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The availability of large human datasets for genome-wide association studies (GWAS) and
the advancement of sequencing technologies have boosted the identification of genetic
variants in complex and rare diseases in the skeletal field. Yet, interpreting results from
human association studies remains a challenge. To bridge the gap between genetic
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association and causality, a systematic functional investigation is necessary. Multiple
unknowns exist for putative causal genes, including cellular localization of the molecular
function. Intermediate traits (“endophenotypes”), e.g. molecular quantitative trait loci
(molQTLs), are needed to identify mechanisms of underlying associations. Furthermore,
index variants often reside in non-coding regions of the genome, therefore challenging for
interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences,
and regulatory interactions between enhancers and their target genes is central for
understanding causal genes in skeletal conditions. Animal models with deep skeletal
phenotyping and cell culture models have already facilitated fine mapping of some
association signals, elucidated gene mechanisms, and revealed disease-relevant
biology. However, to accelerate research towards bridging the current gap between
association and causality in skeletal diseases, alternative in vivo platforms need to be used
and developed in parallel with the current -omics and traditional in vivo resources.
Therefore, we argue that as a field we need to establish resource-sharing standards to
collectively address complex research questions. These standards will promote data
integration from various -omics technologies and functional dissection of human complex
traits. In this mission statement, we review the current available resources and as a group
propose a consensus to facilitate resource sharing using existing and future resources.
Such coordination efforts will maximize the acquisition of knowledge from different
approaches and thus reduce redundancy and duplication of resources. These
measures will help to understand the pathogenesis of osteoporosis and other skeletal
diseases towards defining new and more efficient therapeutic targets.
Keywords: genome-wide association study, musculoskeletal disease, gene regulation, animal models, data
integration analysis
LARGE GWAS HAVE IDENTIFIED
MULTIPLE LOCI THAT ARE ASSOCIATED
WITH COMPLEX SKELETAL TRAITS

In the last decade, a series of large and well-powered studies have
dramatically increased our appreciation of a multitude of genetic
factors that influence skeletal diseases, including osteoporosis.
Significant advances of the post-genomic era are expected to
translate into enhanced ability to predict who is at risk for
disease, and to enable better treatment of those who already have
bone disease (1, 2). GWAS and whole genome sequencing (WGS)
analyses have transformed the genetic analysis of complex diseases
in general and osteoporosis in particular. The results of GWAS are
increasingly being used by the pharmaceutical industry as an
effective means of prioritizing compounds for development, as
well as for repurposing existing medications for new indications (3).

Bone mineral density (BMD) remains the strongest predictor of
fracture risk. As BMD also is highly heritable, it is frequently used
in GWAS (4). The most significant study to date on the genetics of
osteoporosis is a 2019 UK Biobank study involving approximately
420,000 participants (5). This study identified a total of 518 loci
associated with estimated heel BMD, of which 301 were new loci.
Of note, GWAS is mostly useful to identify common variants
(usually defined as variants with a minor allele frequency >1%). On
the other hand, genetic mutations are frequently discovered for
n.org 2
less-common skeletal diseases; these mutations might be rare. A
recent strategy that has already been employed in skeletal research
is to use WGS, which is able to identify rare variants with large
effect sizes. Such studies have identified several rare mutations in
LGR4 (6) and COL1A2 (7) loci that are associated with low BMD.
One particularly powerful study combining sequencing and GWAS
identified a non-coding variant at EN1 (minor allele
frequency = 1.6%) that also has large effects on BMD (8).

Interpreting results from human association studies remains a
challenge, especially nominating causal genes for complex traits
based on genome-wide significant SNPs (9). To bridge the gap
between the genetic association and molecular function, a
systematic functional investigation is necessary to interpret
GWAS variants and to infer the exact disease-causing genes, or
genes they regulate, and the cells in which they act (9). Here we
review current practice for functional dissection of human
complex traits and propose a roadmap for data integration and
target prioritization for the skeletal outcomes.

CAUSALITY OF GENETIC MUTATIONS
ASSOCIATED WITH RARE SKELETAL
DISEASES REQUIRES PROOF
Rare skeletal disorders span a broad clinical spectrum of bone-
related pathologies, occasionally exhibiting extra-skeletal
November 2021 | Volume 12 | Article 731217
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manifestations. Besides being genetically heterogeneous, the
severity of these disorders is highly variable, ranging from
neonatal lethality to minor complications discovered
incidentally during adulthood (10, 11).

