates (3), suggesting  
the implementation of various computational approaches that are able to simulate, 
visualize, analyze, or even predict toxicity (6). It is important to keep in mind that in silico 
models are usually extremely complicated and are grounded on accumulated knowledge 
from mathematics, bioinformatics, statistics, biochemistry, as well as molecular biology 
(7, 8). 

In this review, we will present the current state-of-the-art in silico methods used in 
toxicity testing for drug safety assessment, taking into account their shortcomings, and 
presenting strategies that should be able to offer consistent results. 

Historical overview: the need for in silico methods in toxicology 

Over the last 20 years, advances in bioinformatics, virtual reality, and internet have 
occurred, while expertise in alternative techniques and their application in toxicology has 
become a useful skill for every modern toxicologist (9). Moreover, the advances in 
alternative methods to experiments on animals have led to excessive replacement and 
modifications of traditional toxicology tests (6). Alternative methods are methods 
established in accordance with the ‘3R’ principle first defined by W.M.S. Russell and 
R.L. Burch in “The Principles of Humane Experimental Techniques” in 1959. This 
principle aims to: 1) “reduce” (refers to the number of animals necessary in a test), 2) 
“refine” (refers to making sure that toxicology procedures are less painful or stressful to 
experimental animals), or, 3) “replace” (meaning that, whenever possible, animals should 
be substituted with non-animal techniques such as in vitro, ex-vivo, and/or in silico 
systems) (10). Furthermore, regulatory frameworks, such as the seventh amendment to 
the EU Cosmetics Directive (11), foresees the elimination of in vivo testing for cosmetic 



259 

 

 

products, whereas the marketing ban has been in effect since March 2009. This directive 
encourages the use of alternative methods for the prediction of human health effects 
caused by cosmetic ingredients, including, but not limited to, skin sensitization, 
carcinogenicity, and developmental toxicity (11). 

In 2006, with the revision of EU regulatory framework regarding registration, 
evaluation, authorization, and restriction of chemicals (REACH) (12), the necessity of 
alternative testing methods emerged in order to reduce the number of animals used in in 
vivo experiments. The REACH regulation covers non-testing methods for “predictive 
toxicology”, risk assessment, and evaluation of safety endpoints of commercially 
available chemicals in the EU. Even though this revision contains only a partial set of in 
silico methods, the Guidance on information requirements and chemical safety 
assessment issued by the ECHA provides comprehensive background information and 
recommendations for the use of computational, non-animal methods and grouping of 
chemicals (13). Chemicals that could be examined by new, alternative approaches include 
not only human pharmaceuticals, but also food ingredients, environmental agents and 
other substances humans are constantly exposed to (14). Hence, many researchers predict 
a future in which almost all routine toxicity testing would be conducted not only in vitro, 
on human cells or cell lines, but also by in silico methods, which would save time and 
resources, while appreciating the ‘3R’ principle. Thus, the development of new and 
improvement of existing computational tests, various in silico methods and models, 
should be highly beneficial not only for toxicologists, but also for the global scientific 
community.  

The development and discovery of a new drug is a long, expensive and 
interdisciplinary process, while advances in technology and hardware solutions have 
enabled in silico methods to lead to the optimization of this process. Computer toxicology 
is widely used today in the development of chemicals, and provides valuable information 
in the drug discovery process. All of this shortens the time required for a drug to be 
released to the market, reduces the number of animal experiments, enables strategic 
planning of the development of new pharmaceutical and chemical products, and is 
supported by regulatory frameworks, including REACH (15).  

The use of in silico methods in preclinical drug toxicity assessment  

Undesirable bioavailability of drugs due to improper pharmacokinetic and 
pharmacodynamic properties, followed by the undesirable safety, mainly caused by the 
absorption, distribution, metabolism, excretion, and toxicity characteristics, are the main 
causes of excessive failure rate in the process of discovering new drugs (16). For a drug 
to proceed from lab to clinics, a minimum of 12–15 years of development cycle is 
necessary. Prior to that, the product’s performance, stability, effectiveness, and safety are 
assessed by conducting preclinical testing (7). Preclinical studies are conducted by in 
vitro, in vivo, ex vivo, and in silico methods, while following GLP/GSP guidelines (good 
laboratory practice/good scientific practices), to obtain essential data regarding the safety 
and biological efficacy of a drug candidate before it is tested in the final target population 
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- humans (7). Approximately, drug candidates which are being subjected to clinical trials 
have merely an 8% likelihood of being put on the market, while about 20% of failures in 
the later stages of drug development happen because of the occurrences of toxicities (2). 
In silico predictive methods are aimed at rationalizing the preclinical drug development, 
while enabling the reduction of not only animal experiments, but also associated time and 
costs (2). Toxicity predictions may range from predictions of various toxic endpoints (e.g. 
acute toxicity or carcinogenicity) to predictions of the basic mechanisms of toxicity 
(defining the targets implicated in adverse drug reactions, as well as their toxic effects) 
(2). Some of the most often applied databases and software in pre-clinical studies are 
described below.  

ADME software in preclinical studies 

In early preclinical drug development, the prediction of ADME properties (i.e. 
absorption, distribution, metabolism, and excretion) is of value not only for drug-like 
effects, but also for toxicity assessment (17). In literature, while ADMET is used as a 
comprehensive term which integrates ADME and toxicity predictions (T), quantitative 
structure-activity relationship (QSAR) methods and related approaches have been used 
to investigate the molecular features that influence these processes (18). A significant 
advance has been made in recent years in the area of structure-based in silico modeling 
of ADMET properties, accompanied by the release of a huge variety of commercial and 
freely available in silico prediction tools. While dynamic modeling of toxicokinetics is 
frequently conducted to find appropriate explanations behind the adverse events in 
preclinical regulatory toxicology, it is, likewise, progressively being applied together with 
predictive toxicology (19). An expert workgroup considered the contribution of kinetics 
as a part of animal-free systemic toxicity testing (20). It has been concluded that in silico 
kinetics testing cannot be considered alone, but should be viewed as a useful tool for 
screening and prioritization and integrated with in vitro and in vivo tests. Additionally, in 
silico approaches that are currently in use need further optimization in the light of more 
quality control in data collection (19, 20). Furthermore, accurate prediction of ADMET 
parameters depends on choosing an appropriate modeling method, molecular descriptors 
of ADMET endpoints, and extensive experimental data sets associated with these 
endpoints (16).  

