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A B S T R A C T   

Colorectal cancer (CRC) is a significant global health burden that ranks as the third most diagnosed and second 
most common cause of cancer related deaths worldwide. New therapeutic strategies include chemoprevention 
and use of molecules which could prevent, suppress or reverse CRC progression such as sulforaphane (SFN). 
However, evidences about its safety in CRC patients are still lacking. The aim of this in silico investigation was to 
predict SFN-induced adverse effects in CRC patients by computational analysis. The study showed that 334 genes 
were consistently dysregulated in CRC (223 downregulated and 111 upregulated), while 38 were recognized as 
significant and might be used as predictive biomarkers for overall survival and metastasis (TCGA, GEO, R studio). 
Among them, SFN interacted with 86 genes, out of which 11 were marked as significant (correlate with overall 
prognosis and metastasis). Sulforaphane potentiates the overexpression of TIMP1, AURKA, and CEP55, and 
promotes inhibition of CRYAB, PLCE1, and MMP28, that might lead to the progression of CRC (CTD). Pathway 
enrichment analysis revealed that SFN stimulated Transcriptional activation of RUNX2, AURKA activation by 
TPX2, IL-10 signaling, while inhibited Differentiation of White and Brown Adipocyte process, an underlying 
pathway which inactivation led to obesity (Cytoscape ClueGo + CluePedia, DAVID). Thus, genome signature of 
CRC patients could serve as important factor when addressing the risk-to-benefit profile of SFN. Patients with 
colon cancer and increased expression of TIMP1, CCL20, SPP1, AURKA, CEP55, NEK2, SOX9 and CDK1, or 
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downregulation of CRYAB, PLCE1, MMP28, BMP2 and PLAC8 may not be ideal candidates for SFN 
chemoprevention.   

1. Introduction 

Colorectal cancer (CRC) is a significant global health burden that 
ranks as the third most diagnosed and second common cause of cancer 
related deaths worldwide [44]. In the year of 2018, there were around 2 
million new cases of CRC and 880,000 deaths according to International 
Agency for Research on Cancer (IARC) [46]. The occurrence of CRC is 
higher in western countries mainly due to the diet rich in red and pro
cessed meat, sweets, fat, and alcohol consumption [44], but the last 
decade also records an upward trend for CRC incidence in China [53]. 
Recent cancer statistics in China indicates that CRC is 4th most common 
cancer type in males and 5th in females causing the death in almost 50% 
of all CRC – diagnosed patients [8]. 

Age, genetic and environmental factors play a major role in the 
development of CRC. Some of the well-known associations with CRC 
include, for example: African American ethnicity, male sex, inflamma
tory bowel diseases, obesity, sedentary lifestyle, tobacco and alcohol 
use, as well as history of abdominal radiation [48]. The most common 
type of CRC is adenocarcinoma, followed by the rare neuroendocrine, 
squamous cell, adenosquamous, spindle cell and undifferentiated colo
rectal carcinomas [20]. 

While recent development of more efficacious therapy regimes 
significantly improved the treatment of cancer patients, finding ways for 
further decrease of CRC risk and mortality are still in the focus of 
oncology research [3]. One of the promising strategies is chemopre
vention approach, defined in 1976, which includes applying natural, 
synthetic, or biologic chemical agents with aim to reverse, suppress, or 
prevent carcinogenic progression to invasive cancer [1]. For example, 
tamoxifen prevents the development of second primary tumors and de 
novo breast cancer in estrogen-positive high-risk patients [33], while 
chemoprevention of CRC was mostly linked to aspirin and metformin 
[3]. Long-term follow-up studies showed that the regular use of 75–300 
mg of aspirin daily for at least 5 years could reduce the risk of colon 
cancer incidence. Benefit was higher for cancers of the proximal colon in 
comparison with the rectal colon [36]. Similarly, metformin could act as 
immune-promoting agent by stimulating differentiation of CD8+ T cells 
and improving their antiapoptotic function. As Zhang et al. [54] 
explained, metformin regulates the AMPK–miR-107–Eomes–PD-1 
pathway, which enhances Eomesodermin (Eomes) expression and 
further inhibits the transcription of programmed cell death 1 protein 
(PDCD1) in metformin-treated CD8+ T cells and the CAR-T cell therapy 
model [54]. 