In contrast to complex traits having a multifactorial genetic
etiology, genetic studies of monogenic diseases focus primarily on
identifying the underlying causal rare variant(s) in affected
patients, isolated or as members of a multiplex family (12). The
first step consists of deep phenotyping of the clinical skeletal
manifestations. The differential diagnosis based on the clinical and
radiological observations might strongly indicate one candidate
gene as an initial hypothesis explaining the underlying genetic
causality. However, most cases have an uncertain genetic basis;
necessitating hypothesis-free approaches. These include on the
one hand homozygosity mapping and linkage analysis in
multiplex families resulting in the delineation of a genomic
region where the disease-causing gene resides. On the other
hand, and potentially in combination with the previous
approaches, high-throughput sequencing provides insight into
the genetic variation within an individual. The widespread
availability of recent -omics technologies has permitted
researchers to focus their efforts on this approach by utilizing
customized gene panels, whole exome sequencing (WES) orWGS.
Nonetheless, all genetic discoveries resulting from traditional
approaches such as linkage analysis or high-throughput
technologies require translational assessment and annotation
using in vitro or ex vivo bone cell work and/or in vivo knockout
models to confirm disease association.

Examples of successful genetic findings with functional
validation (i). Four consanguineous and distantly related
individuals with autosomal recessive osteopetrosis were analyzed
using homozygosity mapping (13). A single 1.22 Mb genomic
region shared by all affected subjects was identified on
chromosome 7, harboring five genes: NFE2L3, HNRNPA2B1,
CBX3, SNX10, and SKAP2. Among these genes, SNX10 (sorting
nexin 10) readily stands out as an excellent candidate due to its
involvement in endosome homeostasis. A missense mutation was
identified in all affected patients and was hence taken forward for
functional investigation, whereby osteoclasts derived from
monocytes of patients revealed gross abnormalities in the
endocytic system and resorptive activity, abnormal SNX10
expression and altered subcellular localization of the encoded
protein. Subsequently, Snx10 silencing experiments in mice
highlighted the essential role of SNX10 in osteoclast vesicle
trafficking and osteoclastic bone resorption (14, 15).

(ii) WES was conducted on three sisters. These sisters
had a history of atypical femoral fractures after long-term
bisphosphonate treatment for their underlying osteoporosis (16).
WES analyses identified the presence of a rare missense mutation
in GGPS1 (Geranylgeranyl Diphosphate Synthase 1), encoding
the GGPPS enzyme, which acts downstream of the point of
bisphosphonate action. Functional validation of the exact
missense change, together with gene knockdown in osteoblasts
and osteoclasts, was essential to confirm causality and to
demonstrate the importance of the gene in atypical femoral
fracture susceptibility (17). Additionally, other WES-prioritized
Frontiers in Endocrinology | www.frontiersin.org 3
variants, such as CYP1A1, were found mutated in other atypical
femoral fracture cases (17, 18), opening the possibility of digenic
or oligogenic inheritance. It might also reflect the idea that clinical
variability, observed in many monogenic diseases, can be
explained by variants in modifier genes (19). The discovery of
such genetic variants opens an application window into
personalized medicine (20).

(iii) Well known in the field, is the G171V missense variant in
the gene encoding LRP5. The discovery of this variant was the
outcome of a linkage study combined with a focused sequencing
effort in a large family with several cases characterized by high
bone mass (21). A combination of genetic and functional studies
soon provided strong support for the involvement of LRP5 (22).
Loss-of-function mutations in LRP5 explain the low bone mass in
osteoporosis-pseudoglioma syndrome and other missense
mutations in the same domain were identified in high bone
mass phenotypes (23, 24). Soon afterwards, a wealth of in vitro
and in vivo data confirmed the important role of the LRP5 gene in
the regulation of bone mass (25), corroborated by GWAS and
candidate gene association studies indicating the effect of a few
common LRP5 variants on BMD and the risk for osteoporosis in
the general population (26). Indeed, LRP5 is an empirical example
of a gene that may harbor mutations or polymorphisms
contributing to monogenic or complex forms of abnormal bone
mass respectively. Identification of the defective gene in
monogenic diseases serves as an optimal natural-occurring
‘knockout’ model, with population-based studies enabling gene
prioritization and validation, disentangling the underlying
pathogenesis in monogenic conditions. Other examples of genes
and loci exist, discussed in more detail in this issue’s paper (12).
Monogenic diseases are also not only constrained to mutations in
the protein-coding regions. It has been shown the homozygous 52-
kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21
occurs in van Buchem disease patients (27). This region 35 kb
downstream of the SOST gene fosters a long-range enhancer for it.
Thus, the patients have reduced SOST transcription which reflects
in lower sclerostin levels (28) (Figure 1).