Some of the software which could be used for this purpose include ADME-Tox, 
ADMETlab, admetSAR, vNN-ADMET, etc. The use of the ADME-Tox software, 
licensed by ACD/Lab, covers not only pharmacokinetic and metabolic, but also 
toxicological issues connected with the disposition and fate of drugs, with a well-
recognized role in assessing preclinical toxicity of new drugs (17). Another web-platform 
which covers not only physicochemical properties and ADME processed, but also 
toxicity, is ADMETlab, licensed under a Creative Commons Attribution-Noncommercial 
License. It is grounded on the wide-ranging database of around 288,967 chemicals and 
31 optimized QSAR models, which contains 27 toxicity endpoints and 8 toxicophore 
rules (751 substructures) (3, 21). This platform was recently expanded with the addition 
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of the Toxicology in the 21st Century (Tox21) dataset to include biological target-based 
pathways. The software now contains data about twelve different biological targets which 
belong to the nuclear receptor pathway and the stress response pathway as the two main 
groups. In addition, eight other toxicophore rules were added to this segment, such as 
environmental, human and comprehensive toxicity (21). Another comprehensive, 
prediction web-based tool for ADMET predictions is admetSAR, built by a team from 
the Shanghai Key Laboratory of New Drug Design, accessible free of charge at 
http://lmmd.ecust.edu.cn/admetsar2. It has the ability to predict not only 50 significant 
ADMET endpoints, but also multiple ecotoxicity endpoints by using QSAR models (3). 
AdmetSAR includes data on properties such as CYP450 substrates and inhibition, skin 
sensitivity, drug-induced liver injury, acute toxicity on rats, mutagenicity, carcinogens, 
reproductive toxicity, biodegradability, bioconcentration factors, etc., while detailed 
biological endpoints stored in this database include IC50 (median inhibitory 
concentration), LC50 (median lethal concentration), LD50 (median lethal dose), TD50 
(median toxic dose), etc. (22). The vNN-ADMET is a publicly accessible online platform 
created in conjunction with the Telemedicine and Advanced Technology Research Center 
(TATRC) and US Army Medical Research and Development Command (USAMRDC). 
This platform is capable of predicting 15 ADMET properties, such as chemical 
mutagenicity (AMES Test), cytotoxicity, cardiotoxicity, drug-induced liver injury, MMP 
Disruption (mitochondrial toxicity), and drug-drug interactions (3, 23). The models in 
this software are constructed according to the variable nearest neighbor (vNN) 
methodology. The vNN method analyses the similarity structural distance between 
compounds and forms a distance threshold on which predictions are based (23). 

In silico methods for predicting acute and repeated-dose toxicity 

Acute toxicity is most often represented by the ‘median lethal dose’ (LD50), a 
statistically derived dose at which 50% of the animals will be expected to die in the period 
of 24 hours (24). However, LD50 is considered difficult to predict because of its 
complexity, having in mind that it depends on the variability of the biological mechanisms 
(24). Nevertheless, a number of commercial and freely available software provide options 
for LD50 predictions, such as ACD/LABS ToxSuite, US EPA Toxicity Estimation 
Software Tool (T.E.S.T.), Accelrys TOPKAT, ProTox, etc.  

ToxSuite (from ACD/Labs) generates potential LD50 in mice and rats for different 
exposure routes, such as oral, intraperitoneal, intravenous, and subcutaneous. This 
software was built using experimental data for more than 100,000 compounds present in 
the US Registry of Toxic Effects of Chemical Substances (RTECS) and the European 
Chemical Substances Information System (ESIS) databases (24). This software identifies 
and visualizes specific structural toxicophores, while its predictions can be linked to the 
confidence intervals and probabilities, delivering reliable predictions (25). The acute 
toxicity option provided by the ACD/Labs ToxSuite was made by integrating expert 
knowledge of various effects, like the inhibition of cholinesterase and adenosine 
triphosphate synthesis, disruption of central nervous system, and QSAR analysis (24). 
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Toxicity Estimation Software Tool (T.E.S.T.), from the US US EPA, is a predictive 
system developed by the Environmental Protection Agency, which is based on the QSAR 
mathematical models (26). US EPA T.E.S.T. contains a model that can be used for 
predicting rat oral acute toxicity, which is comprised of both predicted and experimental 
LD50 values. A variety of toxicity endpoints are available in the T.E.S.T. software and 
can be applied for predictions of acute toxicity values. This is accomplished by applying 
a simple linear function of molecular descriptors (e.g. octanol–water partition coefficient, 
steric and/or electronic parameters, parameters related to the presence/absence of a given 
chemical group) (26). TOPKAT (Toxicity Prediction by Komputer Assisted 
Technology), licenced by Accelrys, contains a module which can be used for rat oral 
LD50 assessment. This module, along with the oral rat chronic lowest observed adverse 
effect level (LOAEL), rodent carcinogenicity, Ames test on mutagenicity, and 
developmental toxicity, can be considered one of the most frequently used models at The 
National Center for Environmental Assessment (NCEA) (27). The software uses 
experimental LD50 of approximately 4000 chemicals extracted from the literature. The 
LD50 module of the TOPKAT package is made of 19 statistically significant, cross-
validated models. Every QSAR model evaluates rat oral LD50 for a specific chemical 
class, allowing TOPKAT to produce a plausible toxicity value for a chemical structure 
delivered from a QSAR linear equation (24). ProTox, licensed under a Creative Commons 
Attribution-Noncommercial License, freely available at http://tox.charite.de/tox, is a web 
server that allows the prediction of oral toxicity in rodents by analysis of the similarity of 
compounds with known LD50 (2). This web server is capable of identifying toxic 
fragments and includes an indication of possible toxicity targets, based on a set of protein–
ligand pharmacophore models, the so-called ‘toxicophores’ (2).  

Repeated-dose toxicity studies aim to investigate the effects of repeated oral, 
dermal, or inhalation exposure to a substance over a certain time period, delivering 
comprehensive information about the adverse effects, possible target organs or systems 
(liver, kidney, endocrine, central nervous, reproductive system, etc.), as well as the 
perseverance or reversibility of the effects (28). As the main outcome of the repeated-
dose toxicity studies, no observed adverse effect level (NOAEL) continues to be used in 
various regulatory guidance documents for choosing the suitable dose levels, i.e. 
maximum recommended starting dose (MRSD), for conducting the co-called ‘first in 
human’ studies (7, 28). Thus, the existence of various databases and computational 
models for NOAEL and LOAEL prediction should be mentioned. The measurement unit 
of these parameters is expressed as mg/kg body weight/day, while the quality of the 
chemical structures and data is crucial, as well as the route and duration of exposure, the 
species and strain used, space between doses, and organ level effects (29). Hence, the 
prediction of human safe doses is heavily dependent on the accessibility of validated 
animal models for each of the effects of interest (30).  

For instance, a freely available database for repeated dose toxicity, the RepDose 
database (http://fraunhofer-repdose.de/), developed by Fraunhofer ITEM, consists of 
NOAEL and LOAEL values for 655 chemicals from to oral or inhalation studies in 



263 

 

 

rodents repeatedly exposed to the investigated substances for a period of at least 14 days 
(29). Thus, the database contains three essential data sets for every chemical: physico–
chemical data and structural features, study design data, as well as the results of each 
study (31). Hence, as a part of the study design data, the database provides specification 
of the animals (number per dose group, strain, sex), as well as the exposure (dose groups, 
duration and route, postexposure observation period) (29, 31). Previously mentioned 
software, TOPKAT, developed by Accelrys, also contains the ability of LOAEL 
predictions. This software uses continuous and dichotomous (binary) measures to predict 
various endpoints, including skin and eye irritation, skin sensitization, LD50, 
carcinogenicity, mutagenicity, developmental toxicity, but also maximum tolerated dose 
and LOAEL (32, 33). The TOPKAT LOAEL model is aimed at predicting rat chronic 
oral LOAEL (only for studies lasting 12 months or longer) (29). TOPKAT LOAEL model 
contains US EPA data, which consist of peer reviewed LOAEL values, as well as 
NCI/NTP data, which contains values obtained from the text tables using the lowest dose 
at which an adverse effect was first noted (27).   