Another proposed molecule that could be used in colon cancer pa
tients as a chemoprevention is sulforaphane (SFN), an isothiocyanate 
isolated from leafy vegetables [19]. It was reported that SFN could 
activate different proapoptotic pathways in human colon cancer cells 
SW620, such as p53 and caspase-2-JNK pathway [37], as well as block 
cells progression and angiogenesis by inhibiting HIF-1α and VEGF 
expression [29]. Moreover, when combined with conventional cyto
static drug, cisplatin, SFN was able to inhibit key steps of metastatic 
events in triple negative breast cancer cells. Authors proposed sup
pression of sirtuins and reversion of the epithelial–mesenchymal tran
sition (EMT) process as potential underlying mechanism [40]. Similarly, 
it was reported that epigallocatechin gallate and SFN combination 
treatment could induce apoptosis in ovarian cancer cells resistant to 
paclitaxel most probably by promoting DNA damage response [7]. 
However, even though there is an increasing number of in vitro based 
research showing positive effects of SFN, very few studies explained its 
toxic potential. For example, when used in high doses (from 150 to 300 
mg/kg), SFN caused harmful effects in mice, such as sedation, hypo
thermia, impairment of motor coordination, decrease in skeletal muscle 

strength, leucopenia, and even deaths [42]. Moreover, Mahéo et al. [35] 
reported that SFN could inhibit glutathione S-transferases and some 
enzymes of cytochromes P-450 family in intact human and rat hepato
cytes [35], which could cause the impaired metabolism of different 
cytotoxic agents used in cancer patients’ treatment. Therefore, it is 
rational to hypostasis that SFN-based therapy could induce adverse 
outcomes especially when used in immunocompromised cancer pa
tients. However, to the best of our knowledge, its safety profile for the 
treatment of CRC patients has not been investigated yet. Thus, the aim of 
this research was to identify potential SFN-induced adverse outcomes in 
CRC patients by applying in silico toxicogenomics approach. 

2. Material and methods 

2.1. Microarray data 

The key word ‘colon cancer’ was searched in the GEO database (ncbi. 
nlm.nih.gov/geo/), public repository for high-throughput microarray 
and next-generation sequence functional genomic data sets with more 
than 1 million samples currently available in the public domain. In 
addition, GEO provides tools for identification, analysis and visualiza
tion of data, such as GEO2R [2]. The research was restricted to Homo 
sapiens and the study type was confined to RNA sequencing data. Study 
type selected: expression profiling by array. The total of 521 results were 
retrieved, and 3 gene expression datasets were selected for further 
investigation. 

Three gene expression profiles used in our study consisted of patients 
derived colon cancer tissues, and thus could be compared with other 
publicity available colon cancer data. Chosen sets were: GSE41258, 
GSE62932, and GSE68468. Among these, GSE41258 and GSE68468 
were screened on GPL96 platform [HG-U133A] Affymetrix Human 
Genome U133A Array, while GSE62932 was based on GPL570 platform 
[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array. The 
samples were divided into two groups – primary colon cancer tissues and 
normal colon mucosae, as a control. Two of the sets, GSE41258 and 
GSE68468 contained 186 colon cancer tissues and 55 normal colon 
mucosae, while GSE62932 was generated from 64 colon cancer and 4 
normal colon tissues. The Cancer Genome Atlas, TCGA (http://tcga-dat 
a.nci.nih.gov/tcga/) colon adenocarcinoma (COAD) dataset was 
downloaded from Genomic Data Commons Data Portal (GDC; 
https://portal.gdc.cancer.gov/), containing 285 cases of adenocarci
noma colon cancer with survival time data and 41 normal, healthy colon 
tissues. 

2.2. Identification of differentially expressed genes (DEGs) 

Differently expressed genes (DEGs) between primary colon cancer 
samples and normal controls in GSE sets were identified using the 
GEO2R online analysis tool (ncbi.nlm.nih.gov/geo/geo2r). |Log FC = >

1.0 and corrected p < 0.05 were set as the cutoff criteria. The edgeR 
(Empirical Analysis of Digital Gene Expression Data in R) R package 
(https://doi.org/10.1093/bioinformatics/btp616) was used to identify 
the tumor-normal DEGs from TCGA data. In the screening, the FDR 
value < 0.01 and |logFC | > 1.0 were set as the cutoff criterion. Among 
detected DEGs, consistent DEGs of the four gene expression datasets 
(GEO and TCGA) were screened using the Venn diagram drawing tool 
from TBtools software [5]. Consistent genes were than separated into 2 
groups: downregulated and upregulated gene-sets which were analyzed 
separately in the next steps of this study. 
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2.3. Network analysis 

Network analysis was performed using Cytoscape plug-in STRING, 
an application which helps predict interconnections between genes from 
the set with an evidence score of 0.4 or greater. We extracted consis
tently downregulated genes from analyzed expression profiles and 
uploaded them to the STRING protein-query tool to retrieve the genes’ 
network. The same process was repeated with upregulated subset of 
DEGs. 

2.4. Gene-set enrichment analysis 

Functional annotation clustering was performed with the Cytoscape 
plug-in BINGO. Up-regulated group of genes was uploaded to the BINGO 
with all human genes as background and run in a Gene Ontology (GO) 
Biological Process analysis with p value < 0.05 set as the level of sig
nificance. Hypergeometric test with FDR multiple testing correction was 
chosen as the statistical test and overrepresented categories after 
correction were retrieved. The same process was repeated with the 
subset of downregulated DEGs. 