Benefits from recent advances in sequencing technologies:
Novel techniques have remarkably facilitated the elucidation of
the underlying molecular etiology of many rare skeletal diseases.
Indeed, this has enabled the classification of conditions based on
the implicated genetic defect and/or the altered metabolic/
signaling pathways. This is why, the monogenic mutations can
serve as human knockout models and help to uncover the gene
function while GWAS findings serve to prioritize genes to
scrutinize the cause of the monogenic conditions (12). In the
case of osteogenesis imperfecta (OI), genetic discoveries have
prompted a nosology revision of the existing classification, with
causative genes added as new subtypes of the OI types I-V (29). A
total of 17 genetic causes of OI have been described to date, with
inheritance patterns ranging from autosomal dominant (e.g.
COL1A1, COL1A2, IFITM5), autosomal recessive (e.g. LEPRE1,
PPIB, SERPINH1, PLOD2, BMP1, WNT1), and X-linked (PLS3).
An impressive 92% of 461 skeletal disorders described by the
Nosology Committee of the International Skeletal Dysplasia
Society have been solved at the genetic level thanks to high-
November 2021 | Volume 12 | Article 731217
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throughput sequencing, creating new well-defined entities and
sub-classifications of previously unknown or ill-defined skeletal
disorders (11). Improved nosology based on careful clinical
phenotyping coupled with genetic data leads to better patient
care, both in terms of diagnosis and treatment (30). The
discovery of causative genes and defective proteins has aided in
the diagnosis, prognosis, and management of affected
individuals, accelerating the development of personalized
therapy. A good example is the treatment-option of bone
marrow transplantation in patients with malignant recessive
osteopetrosis. Unraveling the genetic cause in these patients
before treatment decision is essential, as in RANKL deficiency,
bone marrow transplantation will not have any beneficial effect
(31–33). Finally, the identification of genes involved in
monogenic diseases have resulted in novel treatments for
osteoporosis, as is the case for denosumab, an anti-RANKL
monoclonal antibody (34, 35) and romosozumab, an antibody
against the Wnt-inhibitor sclerostin (36).
NEED FOR INTERMEDIATE TRAITS
(ENDOPHENOTYPES) AND NEW
BIOMARKERS OF SKELETAL DISEASE

Fragility fractures represent a very complex phenotype. So far,
most genetic studies have focused on BMD rather than bone
fracture risk. There is a realization that the genes affecting BMD
are not necessarily the same genes that influence fracture risk
(37); however, there are no such indications from the fracture
GWAS (38). There is the need for new phenotypes, which will
enable and support the causal genes validation.

Imaging techniques like QCT, high resolution peripheral QCT,
magnetic resonance imaging (MRI), and radiofrequency
echographic multi spectrometry (39), together with fracture and
BMD traits are considered as measurable “exophenotypes”, while
“endophenotypes” - parameters that aremore biologically proximal
to gene actions - are currently lacking. Here we define the term,
endophenotype (a.k.a. intermediate phenotype), as a characteristic
Frontiers in Endocrinology | www.frontiersin.org 4
able to mark genetic vulnerability independent of the clinical state
(40, 41). Therefore, endophenotypes have the potential to identify
the genetic dysfunction prior to disease manifestation. Similar to
exophenotypes, the endophenotypes might be influenced by many
genes, each with a relatively small effect, making endophenotype-
identificationdifficult. Lifestyle factors (e.g. diet, physical activity) as
well as other confounders can influence the exophenotypes such as
BMD,QCT, fractures andothers, and canmask the effects of genetic
factors thatwe aim to assess in functional genomics (42).Hence, the
main advantage of endophenotypes vs. exophenotypes is that their
correlation with genetic changes is stronger, as they are more
proximal to genes. The levels of molecules like proteins,
metabolites, miRNA in bone cells, bone tissue, and/or in the
blood can be chosen as the endophenotype.