However, having in mind that the NOAEL/LOAEL approach has certain well-
known limitations, effort has been put into developing new alternatives to accompany the 
use of this method in regulatory science. Some of these include in silico-based models 
completely implemented by prominent regulatory agencies to support human safety, the 
Benchmark Dose (BMD) (34, 35), as well as adverse outcome pathways (AOPs) (36). 
There is still some hesitation about nearly all of these concepts, but the near future might 
witness their full application and acceptance (7). The BMD approach is considered a 
scientifically more forward-thinking method in comparison with the NOAEL approach 
for dose-response modelling of the toxicological data in order to obtain a Reference Point 
(Point of Departure) in the risk assessment process (35). The two most commonly used 
software for BMDL determination include BMDS (Benchmark Dose Software, BMDS), 
created by the US Environmental Protection Agency (US EPA), and PROAST, created 
by the National Institute of Public Health and the Netherlands National Institute for Public 
Health and the Environment (RIVM) (34). On the other hand, the adverse outcome 
pathway (AOP) seeks to draw a line between molecular initiating events and adverse 
events at the level of organ/organism. The AOP Knowledge Base (AOP-KB) is a 
database, available at www.aopkb.org, which contains experimentally derived AOPs. 
This database is an OECD initiative, which is executed as a close collaboration among 
the European Commission's Joint Research Centre (JRC), the United States 
Environmental Protection Agency (EPA), and the US Army Engineer Research & 
Development Center (ERDC) (37). It delivers a combination of organized and free-text 
inputs whose aim is to accumulate data about each AOP component, including graphical 
representations of AOPs (38). It also allows the scientific community to distribute, build, 
and discuss AOPs and provides knowledge management for information supporting all 
phases of development, including putative, formal, and quantitative AOP (qAOP) (39). 
Integrating the AOP framework into preclinical drug development has many benefits, 
including the estimation of drug metabolism and its importance for toxicity assessment 
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(37). AOP framework can be viewed as a tool for drawing biological connections and 
summarizing key data across different levels of biological organization to bridge 
biological disturbances at the molecular level with adverse outcomes either for 
individuals or an entire population (40). Thus, the Comparative Toxicogenomics 
Database (CTD) should be mentioned as another important source which could be helpful 
in generating AOPs. The CTD database curates and integrates data describing links 
between chemicals, genes, and human diseases. According to the latest update, CTD 
includes 45 million toxicogenomic relationships for over 16300 chemicals, 51300 genes, 
5500 phenotypes, 7200 diseases and 163 000 exposure events, from 600 different species 
(41). While inferences in CTD are mostly based on information obtained from animal 
studies, CTD directs at environmental chemicals and outcomes important for human 
health. Thus, genes/proteins of interest are included in the database only if they are also 
present in humans (42).  

The use of in silico investigation for testing different toxicity end-points 
 in pre-clinical studies  

Having in mind that hepatotoxicity, mutagenicity, genotoxicity and carcinogenicity 
are among the most crucial toxicity end-points tested in the drug development cycle, the 
implementation of in silico software in pre-clinical trials for the assessment of these 
effects is explained in more detail.  

Hepatotoxicity  

Liver toxicity plays a significant role in the process of drug development, while 
hepatotoxicity can be regarded as one of the main reasons for drug attrition and may lead 
to the discontinuation of both preclinical and clinical studies. It can even result in organ 
failure and can lead to fatal outcome (43). Many drugs have been withdrawn from the 
market because of their ability to cause liver injuries (44), which may occur through 
several different mechanisms, including oxidative stress, mitochondrial dysfunction, 
transporter inhibition, adduct formation (covalent binding), as well as transcription 
disorder. These mechanisms are important for providing pharmacologically relevant 
endpoints and may be the core of assessing the effect of predictive models for liver 
toxicity. One of the main indicators of the response of liver cells to drugs is the regulation 
of enzymes that metabolize drugs and drug transporters. The activity and expression of 
these proteins may be altered by systemic exposure to certain drugs, which may also cause 
recurrent liver dysfunction, manifested by various liver tissue injuries (45). Drug-induced 
liver injury (DILI) studies have led to the collection of significant data, which enabled 
the development of a number of databases which may be useful in hepatotoxicity testing. 
Databases specializing in processing and collecting data on liver injury offer access to a 
large amount of useful information. Hence, several databases on the topic have been built, 
including LiverTox, Liver Toxicity Knowledge Base (LTKB), Open TG-GATEs, 
Hepatox, DILIsym (44), as well as eTOX (46). eTOXsys (by Lhasa Limited and 
Molecular Networks) is a good example of software which might be used for predicting 



265 

 

 

drug hepatotoxicity, along with various other toxicological end-points, by bringing 
together different tools, databases and results (47). It was compiled by Molecular 
Networks GmbH and contains a retrospective analysis of the preclinical toxicology data 
obtained as a part of the eTOX project, whose main goal was to deliver background rates 
and treatment-related analysis on both clinical pathology and histopathology datasets 
(48). eTOXsys enables access to predictive models and databases by a single user 
interface which supports hazard identification and risk assessment of drug candidates 
from the input. Compounds can be entered into the system by name or SMILES files, or 
even by being sketched in the molecule editor. Database prediction results can be further 
refined and analyzed by users and exported in compatible standard file formats (Excel 
document). eTOXsys offers data regarding the toxicity of molecules deposited in the 
eTOX database, but even toxicity prediction for molecules with no suitable data in this 
database (47). eTOXsys interface allows toxicity searches, while single/multi-parameter 
scientific hypothesis can be set through an interactive builder. Information related to 
toxicity can be searched by species, study design, duration and route of exposure, as well 
as target organ. The query builder for formulating searches about toxicology allows users 
to conduct their searches by the inserting terms. Searches by toxicology and chemistry 
can be performed combining focus on a particular chemical with specific toxicological 
effects (47). Structures of the target chemicals are shown on the left side of the software 
interface, along with histopathology findings in the liver as a target site that might be 
related to the investigated compounds. Chemical names are presented in the software, 
along with their IDs and registry numbers, mode of action and directory of existing studies 
on different species (47). 