Pathway analysis was performed by Cytoscape ClueGO plug-in 
version 2.5.7. KEGG, Reactome, and WikiPathways databases were 
selected to extract the list of pathways. The two‑sided hypergeometric 
test was used for the enrichment with a Bonferroni step down correction 
and a κ score of 0.3 to link the terms. The ClueGo analysis was integrated 

with CluePedia plug-in 1.5.7 to link the examined up and downregulated 
colon cancer genes with molecular pathways. Moreover, we used the 
web-based tool DAVID (Database for Annotation, Visualization and In
tegrated Discovery, version 6.8, http://david.abcc.ncifcrf.gov/home. 
jsp) for verification of obtained results. 

2.5. Survival and metastasis analysis 

Patient’s survival time and status, combined with tumor-DEGs, were 
used for the univariable Cox regression analysis, performed with “sur
vival” R package. The cut-off criterion was set to p-value < 0.05 for 
screening of the survival-related gene at overall survival. The same 
analysis was used for predicting metastasis-related genes among tumor- 
DEGs, with p < 0.05. 

2.6. Sulforaphane interacting genes 

In this investigation, SFN-interacting genes were obtained from the 
Comparative Toxicogenomics Database (CTD; http://CTD.mdibl.org), a 
publicity available and scientifically useful resource that contains inte
grated data for the better understanding of the relationships between 
chemicals, genes, and diseases [15]. The analysis reported here was 
based on the data downloaded in September 2021. Moreover, CTD 
Chemical-Gene Interaction Query helped in detection of binary in
teractions between SFN and important genes. 

Fig. 1. Flow chart of the steps used in this in silico data-mining approach.  
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2.6.1. Sulforaphane – interacting genes in colon cancer 
To verify if SFN could change the expression of genes previously 

defined as important, in human colon cancer cells, GEO dataset 
GSE174444 was analyzed with GEO2R online tool [2]. Three biological 
replicates of the colon cancer cell line, SW480, were treated with 25 
μmol/l SFN, and three with a control, double-distilled water, for 48 h. 
RNA was pooled, processed and hybridized to the GN-GeneChip Clariom 
S Array, human (Thermo Fisher Scientific; cat. no. 902926) [21]. All the 
results were downloaded and saved in text format. The genes that met 
the cut-off criteria of p < 0.05 and |Log FC = > 1.0 were considered 
DEGs. Among them, important genes were extracted. 

An overview of the methodology applied in this study is shown 
sequentially in the Fig. 1. 

3. Results 

3.1. Identification of differentially expressed genes (DEGs) 

The GEO gene expression profiles from 3 different datasets 
(GSE41258, GSE62932, and GSE68468) were selected for identification 
of DEGs among the colon cancer and normal colon mucosa. These genes 
were compared with the TCGA datasets containing gene expression 
profiles of primary colon adenocarcinoma, as well as the samples from 
healthy control patients’ tissues. The total of 721 colon cancer tissues 
was compared to 155 normal colon mucosa samples to identify genes 
which had changed expression in the primary tumor tissues. In the 
GSE41258, 813 genes were differently expressed, while GSE62932 and 
GSE68468 contained 941 and 1206 DEGs, respectively. From TCGA 
dataset 4471 genes were extracted as differently expressed, 1865 
downregulated and 2067 upregulated. 

The Fig. 2 shows Venn diagram of DEGs among all the investigated 
gene expression profiles. The total of 334 genes was consistently dys
regulated. For our further analyses we generated two sets: first con
taining 223 underexpressed and the second 111 overexpressed genes in 
the primary colon cancer tissue versus normal colon mucosa (supp. 
Table 1). 

3.2. Network analysis 

Protein-protein interaction (PPI) network analysis was conducted 
separately for down and upregulated genes. Firstly, we uploaded genes 
which expression was decreased in tumor tissue and, based on the 
STRING prediction results, a network with 222 nodes and 370 edges was 
constructed (Fig. 3a). The number of segments connected to each gene 
(node) represents its degree. As seen in the Fig. 3a, the majority of the 
genes are clustered together, while 39 stand alone. The highest 

connectivity score (0.998) was generated between PRKAR2B and 
PRKACB, followed by EDN3 – EDNRB (0.995), SGK1 – NEDD4L (0.993), 
and GREM2 – BMP2 (0.992). 

The same study was repeated for the set of upregulated genes. The 
network with the total of 111 nodes and 427 edges was constructed 
where genes clustered in 2 main groups, mutually connected via TRIB3- 
GDF15 edge. Five gene pairs (ENDRA-GRP; FABP6-CEL; PSPH-SHMT2; 
SLC22AB-SLCO1B3; ARNTL2-SIM2) were formed with high connectivity 
score (> 0.4), while 13 genes stand-alone (Fig. 3b). 