Genotoxicity and carcinogenicity  

Carcinogens and mutagens cannot be regarded in a traditional sense of chemistry, 
considering that, even though these chemicals have structural commonalities, they are 
complex and subtle. There are hypotheses which postulated that mutagenicity can be 
regarded as the ability of the molecule to reacts with the DNA bases, which can be 
connected with the existence of an electrophilic center present in the molecule (33). These 
structures may be apparent if the electrophilic group is a part of the molecule structure, 
or may be latent and formed by metabolism. Thus, there have been a lot of attempts to 
identify possible electrophilic attack sites which might be connected to mutagenicity and 
carcinogenicity (33). The most often used assay for mutagenicity testing is the Ames 
experiment. This test is a short-term bacterial assay for detecting compounds that induce 
genetic damage and point mutations. Low reproducibility rate of Salmonella 
typhimurium, which is around 85%, can be viewed as its major limitation (49).  
Nevertheless, the Ames test is one of the most applied methods for mutagenic activity 
assessment. Most of the in silico methods available for such genotoxicity/mutagenicity 
predictions are based on existing in vitro tests. There are two main groups of these tests. 
The first are developed from human derived structure activity relationship (SAR), while 
the second are developed by the computer algorithm QSAR (50). By applying QSAR, it 
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is possible to study biological activities associated with the structure of the molecule. 
QSAR plays a role in explaining how the structures of molecules are related to biological 
activities (51). Statistical learning algorithms which have been used for this purpose 
include support vector machine (SVM), random forest (RF), k-nearest neighbours (kNN), 
as well as artificial neural network (ANN). These statistical learning algorithms have 
good predictive capability, but they are complicated for use (49). Carcinogenicity 
predictions can be accomplished by including a large number of factors, which usually 
contain chemical and information about metabolism of the tested compound, toxicity and 
genetic toxicity interaction, the possibility of non-targeted mutagenesis, etc. 
Extrapolation is possible through the activities within a series of congeners. However, 
predictions within dissimilar classes of chemicals are demanding. Artificial intelligence 
systems are able to predict parameters listed above. However, predicting every aspect of 
carcinogenicity is not possible (33). Various knowledge-based software can be used for 
this purpose, while some of them include DEREK, HazardExpert, Oncologic and 
COMPACT. On the other hand, statistically-based systems may also be used, which 
include ADAPT, TOPKAT, CASE, MultiCase, QSAR-ES and common reactivity pattern 
(COREPA). DEREK software (by Lhasa Limited) was created based on toxicity and 
structure relationship. It includes a database which covers various endpoints, such as 
mutagenicity, carcinogenicity, teratogenicity, as well as skin and respiratory sensitization. 
DEREK incorporates a series of ‘structural alerts’ interrelated with types of toxicity, 
which are included in the system operation rules (52). When the software analyses an 
unknown structure, the system performs pattern recognition to identify structurally 
similar characteristics. ADAPT (Jurs Research Group, Pennsylvania State University, 
Philadelphia, PA, USA) was used to investigate a nitrogenous cyclic chemicals and 
establish a relationship between mutagenicity and their chemical structure. It 
characterizes chemicals by an extensive range of molecular descriptors. There are four 
major classes of descriptors which are used (topological, geometric, electronic, and 
physical), while substances are classified into mutagens and non-mutagens (33, 53). 
Computer automated structure evaluation (CASE), developed by Klopman and 
Rosenkranz (1984), makes investigating the distribution of each fragment among 
active/inactive molecules possible. This software also identifies fragments whose 
distribution is different from an ideal symmetrical distribution. CASE can also provide 
tests for significance of certain continuous molecular descriptors. It is based on structural 
and physical-chemical factors that might be related to the detected activity. The program 
also includes an expert system known as META, which helps to detect sites in the 
molecule that are responsible for metabolic transformation. Computer optimized 
molecular parametric analysis of chemical toxicity (COMPACT), developed at the 
University of Surrey (UK), was created with aim of indirectly identifying carcinogens by 
the shape and molecular orbital energy levels of a chemical structure (e.g. planarity level) 
and evaluate if the chemical will interact with cytochrome P450I (33), or with the binding 
site of the Ah receptor, and hence manifest carcinogenicity/toxicity (54, 33). The 
Common reactivity pattern (COREPA) method, by US EPA, can be used for identifying 
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reactivity patterns of chemical structure that exert similar biological effects, as well as for 
the identification of structural requirements to cause mutagenic effects. The factors 
controlling mutagenicity are in combination with the ability of chemical to take part in 
local electrophilic reactions, such as electronic charges and reactive fragments (33). 
COREPA may also evaluate 3D similarity between chemicals from the input, while also 
defining and investigating various distributions of chemical conformers in molecular 
descriptor space (55). 

Examples of the use of in silico methods in drug safety assessment  

As mentioned earlier, ADME profiling is often combined with toxicity predictions, 
in order to gain comprehensive insight into the potential toxic effects of drug candidates. 
For example, Bhati et al. (2019) applied in silico techniques to investigate the ADMET 
profile of newly designed thiohydantoin derivatives linked with piperazine, which can 
potentially be used as an androgen antagonist for treating prostate cancer. OSIRIS 
DataWarrior, developed at Actelion/Idorsia Pharmaceuticals Ltd, an online 
cheminformatics tool, was used to reveal pharmacokinetic parameters like solubility and 
toxic properties (i.e. tumorigenicity, mutagenicity, irritant and reproductive effect) (56). 
DataWarrior allows predictions of physicochemical and other properties straight from 
chemical structures, while toxicity risks are predicted from already formed fragment lists 
(57). The prediction was grounded on the functional group similarity between the inserted 
molecules and in vitro/in vivo validated compounds accessible in the database. 
AdmetSAR was used for identifying ADMET profile of the ligands, including blood–
brain barrier penetration, CYP inhibitory promiscuity, human intestinal absorption (HIA), 
Caco-2 cell permeability, mutagenicity, carcinogenicity, as well as acute toxicity in rats. 
The results have demonstrated possible mutagenic properties of some of the ligands, 
along with the non-carcinogenic nature of the designed thiohydantoin derivatives. The 
predicted rat LD50 was between 2.72 and 2.91 mol/kg. Health effect probability and 
maximum recommended daily dose prediction were also performed in this study by using 
ACD/I-Lab. Some of the ligands have shown a health effect probability score at a 
moderate level, while the maximum recommended daily dose (MRDD) was found in the 
range between 1.4 and 4.6 mg/kg/day (56). Furthermore, Attwa et al. (2020) performed 
toxicity screening of the new poly (ADP-ribose) polymerase (PARP) inhibitor talazoparib 
(TZB) by using DEREK software, while toxicity predictions were also accompanied by 
ADME predictions, particularly metabolism. Structural alerts shown by the DEREK 
software indicated that the side effects of the investigated drug might comprise of 
nephrotoxicity and hERG channel inhibition because of the presence of halogenated 
benzene and hERG pharmacophore II in its structure. In silico metabolic vulnerability 
prediction was performed by the WhichP450TM software, which indicated that C1 and 
C5 on the 1H-1,2,4-triazole ring in the TZB structure could be viewed as moderate labile 
sites of metabolism, while CYP3A4 was found to have a vital function in TZB 
metabolism. From these results, the authors predicted that accumulation of the 
investigated drug after multiple doses might be possible, while liver would have a minor 
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role in its excretion (58). Lawal et al. (2018) conducted a study to characterize naringenin 
(NAR) as a novel inhibitor of collapsin response mediator protein-2 in the treatment of 
Alzheimer's disease. Toxicity risks of the investigated substances were assessed by the 
ProTox webserver. The predicted LD50 value was 2000 mg/kg, while naringenin was 
estimated to belong to toxicity class 4 according to the globally harmonized system (GHS) 
of labeling chemical compounds. The Molsoft program (http://molsoft.com/mprop/) and 
OSIRIS DataWarrior property explorer were used to predict the physicochemical 
properties of the investigated substance. As estimated, NAR has a molecular weight of 
272 g/mol (Da), which is within the tolerable threshold of a CNS drug. The logP of NAR 
was estimated with the aim of predicting its lipophilic property related to the blood–brain 
barrier (BBB) permeability and bioactivity as a neurogenic drug. The results have 
demonstrated that NAR had a log P value of 2.3, which is within the acceptable threshold 
of 1.5–2.7 for a BBB permeable substance (59). 

The use of in silico methods in impurity assessment in drugs 

Bearing in mind that drug impurities have no beneficial effects and therefore only 
pose a risk for human health, the regulatory review process of pharmaceutical 
contaminants and degradants that may be found in drug products should always strive to 
lessen those impurities to the lowest concentration levels (those that are technically 
feasible or that should bear no significant health risk) (60). 

Guidelines for assessing the quality of active pharmaceutical ingredient (API) and 
medicinal products which have been developed by The International Council for 
Harmonisation (ICH), Food and Drug Administration (FDA), World Health Organization 
(WHO) or European Medicines Agency (EMA) are focused on evaluating the stability of 
the API by establishing different stress tests to confirm the presence of the impurities 
(61).  The identification of impurities is mainly focused on determining their structure, 
with simultaneous determination of physicochemical properties, followed by the toxicity 
estimation (62). Former ICH regulations concerning the quantitation limit of impurities 
in a drug depended on the API daily dose, routes of administration, as well as duration of 
therapy. The determination of impurity in concentrations lower that 0.1% was unrequired 
and there has also been a lack of mindfulness about impurities existing in the drug 
substance, especially in the final product (ICH Q3B (R), 2000) (63) The main concept of 
impurity qualification is given in the guidelines for active substances (Q3A, Impurities in 
New Active Substances) (64) or medicinal products (Q3B, Impurities in New Medicinal 
Products) (63), while qualification can be defined as the process of acquiring and 
evaluating data that establishes the biological safety of an individual impurity or a given 
impurity profile at the level(s) specified. In the case of potentially genotoxic impurities, 
the determination of acceptable dose levels is thought to be a particularly critical issue. 
Having in mind the necessity for the identification of the genotoxic impurities and 
determination of their limits in the API, EMEA proposal resulted in a significant change 
in standards and thresholds of impurities (ICH M7 guidelines (2014)) (65).   
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In the absence of data which are typically required for risk assessment methods 
application (i.e. data from carcinogenicity long-term studies or data providing evidence 
for a threshold mechanism of genotoxicity), the implementation of a generally applicable 
approach as defined by the Threshold of Toxicological Concern (TTC) is proposed. A 
TTC value of 1.5 μg/day intake of a genotoxic impurity is thought to be an acceptable 
risk (excess cancer risk of <1 in 100,000 over a lifetime) for most pharmaceuticals. From 
this threshold value, a permitted level of impurity in the active substance can be 
determined based on the daily dose (ICH M7 guideline) (65). 

To meet such requirements, recent advances in computational methods have 
provided extra resources for safety assessment of drug impurities, various screening 
processes and software specific algorithms connected to the chemical structure (66).  

In the following text, an insight into the in silico methods in the assessment of 
impurities in APIs / drugs is given, along with examples of how computational toxicology 
methods is currently being applied.  

The DEREK software, as already mentioned, delivers a prediction by associating 
structural features of the target compound with the so-called alerts. Each alert contains a 
toxicophore (a substructure known or thought to be responsible for the toxic effect) and 
is linked to not only literature sources, but also notes and examples.   

Zhu et al. (2013) applied DEREK for toxicity assessment in their evaluation 
research of an impurity in levofloxacin, descarboxyl levofloxacin. The prediction results 
indicated quinoline as a target compound - alert in this impurity (67). Genotoxicity of 
descarboxyl levofloxacin was evaluated as positive due to in vitro (bacteria, E. coli and 
S. typhimurium) and in vivo (dogs, guinea pigs, hamsters, humans, mammals, monkeys, 
mice, primates, rabbits, rats, and rodents) results in which the mutagenicity endpoints 
were persuasive. 

Nagulakonda et al. (2019) utilized two complementary QSAR programs, DEREK 
Nexus and TOPKAT, in accordance with ICH M7 standards. Their DEREK analysis 
showed similar alerts elicited for alpha-2-mu-globulin nephropathy, carcinogenicity, 
photo allergenicity, skin sensitization, hepatotoxicity, mitochondrial dysfunction, 
nephrotoxicity and mutagenicity in the analysis of drug compound and targeted six 
impurities. However, the authors concluded that these findings can be considered “no 
alert” because they are not relevant to the human organism and the alpha-2-mu-globulin 
protein can be found only in rats. Moreover, in mammals, rats and rodents, alpha-2-mu-
globulin nephropathy was alerted at the “doupted” level by drug compound and targeted 
impurities and the compounds which have the molecular volume considerably more than 
0.2 nm3 were rated as incapable to bind to the protein and cause the disorder. In favor of 
that conclusion is the fact that ICH M7 categorize all impurities in Class 4 (alerting 
structure) including non-mutagenic and examined drug compounds (68). 

TOPKAT models are created by combining a variety of molecular, chemical, 
physical, and spatial descriptors assessing the certainty of prediction with the proprietary 
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Optimal Predictive Space validation technique (OPS), a specific multivariate descriptor 
space in which a particular model is thought to be relevant (69). 

Nagulakonda et al. (2019) used TOPKAT as the statistical-based methodology to 
assess tazarotene and its impurities due to toxicophores (consecutive triple bonds, sulfone 
functional group) (68). 

Toxtree, a versatile and easily accessible program created by Ideaconsult Ltd. and 
the European Commission's Joint Research Centre, sorts chemicals into categories and 
forecasts hazardous effects by using decision tree techniques. In the study conducted by 
Pikul et al. (2016) the calculation of the probable degradation metabolites of ivabradine 
was determined by applying the Toxtree program. Their results have demonstrated that 
there were no mutagenic effects exerted by degradation products with slight effects on 
cytochromes (62).  

The PreADMET package is a software for toxicity prediction which includes 
information based on studies in which mice were treated with a particular chemical for 
two years, to assess cancer development and information obtained by applying the Ames 
test, to assess genotoxicity (70).  

Abdelwahab et al. (2020) performed toxicity examination for cinnarizine and its 
impurities using the preADMET software. The results demonstrated that Ames 
mutagenicity test was positive for all impurities in one of the examined salmonella strains. 
In the case of [1-(diphenylmethyl)piperazine] the mutagenicity test was positive for both 
strains. Additionally, all of the contaminants were assessed to be carcinogenic in rats, 
mice, or both, with a moderate risk of hERG inhibition. The OSIRIS® Property Explorer 
program is an online software program that allows the prediction of toxicity risk and 
factors such as mutagenicity, tumorigenicity, irritation, effects on different systems in 
organism, as well as physicochemical characteristics using Chou and Jurs algorithm (71 
72). 

The OECD QSAR Application Toolbox is a freely available software tool 
developed by the Organization for Economic Co-operation and Development (OECD, 
Paris), the European Chemicals Agency (ECHA, Helsinki) and the Laboratory of 
Mathematical Chemistry (LMC, Bourgas University, Bulgaria). It is intended for 
substances categorized in groups based on their chemical and mechanistic properties, 
retrieving the information from experimental studies for categorized substances and 
categorized substances properties prediction (73). To predict the structural alerts leading 
to genotoxicity of ceftazidime and its impurities, Han et al. (2019) applied the OECD 
QSAR Application Toolbox and assessed toxicity mechanisms and toxicity endpoints. 
DNA and protein binding were noted as significant toxicity mechanisms while 
genotoxicity, in vitro mutagenicity tests (in vitro - Ames test and in vivo- micronucleus 
test) were noted as significant toxicity endpoints. The impurities that might be genotoxic 
in ceftazidime were targeted based on the presence of toxic functional groups (the beta-
lactam ring, the quaternary amine group, and the acetates) (74).  
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 MultiCASE/MC4PC (Multiple computer aided structure evaluation) is a system 
for activity prediction analyzing the presence or absence of specific fragments in the 
chemical structure. It uses statistical data and training sets including a number of 
compounds and the biological activity data linked with them. In MC4PC, a newly 
submitted molecule is separated into fragments, which are analyzed and compared to 
already discovered and stored biophores and biophobes. The software analyzes segments 
of active and inactive molecules and finds those that are predominantly linked with 
biophores - active molecules. The active segments are considered mutagenic and the 
inactive non-mutagenic (75 ,76, 61).  

Advantages and disadvantages of in silico approach 

In silico toxicology differs from traditional toxicology in many ways, while 
probably the most significant is the one considering the scale, especially in terms of the 
numbers of the studied substances, range of the endpoints and pathways that could be 
covered by in silico analysis, as well as the levels of biological organization examined, 
but also the variety of exposure conditions which are simultaneously considered (77). In 
many different situations in silico methods have an important role in hazard assessment, 
for both existing chemicals and new substances which are under development. These 
include: 1) urgent situations in which prompt explanations of potential toxicological 
outcomes of exposure is needed in the lack of existing toxicological testing data; 2) cases 
where the supply of available test material is incomplete; 3) scenarios which include 
challenges to conduct laboratory studies; 4) cases in which the synthesis of a complex test 
material is not possible; or 5) situations where a less time-consuming and less expensive 
high-throughput method is required (6). For example, our recent work has demonstrated 
the uses of in silico toxicogenomic approach with the aim of assessing the safety of drug 
combinations in COVID-19 treatment (78). The urgent need for COVID-19 treatment 
required a fast response from scientific community about the proposed combinational 
therapy. Therefore, in silico methods can scale up traditional toxicology testing and 
largely save time and other laboratory resources. 