3.3. Gene-set enrichment analysis 

In the next step, GO enrichment analysis of the up and down
regulated DEGs were performed separately, by using Cytoscape plug-in 
BiNGO to better understand their function. Among the underexpressed 
genes, the total of 48 enriched biological processes (BP) were identified, 
where primary BP regulated circulatory system process, blood circula
tion, chemical homeostasis, blood pressure, cellular chemical homeo
stasis, small molecule metabolic process, response to nutrient levels, ion 
homeostasis, lipid metabolic process, and signaling. Additionally, 
downregulated genes were enriched for response to wounding, response 
to chemical stimulus, cell differentiation, positive regulation of leuko
cyte chemotaxis, cell surface receptor linked signaling pathway, and 
positive regulation of leukocyte migration (Fig. 4). 

Pathway enrichment analysis performed by ClueGo + CluePedia 
version 2.5.7 and 1.5.7 revealed that colon cancer downregulated genes 
can be grouped into 14 clusters among which are: Aldosterone-regulated 
sodium reabsorption, Complement and coagulation cascades, Adipocy
tokine signaling pathway, Mineral absorption, Glycolysis/Gluconeo
genesis, Sulfur metabolism (Fig. 5). Moreover, colon cancer 
downregulated genes were enriched for immune-related processes such 
as regulation of leukocyte chemotaxis, negative regulation of leukocyte 
migration, regulation of cellular extravasation, and myeloid leukocyte 
cytokine production. 

On the other hand, upregulated set of genes were enriched for 83 BP, 
among which multicellular organismal metabolic process, multicellular 
organismal catabolic process, collagen metabolic process, multicellular 
organismal macromolecule metabolic process, collagen catabolic pro
cess, and regulation of cell proliferation were at the top of the BP list 
(Fig. 6). 

Fig. 7 shows the most significantly enriched KEGG, REACTOME and 
WikiPathways for the set of over expressed genes in the colon cancer. 
These pathways were grouped in 13 different clusters, among which are 
Collagen degradation, Senescence and autophagy in cancer, Extracel
lular matrix organization, Pathways regulating Hippo signaling, etc 
(Fig. 7). Moreover, immune-related pathways were also enriched; they 

Fig. 2. Venn diagram of DEG in primary colon cancer versus normal cancer mucosa for (a) Downregulated genes and (b) Upregulated genes (Venn diagram drawing 
tool from TBtools software). 
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Fig. 3. a) Downregulated colon cancer genes interaction network; b) Upregulated colon cancer genes interaction network. Nodes represent genes where the highest 
intensity of the color indicates the highest down(up)regulation of genes’ expression. The edge thickness was proportional to the combined score of the 
genes (STRING). 
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clustered in 2 groups with p value < 0.05, positive regulation of gamma 
delta T cell differentiation and Neutrophil chemotaxis containing 8 and 
9 immune-processes, respectively. 

3.4. Survival and metastasis analysis 

The univariable Cox regression analysis, performed with “survival” R 
package was used for screening of the survival- and metastatic-related 
genes among tumor-DEGs, and the total of 38 genes was retrieved. 

The expression of 6 consistently upregulated genes (COL10A1, 
CXCL3, NEBL, RRM2, TIMP1, and TPX2) and decreased expression of 16 
genes: SMPDL3A, IL1R2, HIGD1A, PPARGC1A, AOC3, CHRDL1, GPX3, 
CLCA4, CRYAB, MYH11, UGDH, KCNMA1, ABHD3, PDZRN4, ZG16, and 
HMGCS2 were in correlation with lower overall survival in COAD pa
tients. Moreover, among upregulated genes, 4 (GINS1, AURKA, MMP12, 
and CEP55) were related to the colon cancer metastasis, together with 
12 genes, which suppressed expression was seen in metastatic colon 
cancer patients. These genes were: CPA3, MYH11, CA1, INSL5, 
SMPDL3A, CDH19, FGL2, CCL8, LGI1, PLCE1, MMP28, and PRKACB. All 
of the mentioned genes (N = 38) are considered significant and were 
used in further analysis. 

3.5. SFN-interacting genes 

SFN interacted with 1896 genes in total (source: CTD), among which 
were 86 genes differently expressed in colon cancer patients. 

Pathway enrichment analysis for the set of 86 genes was done as 
previously explained (ClueGo + CluePedia version 2.5.7 and 1.5.7). 
Obtained results showed the implication of 21 genes from the set in 
FOXO-mediated transcription, Differentiation of white and brown adi
pocytes, Prostaglandin synthesis and regulation, Transcriptional regu
lation by RUNX2, AURKA activation by TPX2, Interleukin 10 signaling, 
Human complement system, Molecules associated with elastic fibers, 
and Oligodendrocyte specification and differentiation (including 
remyelination) leading to myelin components for CNS (Fig. 8). More
over, among detected SFN-interacting genes, 11 were identified as sig
nificant and correlated with overall survival or metastasis (ABHD3, 
AURKA, CEP55, CRYAB, FGL2, MMP28, NEBL, PLCE1, PPARGC1A, 
TIMP1, and UGDH). Three genes were in common between 2 sets: 
AURKA, PPARGC1A, TIMP1. 