However, while some limitations of alternative tests are obvious, it is very 
challenging to overcome them. Among the recognized restrictions, the most important 
ones are related to the quality of the gathered data, which depends strictly on online 
sources and previously published results (79). Similar to other experiments, in silico 
methods first require the collection of available data and deep literature mining. Publicly 
available databases used for alternative toxicity testing do not have standardized protocols 
for generation and interpretation of experimental results. For example, chemicals from 
different manufactures are represented based on their generic names and CAS Registry 
Numbers; the statistical analysis might be carried out or interpreted differently, or the 
dose used in reported experiment may be missing. Moreover, individual sensitivity of 
exposed subjects is not taken into account, as well as the complexity of the living 
organisms (80). Therefore, the need to assess the data quality is an important requirement 
for making a decision when and how to use alternative methods in toxicology testing. 
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Until then, the combination of alternative and traditional tests may be suggested as 
optimal for ‘toxicity prediction’ and risk assessment. 

Conclusion and future perspectives 

The application of in silico methods in drug safety assessment is constantly 
increasing, while many in silico toxicity prediction software and databases are updated 
on the regular bases in accordance with consumer needs. However, there is no universal 
in silico software/database for toxicity assessment, and each of them is developed for a 
specific purpose. That is why, when choosing an appropriate software/database, it is of 
great importance to know its pros and cons, the domain of applicability and correct 
interpretation of the obtained results. Data obtained by in silico methods are currently 
mostly used merely as a support to other relevant scientific data. For example, it is 
suggested that predictions of some toxicity endpoints (e.g. genotoxicity and 
carcinogenicity) should be based on a battery of models, merging high-sensitivity models 
(low rate of false negatives) with high-specificity ones (low rate of false positives) and in 
vitro/in vivo assays in an integrated manner (81). Additionally, if the in silico system itself 
is not able to provide a valid decision about the importance of a certain prediction, expert 
knowledge is still required to assess whether this data is relevant or not (61). Nevertheless, 
it is evident that the role of in silico methods will become much more prominent in the 
near future, with a strong tendency to become widely applied as a stand-alone evidence, 
completely replacing in vitro and in vivo toxicity testing. 

 

 

Acknowledgement 

This work was partially supported by The Ministry of Education, Science and 
Technological Development of the Republic of Serbia (451-03-9/2021-14/200161). 

 

 

Literature 

1. Basile AO, Yahi A, Tatonetti NP. Artificial Intelligence for Drug Toxicity and Safety. Trends 

Pharmacol Sci. 2019;40(9):624–635.  

2. Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R. ProTox: A web server for the in silico 

prediction of rodent oral toxicity. Nucleic Acids Res. 2014;42(W1):53–58.  

3. Kar S, Leszczynski J. Open access in silico tools to predict the ADMET profiling of drug candidates. 

Expert Opin Drug Discov. 2020;15(12):1473–1487.  

4. Luechtefeld T, Marsh D, Rowlands C, Hartung T. Machine learning of toxicological big data enables 

read-across structure activity relationships (RASAR) outperforming animal test reproducibility. 

Toxicol Sci. 2018;165(1):198-212. 



273 

 

 

5. Yang H, Sun L, Li W, Liu G, Tang Y. In silico prediction of chemical toxicity for drug design using 

machine learning methods and structural alerts. Front Chem. 2018;20(6):30. 

6. Myatt GJ, Ahlberg E, Akahori Y, Allen D, Amberg A, Anger LT et al. In silico toxicology protocols. 

Regul Toxicol Pharmacol. 2018;96:1-17. 

7. Shegokar R. Preclinical testing—Understanding the basics first. In Drug Delivery Aspects 2020;19-

32. Amsterdam: Elsevier.  

8. Javorac D, Baralić K, Bulat Z, Đukić-Ćosić D, Antonijević B. In silico metodologija u toksikologiji 

- softveri za predviđanje toksičnosti. Arh Farm. 2019;69(1):28-38. (Serbian)  

9. Kandárová H, Letašiová S. Alternative methods in toxicology: pre-validated and validated methods. 

Interdiscip Toxicol. 2011;4(3):107-113. 

10. Russell MS, Burch RL. The principles of humane experimental technique. London: Methuen; 1959. 

238 p. 

11. European Commission (EC), Directive of 27 July 1976 on the Approximation of the Laws of the 

Member States Relating to Cosmetic Products (76/768/EEC), 1976. Available from: 

http://ec.europa.eu/consumers/sectors/cosmetics/documents/ directive/ 

12. European Commission (EC), Regulation No 1907/2006. 2006. Available from: http://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32006R 1907:EN:NOT 

13. Raunio H. In silico toxicology–non-testing methods. Front Pharmacol. 2011;2:33. 

14. Valerio LG. In silico toxicology models and databases as FDA Critical Path Initiative toolkits. Hum 

Genomics. 2011;5(3):1-8. 

15. Benigni R, Bassan A, Pavan M. In silico models for genotoxicity and drug regulation. Expert Opin 

Drug Metab Toxicol. 2020;16(8):651–62.   

16. Wu F, Zhou Y, Li L, Shen X, Chen G, Wang X, et al. Computational Approaches in Preclinical 

Studies on Drug Discovery and Development. Front Chem. doi:10.3389/fchem.2020.00726 

17. Valerio LG. In silico toxicology for the pharmaceutical sciences. Toxicol Appl Pharmacol. 

2009;241(3):356–370.  

18. Moroy G, Martiny VY, Vayer P, Villoutreix BO, Miteva MA. Toward in silico structure-based 

ADMET prediction in drug discovery. Drug Discov Today. 2012;17(1–2):44–55.  

19. Tsaioun K, Blaauboer BJ, Hartung T. (2016). Evidence-based absorption, distribution, metabolism, 

excretion (ADME) and its interplay with alternative toxicity methods. Altex. 2016;33(4):343–358. 

20. Basketter D, Clewell H, Kimber I, Rossi A. WBI Studies Repository A Roadmap for the 

Development of Alternative (Non-Animal) Methods for Systemic Toxicity Testing. Altex. 

2012;29(1): 3–91. 

21. Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, et al. (2021). ADMETlab 2.0: an integrated online 

platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 

2021. doi: 10.1093/nar/gkab255 

22. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, et al. AdmetSAR: A comprehensive source and free 

tool for assessment of chemical ADMET properties. J Chem Inf and Model. 2012;52(11):3099–3105.  

23. Schyman P, Liu R, Desai V, Wallqvist A. vNN web server for ADMET predictions. Front 

Pharmacol. 2017. doi: 10.3389/fphar.2017.00889 

24. Diaza RG, Manganelli S, Esposito A, Roncaglioni A, Manganaro A, Benfenati E. Comparison of in 

silico tools for evaluating rat oral acute toxicity. SAR QSAR Environ Res. 2015;26(1):1–27.  



274 

 

 

25. Piparo EL, Worth A.  Review of QSAR Models and Software Tools for predicting Developmental 

and Reproductive Toxicity. In JRC Scientific and Technical Reports: Vol. EUR 24522, 2010. 

https://doi.org/10.2788/9628 

26. Lassalle Y, Jellouli H, Ballerini L, Souissi Y, Nicol É, Bourcier S, et al. Ultraviolet-vis degradation 

of iprodione and estimation of the acute toxicity of its photodegradation products. J Chromatogr A. 