Furthermore, the CTD Chemical-Gene Query was used for identifi
cation of binary reactions between SFN and 21 genes from the set 
associated with the predicted pathways (Fig. 8). Sulforaphane-induced 
or decreased mRNA expression was compared with the expression of 
selected genes in colon cancer tissue. Moreover, the same method helped 

Fig. 4. Enriched biological pathways (BP) among colon adenocarcinoma (COAD) downregulated set of genes with associated p-values (Cytoscape BINGO, p val
ue < 0.05; Hypergeometric test with FDR multiple testing correction); the size of the dots represents the number of DEGSs associated with the GO term and the color 
of the dots represents the p-values. 
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in detection of interactions reported between SFN and significant genes 
which correlated with overall survival or metastasis. It was noticed that 
SFN further upregulated TIMP1, AURKA, and CEP55, while stimulated 
inhibition of CRYAB, PLCE1, and MMP28. Interestingly, SFN also 
reversed CRC expression of 5 significant genes (PPARGC1A, ABHD3, 
FGL2, NEBL, and UGDH) (Table 1). 

3.6. SFN-interacting genes in colon cancer cells 

To verify the presented results, gene expression profiles from 
GSE174444 dataset was used and analyzed with GEO2R online tool. 
After being treated with 25 μmol/l of SFN for 48 h, SW480 colon cancer 
cells showed increased the expression of CDK1, NEK2, SPP1, ABHD3, 

Fig. 5. Pathways analysis of COAD downregulated genes a) KEGG 
identified enriched pathways; b) WikiPathways identified enriched 
pathways; c) Reactome identified enriched pathways. Size of nodes 
implies the percentage of genes from the set involved in the regulation 
of each molecular pathway; color indicates genes’ association to a 
particular molecular pathway; black circled genes are identified as 
significant for CRC survival and metastasis (Cytoscape ClueGo +
CluePedia: KEGG, Reactome, and WikiPathways databases were 
selected to extract the list of pathways; two‑sided hypergeometric test 
with a Bonferroni step down correction and a κ score of 0.3).   
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CEP55, and UGDH, while the expression of CFD was significantly 
downregulated in comparison to the control (untreated cells). This was 
in accordance with the previously obtained results, showing the po
tential of SFN to impact mentioned genes and further induce positive or 
negative effects in COAD patients. On the contrary, when used in the 
mentioned dose, SFN promoted the expression of PLCE1 in colon cancer 
cells. 

4. Discussion 

The risk-to-benefit profile of SFN has not been fully explained yet, 
even though it is a well-known chemoprotective agent suggested as a 
potent therapeutic molecule for different diseases such as: autism 

spectrum disorder [39], neurodegenerative diseases [25,32], as well as 
cancer [11]. Cancer patients are particularly vulnerable to substances 
used as an addition to a given therapy due to the known compromission 
of their immune system, as well as numerous side effects caused by 
cytostatic treatments [18]. Thus, when choosing chemoprevention for 
cancer patients, it is of great importance to discover which harmful ef
fects could be caused by the selected molecule. The adverse effects could 
be related to the cancer type or stage, among the other factors. 

The increasing number of colon cancer cases, the gradually devel
oped radio- and chemotherapeutic resistance and the expected adverse 
outcomes of conventional treatments pointed out the need for combi
nation therapy in CRC patients [27]. Sulforaphane, as one of the pro
posed adjuvant molecules, should be thoroughly investigated before its 

Fig. 6. Enriched biological pathways (BP) among colon adenocarcinoma (COAD) upregulated set of genes with associated p-values (Cytoscape BINGO, p-val
ue < 0.05; Hypergeometric test with FDR multiple testing correction); the size of the dots represents the number of DEGSs associated with the GO term and the color 
of the dots represent the p-values. 
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application, bearing in mind pharmaco-toxicological profile of this 
molecule. Therefore, this in silico investigation aimed to predict the 
possible SFN-triggered molecular mechanisms which could cause 
adverse outcomes when used as an accompanying treatment for patients 
with CRC. 

4.1. Colon-cancer dysregulated genes 

We firstly identified consistently dysregulated genes in colon cancer 
tissue when compared to normal colon mucosa by using available TCGA 
and GEO datasets. The total of 111 genes were overexpressed and 223 
underexpressed in colon cancer tissues (334 in total), among which 
increased expression of COL10A1, CXCL3, NEBL, RRM2, TIMP1, and 
TPX2 (n = 6), and decreased expression of SMPDL3A, IL1R2, HIGD1A, 
PPARGC1A, AOC3, CHRDL1, GPX3, CLCA4, CRYAB, MYH11, UGDH, 
KCNMA1, ABHD3, PDZRN4, ZG1, and HMGCS2 (n = 16) were in cor
relation with the lower overall survival in COAD patients. Similarly, Liu 
et al. [34] suggested that SERPINE1, SPP1, and TIMP1 could serve as 
biomarkers closely related to the outcome in CRC patients [34]. More
over, survival and correlation analyses revealed that COL1A1, CXCL5, 
GNG4, TIMP1, SPP1, and LPAR1 could be considered as hub genes, 
important for diagnosis and therapeutic strategies guiding in colon 
cancer [24]. In addition, GINS1, AURKA, MMP12, and CEP55 (n = 4) 
were noted as upregulated genes related to the colon cancer metastasis, 
together CPA3, MYH11, CA1, INSL5, SMPDL3A, CDH19, FGL2, CCL8, 
LGI1, PLCE1, MMP28, and PRKACB (n = 12), which suppressed 
expression was seen in metastatic colon cancer patients. Overexpression 
of AURKA, MMP12 and other metalloproteinases were already recog
nized as markers of poor prognosis in different tumor types including 
colon carcinoma [22,30]. On the other hand, high PLCE1 expression 
significantly inhibited the proliferation of colon cancer cells and 
degraded its malignant degree [50], which was in accordance to our 
results suggesting that inhibition of the PLCE1 activated synthesis of 
phospholipase C epsilon which could stimulated CRC growth. Yao et al. 
[52] showed that the low expressions of PRKACB was linked to the 
worsening of overall survival in CRC patients, making it a potential 
therapeutic target [52]. 

Furthermore, in this research BP and pathways regulated by CRC 
DEGs were identified. As expected, they were mostly involved in the 
gastro-intestinal and metabolic processes such as: Aldosterone-regulated 
sodium reabsorption, Complement and coagulation cascades, Adipocy
tokine signaling pathway, Mineral absorption, Glycolysis/Gluconeo
genesis, Sulfur metabolism, but also cancer progression (Collagen 
degradation, Senescence and autophagy in cancer, Extracellular matrix 
organization, etc). Moreover, colon cancer dysregulated genes were 
enriched for immune-related processes, such as regulation of leukocyte 
chemotaxis, negative regulation of leukocyte migration, positive regu
lation of gamma delta T cell differentiation and Neutrophil chemotaxis, 
to name a few. These findings were previously explained in the study 
performed by Ding et al. [16]. They identified CRC DEGs which were 
mainly enriched in BPs involved in collagen catabolic process, extra
cellular matrix organization, collagen fibril organization, cell division, 
and G1/S transition of the mitotic cell cycle for the upregulated genes; 
and bicarbonate transport, muscle contraction, regulation of intracel
lular pH, chloride transmembrane transport, and one-carbon metabolic 
process for the downregulated genes [16]. 

4.2. Sulforaphane – interacting genes 

Sulforaphane – interacting genes were downloaded from the CTD. 
The total of 1896 genes were retrieved and compared to colon cancer 
DEGs, aiming to identify the set of common genes, or in other words, 
genes that can be affected by SFN and are consistently dysregulated in 
CRC patients. We obtained 86 genes, which were further used for 
pathway enrichment analysis that helped in detection of molecular 
pathways that could drive adverse outcomes in CRC patients treated 

Fig. 7. Pathways analysis of COAD upregulated genes a) KEGG identified 
enriched pathways b) WikiPathways identified enriched pathways c) Reactome 
identified enriched pathways. Size of nodes implies the percentage of genes 
from the set involved in the regulation of each molecular pathway; color in
dicates genes’ association to a particular molecular pathway; black circled 
genes are identified as significant for CRC survival and metastasis (Cytoscape 
ClueGo + CluePedia: KEGG, Reactome, and WikiPathways databases were 
selected to extract the list of pathways; two‑sided hypergeometric test with a 
Bonferroni step down correction and a κ score of 0.3). 
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with SFN. Out of them, 21 genes were reported as important for path
ways regulation (Fig. 8), among which 3 were significant (PPARGC1A, 
AURKA, and TIMP1). Furthermore, CRC expression of each gene from 
the set was compared with the type of interaction described between 
SFN and the selected genes (source: CTD, Table 1). Moreover, SFN- 
interacted with 11 significant genes which correlated with overall sur
vival or metastasis in CRC patients. Additionally, this in silico research 
helped us to obtain SFN-significant genes binary connections. It was 
noted that SFN potentiates the overexpression of TIMP1, AURKA, and 
CEP55, and promotes inhibition of CRYAB, PLCE1, and MMP28 what 
might lead to the progression of CRC. Likewise, SFN further increased/ 
decreased expression of 11 genes from the set (Table 1-blue lines). 
However, when used in a dose as low as 25 µmol/l, SFN promoted the 
expression of PLCE1 in SW480 colon cancer cells. Thus, as expected, the 
dose might be the critical factor determining the effect of SFN on colon 
cancer growth and progression. 