2014:1371:146–153.  

27. Venkatapathy R, Moudgal CJ, Bruce RM. Assessment of the oral rat chronic lowest observed adverse 

effect level model in TOPKAT, a QSAR software package for toxicity prediction. J Chem Inform 

Comput Sci. 2004; 44(5):1623–1629.  

28. Walker JM. In Silico Methods for Predicting Drug Toxicity. 2016;1425:163–176. 

https://doi.org/10.1007/978-1-4939-3609-0 

29. Benfenati E. In Silico Methods for Predicting Drug Toxicity Methods in Molecular Biology, Humana 

Press; 2016. 1425 p. 

30. Lowe PJ, Hijazi Y, Luttringer O, Yin H, Sarangapani R, Howard D. On the anticipation of the human 

dose in first-in-man trials from preclinical and prior clinical information in early drug development. 

Xenobiotica, 2007;37(10–11):1331–1354.  

31. Bitsch A, Jacobi S, Melber C, Wahnschaffe U, Simetska N, Mangelsdorf I. (2006). REPDOSE: A 

database on repeated dose toxicity studies of commercial chemicals-A multifunctional tool. Regul 

Toxicol Pharmacol. 2006;46(3):202–210.  

32. Dearden CJ. In silico prediction of drug toxicity. J. Comput. Aided Mol Des. 2003;17(5):119–127. 

33. Patlewicz G, Rodford R, Walker JD. Quantitative structure-activity relationships for predicting 

mutagenicity and carcinogenicity. Environ Toxicol Chem. 2003;22(8):1885–1893.  

34. Baralić K, Javorac D, Antonijević E, Buha-Djordjević A, Ćurčić M, Djukić-Ćosić D, et al. Relevance 

and evaluation of the benchmark dose in toxicology. Arh Farm. 2020;70(3):130–141. 

35. Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen KH, More S, et al. Update: use of the 

benchmark dose approach in risk assessment. EFSA Journal. 2017;15(1):1–41.  

36. Edwards SW, Tan YM, Villeneuve DL, Meek ME, McQueen CA. (2016). Adverse Outcome 

Pathways-Organizing Toxicological Information to Improve Decision Making. J Pharmacol Exper 

ther. 2016;356(1):170-181.  

37. Issa NT, Wathieu H, Ojo A, Byers SW, Dakshanamurthy S. Drug Metabolism in Preclinical Drug 

Development: A Survey of the Discovery Process, Toxicology, and Computational Tools. Curr Drug 

Metab. 2017;18(6):556–565.  

38. Kleinstreuer NC, Sullivan K, Allen D, Edwards S, Mendrick DL, Embry M, et al. Adverse outcome 

pathways: From research to regulation scientific workshop report. Regul Toxicol Pharmacol. 

2016;76:39–50.  

39. Ives C, Campia I, Wang R-L, Wittwehr C, Edwards S. Creating a Structured Adverse Outcome 

Pathway Knowledgebase via Ontology-Based Annotations. Appl In Vitro Toxicol. 2017;3(4):298–

311.  

40. Oki NO, Edwards SW. An integrative data mining approach to identifying adverse outcome pathway 

signatures. Toxicology.2016; 350:49–61. 

41. Davis AP, Grondin CJ, Johnson RJ, Sciaky D, Wiegers J, Wiegers TC, et al. Comparative 

Toxicogenomics Database (CTD): Update 2021. Nucleic Acids Res. 2021;49:1138–1143. 



275 

 

 

42. Meng Q, Richmond-Bryant J, Lu SE, Buckley B, Welsh WJ, Whitsel EA, et al. Cardiovascular 

outcomes and the physical and chemical properties of metal ions found in particulate matter air 

pollution: A QICAR study. Environ Health Perspect. 2013;121(5):558–564.  

43. Cheng A. In Silico Prediction of Hepatotoxicity. Curr Comput Aided-Drug Des. 2009; 5(2):122–

127.  

44. Luo G, Shen Y, Yang L, Lu A, Xiang Z. A review of drug ‑ induced liver injury databases. Arch 

Toxicol. 2017;91(9):3039-3049.  

45. Fraser K, Bruckner DM, Dordick JS. Advancing Predictive Hepatotoxicity at the Intersection of 

Experimental, in Silico, and Artificial Intelligence Technologies. Chem Res Toxicol. 

2018;31(6):412–430.  

46. López-Massaguer O, Pastor M, Sanz F, Carbonell P. Hepatotoxicity prediction by systems biology 

modeling of disturbed metabolic pathways using gene expression data. Methods Mol Biol. 

2018;1800:505–518.  

47. Cases M, Briggs K, Steger-Hartmann T, Pognan F, Marc P, Kleinöder T, et al. The eTOX data-

sharing project to advance in Silico drug-induced toxicity prediction. Int J Mol Sci. 

2014;15(11):21136–21154.  

48. Pinches MD, Thomas R, Porter R, Camidge L, Briggs K. Curation and analysis of clinical pathology 

parameters and histopathologic findings from eTOXsys, a large database project (eTOX) for 

toxicologic studies. Regul Toxicol Pharmacol. 2019;107:104396.  

49. Tang Y. In silico Prediction of Chemical Ames Mutagenicity, J Chem Inf Model. 

2012;26;52(11):2840-7. 

50. Greene N, Fisk L, Naven RT, Note RR, Patel ML, Pelletier DJ. Developing structure-activity 

relationships for the prediction of hepatotoxicity. Chem Res Toxicol. 2010;23(7):1215–1222.  

51. Cerruela G, Nicolás G, Luque I, Miguel R. An ensemble approach for in silico prediction of Ames 

mutagenicity. J Math Chem. 2018;56(7):2085–2098.  

52. Marzo M, Kulkarni S, Manganaro A, Roncaglioni A, Wu S, Barton-Maclaren TS, et al. Integrating 

in silico models to enhance predictivity for developmental toxicity. Toxicology. 2016;370:127–137.  

53. Walsh DB, Claxton LD. Computer-assisted structure-activity relationships of nitrogenous cyclic 

compounds tested in Salmonella assays for mutagenicity. Mutat Res.1987;182(2):55–64.  

54. Lewis DFV, Ioannides C, Parke, DV. A prospective toxicity evaluation (COMPACT) on 40 

chemicals currently being tested by the national toxicology program. Mutagenesis. 1990;5(5):433–

435.  

55. Mekenyan O, Dimitrov S, Schmieder P, Veith G. (2003). In silico modelling of hazard endpoints: 

Current problems and perspectives. SAR QSAR Environ Res. 2003;14(5–6):361–371.  

56. Bhati S, Kaushik V, Singh J. In Silico Identification of Piperazine Linked Thiohydantoin Derivatives 

as Novel Androgen Antagonist in Prostate Cancer Treatment. Int J Pept Res Ther. 2019;25(3):845–

860.  

57. Sander T, Freyss J, Von Korff M, Rufener C. DataWarrior: An open-source program for chemistry 

aware data visualization and analysis. J Chem Inf Model. 2015;55(2):460–473.  

58. Attwa MW, Kadi AA, Abdelhameed AS, Alhazmi HA. Metabolic stability assessment of new parp 

inhibitor talazoparib using validated lc–ms/ms methodology: In silico metabolic vulnerability and 

toxicity studies. Drug Des Devel Ther. 2020;14:783–793.  



276 

 

 

59. Lawal M, Olotu FA, Soliman MES. Across the blood-brain barrier: Neurotherapeutic screening and 

characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer’s disease 

using bioinformatics and computational tools. Comput Biol Med. 2018;98:168–177.  