Interestingly, SFN also mediated reversion of CRC expression of 5 
significant genes, namely: PPARGC1A, ABHD3, FGL2, NEBL, and UGDH 
what could explain its anti-tumor effects. In their recent research, Zhu 
et al. [56] explained that FGL2 played a role in suppression of intestinal 
inflammation and CRC development via stimulating macrophages po
larization [56]. As seen in Table 1, SFN was reported to stimulate mRNA 
expression of FGL2. Moreover, anticancerogenic potential of SFN could 
be mediated by upregulation of PPARGC1A gene. Accordingly, it was 
previously reported that when the level of PPARGC1A expression rises, 
the survival rate of COAD patients improves [55]. 

Tissue inhibitor matrix metalloproteinase 1 (TIMP1) is required for 
the regulation of the matrix remodeling during degradation of extra
cellular matrix, while its inhibition of matrix metalloproteinases is 
thought to be critical for the metastatic progression of cancer [43]. 
Hansson et al. [23] suggested that serum level of TIMP1 could be related 
to left ventricular hypertrophy and heart failure. They observed 1016 
individuals without history of heart diseases and concluded that 
increased TIMP1 serum levels might be an early sign of cardiovascular 

extracellular matrix remodeling [23]. Similarly, in a male cohort un
dergoing coronary angiography, plasma level of TIMP1 was recognized 
as predictive biomarker of the subsequent risk of death or myocardial 
infraction [4,45]. According to the conducted study, SFN stimulated 
expression of CCL20 as well as SPP1 simultaneously with TIMP1 that 
further activated IL-10 signaling pathway and Lung fibrosis, respec
tively. IL-10 signaling is known immune-suppressive process which 
might limit host immune response to pathogens, including tumor – 
derived antigens [13]. 

Aurora Kinase A (AURKA) is a serine/threonine kinase family 
member involved in mitotic entry, bipolar spindle formation, centro
some maturation control, and segregation during mitosis, and as pre
viously mentioned, it may serve as poor prognostic market for CRC 
patients [22], or contribute to colorectal adenoma to carcinoma pro
gression [12]. Moreover, Jiang et al. [26] noted that overexpression of 
AURKA in renal fibroblasts promoted fibrotic response and thus, 
aggravated renal fibrosis in chronic kidney disease [26]. Together with 
SFN-induced expression of NEK2 and CDK1 in colon cancer cells, acti
vation of AURKA by TPX2 could be promoted. 

Moreover, it was suggested that SFN could stimulate SOX9, gene 
reported to play a role in regulation of RUNX2 transcription together 
with CDK1. Runt-Related Transcription Factor 2 (RUNX2) is an osteo
genic transcription factor crucial for bone formation. However, in the 
cardiovascular system, it has emerged as an important factor that pro
motes osteogenic trans differentiation of vascular smooth muscle cells 
and expression of inflammatory cytokines, which might lead to 
atherosclerosis and other vascular complications [10]. The leucocytes 
from patients with symptomatic arteriosclerotic disease demonstrated 
the augmented mRNA level of RUNX2 and osteopontin, while osteo
calcin was decreased [49]. Thus, we may suggest that SFN should be 
carefully applied in CRC patients with the history of cardiovascular 
diseases. 

Genes involved in Differentiation of White and Brown Adipocyte 
process, namely BMP2 and PLAC8 were downregulated in CRC tissue 

Fig. 8. Pathways analysis of SFN-interacting 
COAD disregulated genes: size of nodes im
plies the percentage of genes from the set 
involved in the regulation of each molecular 
pathway; color indicates genes’ association to a 
particular molecular pathway; significant 
genes: PPARGC1A, AURKA, TIMP1 (Cytoscape 
ClueGo + CluePedia: KEGG, Reactome, and 
WikiPathways databases were selected to 
extract the list of pathways; two‑sided hyper
geometric test with a Bonferroni step down 
correction and a κ score of 0.3).   
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Table 1 
Comparison between the CRC mRNA expression of genes involved in identified pathways (21) + significant genes (11) with CTD detected binary interactions between 
SFN and the same group of genes. Three genes were in common for the two sets (AURKA, PPARGC1A, TIMP1).  