60. Kruhlak NL, Contrera JF, Benz RD, Matthews EJ. Progress in QSAR toxicity screening of 

pharmaceutical impurities and other FDA regulated products. Adv Drug Deliv Rev. 2007;59(1):43–

55. 

61. Sutter A, Amberg A, Boyer S, Brigo A, Contrera JF, Custel LL. Use of in silico systems and expert 

knowledge for structure-based assessment of potentially mutagenic impurities. Regul Toxicol 

Pharmacol. 2013;67(1):39–52.  

62. Pikul P, Jamrógiewicz M, Nowakowska J, Hewelt-Belka W, Ciura  K. Forced degradation studies of 

ivabradine and in silico toxicology predictions for its new designated impurities. Front Pharmacol. 

2016;7:1–12.  

63. ICH Q3B(R) International Conferences on Harmonization, Draft Revised Guidance on Impurities in 

New Drug Products. Federal Register. 2000; 65(139):44791- 44797. 

64. ICH Q3A(R) International Conferences on Harmonization, Draft Revised Guidance on Impurities in 

New Drug Substances. Federal Register. 2000;65(140):45085-45090. 

65. ICH M7 International Conferences on Harmonization, Assessment and control of DNA reactive 

(mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk M7. 2014. 

66. Jamrógiewicz M. Consequences of new approach to chemical stability tests to active pharmaceutical 

ingredients. Front Pharmacol. 2016;7:1–7.  

67. Zhu Q, Li T, Wei X, Li J, Wang W. In silico and in vitro genotoxicity evaluation of descarboxyl 

levofloxacin, an impurity in levofloxacin. Drug Chem Toxicol. 2014; 37(3): 311–315.  

68. Nagulakonda NNM, Ananthula RS, Krishnamurthy T, Rao MRP, Rao GN. Quantification and in 

Silico Toxicity Assessment of Tazarotene and its Impurities for a Quality and Safe Drug Product 

Development. J Chromatogr Sci. 2019;57(7):625–635.  

69. Fuart Gatnik M, Worth A P. Review of software tools for toxicity prediction, JRC Scientific and 

Technical Reports, 2010, pp. 1–22. doi: 10.2788/60101. 

70. Rim KT. In silico prediction of toxicity and its applications for chemicals at work. Toxicol Environ 

Health Sci. 2020;12(3):191–202. 

71. Mital P, Charmy K, Vivek V. An innovative impurity profiling of Avanafil using LC and LC-MS/MS 

with in-silico toxicity prediction. Arab J Chem. 2020;13(8):6493–6509.  

72. Preethi L, Ganamurali N, Dhanasekaran D, Sabarathinam S. Therapeutic use of Guggulsterone in 

COVID-19 induced obesity (COVIBESITY) and significant role in immunomodulatory effect. Obes 

Med. 2021;24:100346.  

73. Yordanova D, Schultz TW, Kuseva C, Tankova K, Ivanova H, Dermen I, et al. Automated and 

standardized workflows in the OECD QSAR Toolbox’, Comput Toxicol. 2019;10:89–104. 

74. Han Y, Zhang J, Hu CQ, Zhang X, Ma B, Zhang P. In silico ADME and toxicity prediction of 

ceftazidime and its impurities. Front Pharmacol. 2019;10:1–12.  

75. Klopman G. Artificial Intelligence Approach to Structure-Activity Studies. Computer Automated 

Structure Evaluation of Biological Activity of Organic Molecules. J Am Chem Soc. 

1984;106(24):315–7321.  



277 

 

 

76. Klopman G. MULTICASE 1. A Hierarchical Computer Automated Structure Evaluation Program. 

Quantitative Structure‐Activity Relationships. 1992;11(2):176–184.  

77. Kavlock RJ, Ankley G, Blancato J, Breen M, Conolly R, Dix D, et al.  Computational toxicology—

a state of the science mini review. Toxicol Sci. 2008;103(1):14-27. 

78. Baralić K, Jorgovanović D, Živančević K, Miljaković EA, Antonijević B, Djordjevic AB, et al. 

Safety assessment of drug combinations used in COVID-19 treatment: in silico toxicogenomic data-

mining approach. Toxicol Appl Pharmacol. 2020;406:115237. 

79. Chen CY, Kao CL, Liu CM. The cancer prevention, anti-inflammatory and anti-oxidation of 

bioactive phytochemicals targeting the TLR4 signaling pathway. Int J Mol Sci. 2018;19:2729.  

80. Davis AP, Grondin CJ, Lennon-Hopkins K, Saraceni-Richards C, Sciaky D, King BL, et al.The 

Comparative Toxicogenomics Database's 10th year anniversary: update 2015. Nucleic Acids Rea. 

2015;43(D1):D914-D920. 

81. Fioravanzo E, Bassan A, Pavan M, Mostrag-Szlichtyng A, Worth AP. Role of in silico genotoxicity 

tools in the regulatory assessment of pharmaceutical impurities. SAR QSAR Environ Res. 

2012;23(3–4):257–277.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



278 

 

 

 

In silico metode u toksikologiji za procenu 
bezbednosti lekova 

 

Danijela Đukić-Ćosić1,2, Katarina Baralić1, Dragica Jorgovanović1, 
Katarina Živančević1, Dragana Javorac1, Nikola Stojilković1,             

Biljana Radović1, Đurđica Marić1*, Marijana Ćurčić1,2,                  
Aleksandra Buha Djordjević1,2, Zorica Bulat1,2,                                         

Evica Antonijević Miljaković1,2, Biljana Antonijević1,2 

 
1 Univerzitet u Beogradu – Farmaceutski fakultet, Katedra za toksikologiju „Akademik 

Danilo Soldatović”, Vojvode Stepe 450, 11000 Beograd, Srbija 
2 Univerzitet u Beogradu – Farmaceutski fakultet, Centar za toksikološku procenu 

rizika, Vojvode Stepe 450, 11000 Beograd, Srbija 

 
*Autor za korespondenciju: Đurđica Marić, e-mail: dmaric@pharmacy.bg.ac.rs 
 
 

Kratak sadržaj 

Ispitivanja na eksperimentalnim životinjama ne samo da su u prošlosti bila smatrana 
najkonvencionalnijim pristupom za procenu bezbednosti lekova, već su i trenutno osnovna 
metoda za utvrđivanje njihove toksičnosti. Međutim, ova ispitivanja su skupa, vremenski 
zahtevna i za njihovo sprovođenje neophodne su etičke dozvole. Tokom poslednjih 20 godina 
došlo je do napretka u računarskoj nauci i kompjuterskoj obradi podataka, dok se znanje o 
alternativnim tehnikama i njihovoj primeni razvilo u dragocenu veštinu u toksikologiji. Stoga, 
primena in silico metoda u proceni bezbednosti lekova neprestano raste. Ove metode su veoma 
složene i zasnivaju se na saznanjima iz toksikologije, bioinformatike, biohemije, statistike, 
matematike i molekularne biologije. Ovaj pregledni rad će rezimirati trenutna naučna saznanja 
koja se tiču upotrebe in silico metoda u ispitivanju toksičnosti lekova, uzimajući u obzir njihova 
ograničenja i ističući strategije pomoću kojih se mogu dobiti konzistentni rezultati, sa posebnim 
osvrtom na primenu in silico metoda u pretkliničkim ispitivanjima i ispitivanjima toksičnosti 
nečistoća u lekovima. 

 
Ključne reči: softveri, baze podataka, pretklinička ispitivanja lekova,  
         nečistoće u lekovima procena bezbednosti 

 

 

 