*Blue lines: SFN promotes the expression of genes in the same way, as it was seen in colon cancer tissue; red lines: SFN regulates the expression of significant genes’ in 
the way opposite to colon cancer tissue expression; bold genes – recognized as significant (SFN-interacting genes that were in correlation with lower overall survival or 
metastasis). 
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and could be further inhibited via SFN, which might contribute to the 
development of obesity. In placenta-specific gene 8 protein (PLAC8) 
deficient mice the increment in fat storage was evident. Proposed 
mechanism relies on inhibition of thermogenesis due to inhibition of C/ 
EBPβ transcription [28]. In another study, authors observed that 
PLAC8-knockout mice where more promoted to develop type 2 diabetes 
associated with obesity [38]. Moreover, PLAC8 expression was impor
tant for establishing an optimal CD8 T cell response against influenza A 
virus via Th1 T cell-driven inflammation [41]. Similarly, the protein 
expressions of BPM-2 and phosphorylated-Smad1/5 were significantly 
lower in diet-induced obese mice when compared to the control [9]. 

4.3. Strengths of the bioinformatic analysis in toxicology 

The advantage of the large-scale multi-omics datasets, such as those 
presented in TCGA, have largely helped in the understanding of the 
characteristics of a wide variety of tumors. With these cancer datasets 
characterization of human cancers at the DNA, RNA, protein and/or 
epigenetic levels can be identified, which subsequently eases the 
development of the better, targeted therapies. To date, TCGA is the most 
prominent cancer genomics program which offers more than 10,000 
primary tumor and matched normal samples across the 33 cancer types 
[47]. Moreover, these data can help in faster development of personal
ized cancer therapy strategies and prediction of the possible side effects 
of the given treatment in different patients. 

The 3R principle in toxicological research forced the development of 
data repositories which can be used for preliminary analysis and iden
tification of the chemical-gene interactions and disease relationships 
[31]. One of such databases is the CTD, which captures public data 
including: date of curation, ID of the curator, PubMed ID, interaction, 
species, chemical, gene/protein, associated diseases and author contact 
information [51]. Moreover, prior to the public release on the CTD 
website, all the curated data goes through quality control review, a 
well-designed process in which each curated interaction is captured 
using the controlled vocabularies/ontologies with aim to ensure con
sistency [14]. Comparative Toxicogenomics Database uses the official 
gene symbols and names from the National Center for Biotechnology 
Information’s (NCBI) Entrez-Gene database, while CTD disease vocab
ulary uses terms are from both MeSH (Medical Subject Headings) and 
OMIM (Online Mendelian Inheritance of Man) [15]. 

The combination of all the mentioned approaches allows preliminary 
toxicological investigations, which are able to give the predictions of 
potentially harmful effects of the investigated chemical and shape 
further in vitro and in vivo analysis. 

4.4. Limitations of the used in silico approach 

Knowing that analyzing “omics” data at the individual level is critical 
for the success of precision medicine, we combined toxicogenomic data 
mining approach with DEGs analysis aiming to explore and gain better 
understanding of the pharmaco-toxicological profile of SFN, as well as to 
predict risk factors for the onset of adverse outcomes, such as comor
bidities, biomarkers etc. 

However, having in mind that the data in such computational 
methods and processes is extracted by drawing statistical associations 
between genes and drug of interest, it is not possible to directly address 
the dose-response relationship. Moreover, it should also be mentioned 
that not only dose, but many other factors might influence the mani
festation of substance-induced toxic effects, such as route of adminis
tration, duration, individual drug metabolism rates, various colon 
cancer types, etc. [6,15], which should be explored in our further in 
vitro and in vivo investigations. 

5. Conclusion 

Sulforaphane is recognized as effective chemotherapeutic molecule 

which could be used in various colon cancer types, even though, its 
safety profile for the treatment of CRC patients has not been defined. 
This study showed that 334 genes (223 down and 111 upregulated) were 
consistently dysregulated in CRC, and SFN interacted with 86. Among 
them SFN interacted with 86 genes and 21 of them were identified as 
significant. Interestingly, SFN potentiates the overexpression of TIMP1, 
AURKA, and CEP55, and promotes inhibition of CRYAB, PLCE1, and 
MMP28, that might lead to the progression of CRC, while SFN-mediated 
regulation of PPARGC1A, ABHD3, FGL2, NEBL, and UGDH could 
contribute to its anti-tumor effects. Moreover, SFN stimulated Tran
scriptional activation of RUNX2, and AURKA activation by TPX2, mo
lecular pathways, which drive tumor progression and aggressiveness. 
Their promotion could also contribute to atherosclerosis and renal 
fibrosis in chronic kidney disease, respectively. In addition, SFN- 
contributes to the activation of immune-suppressive process, IL-10 
signaling, which might limit host immune response to pathogens, 
including tumor – derived antigens while inhibiting Differentiation of 
White and Brown Adipocyte process, an underlying pathway which 
inactivation leads to obesity. Thus, genome signature of CRC patients 
could serve as important factor when addressing the risk-to-benefit 
profile of SFN therapy. Patients with colon cancer and increased 
expression of TIMP1, CCL20, SPP1, AURKA, CEP55, NEK2, SOX9 and 
CDK1, or downregulation of CRYAB, PLCE1, MMP28, BMP2 and PLAC8 
may not be ideal candidates for SFN chemoprevention. 
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