Current status and needs in the field: It is desirable to have
endophenotypes that can be used as specific biomarkers of bone
cell activities in order to compensate for the shortcomings of
BMD. In contrast to BMD, the potential serum/plasma bone
biomarkers would ideally be able to reflect bone remodeling
(43–46) in a dynamic fashion. Increased bone turnover results
in microarchitectural deterioration of bone and has been
associated with fracture risk independent of BMD. However, the
evidence is currently not robust enough to use any biomarker in
the fracture risk prediction tool (47).

Examples of established bone formation biomarkers used as
endophenotypes in treatment monitoring are procollagen I N-
terminal propeptides (PINP), bone-specific alkaline
phosphatase, procollagen type I C-terminal propeptide (PICP)
and osteocalcin, while C-terminal telopeptide of type I collagen
(CTX), N-terminal telopeptide of type I collagen (NTX), tartrate-
resistant acid phosphatase isoenzyme 5b, C-terminal crosslinked
telopeptide of type I collagen, (ICTP), and deoxy-pyridinoline
serve as resorption biomarkers (48). Bone biomarkers’ specificity
for their respective process is convincing (48). However, there
are major challenges even with the recommended reference
markers CTX and PINP. Namely, especially CTX fluctuates
during the day requiring blood samples to be collected from
fasting patients in the morning, and both CTX and PINP vary
tremendously among different individuals (49). Therefore, new
FIGURE 1 | Scheme of proposed “roadmap” and integration of GEMSTONE Working Groups.
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biomarkers are being investigated, including proteins regulating
bone resorption (RANKL, OPG), bone formation [sclerostin
(50)] or bone non-collagenous proteins [periostin (51)].

miRNAs as endophenotype markers: Examples of potential new
molecular biomarkers include non-coding RNAs (ncRNAs), of
which miRNAs currently seem to be more promising (52, 53).
They are small, 20–24 nucleotides long, noncoding, single-stranded
RNA molecules that act as post-transcriptional regulators of gene
expression. A cluster of miRNAs can target a single gene, and every
single miRNA can regulate several different protein-coding genes.
Their role in bone homeostasis is well established since miRNAs
were shown to significantly affect the differentiation, proliferation,
and function of both osteoblasts and osteoclasts (54, 55). Besides
being intracellular, they are also present in several biological fluids
where they are remarkably stable. Several studies have shown
differences in circulating miRNA levels between osteoporotic and
control subjects, both in primary and secondary osteoporosis
[reviewed in (56)]. Based on these studies, it was proposed that
circulating miRNAs could serve as a clinical tool for fracture risk
prediction giving additional information on bone metabolism not
captured by BMD, FRAX®, or traditional bone turnover markers. A
commercial test for fracture risk based on a panel of 19 miRNAs
called OsteomiR™ was shown to effectively assess fracture risk (52).
A cost utility model showed that its implementation could reduce
Frontiers in Endocrinology | www.frontiersin.org 5
fracture incidence compared with standard approaches such as
monitoring BMD, no monitoring, or FRAX® calculation alone (57).
However, the key circulating miRNAs in osteoporosis are not
consistent between studies, and before their implementation in
routine clinical practice can become a reality, further studies are
required to obtain validated disease-specific signatures (58, 59).

Endophenotypes as functionalmarkers:Described endophenotypes
are also relevant for in vitro functional validation of GWAS
hits. Ideally, the endophenotypes should be able to reflect the
“effects” of a particular genetic variation even with subtle changes
in gene expression i.e. mRNA, protein level/activity, or other
metabolites levels. In this context, identification and selection of
endophenotypes depends on the position of the genetic variation of
interest. If it is positioned in regulatory gene regions (e.g. the
promoter), the gene expression and mRNA level is a well suited
endophenotype. On the other hand, in the case of coding genetic
variants, the protein should be qualitatively and quantitatively
analyzed. Suggested approaches to functionally evaluate SNPs are
presented in Table 1.

In conclusion, endophenotypes that are needed for
identification and evaluation of risk genes are important not
just for progress in functional genomic research, but also for
better prognosis and prevention of bone disease, which is
ultimately the goal of the GEMSTONE consortium (Figure 2).
FIGURE 2 | Genomic deletion affecting ECR5 enhancer for SOST and its effect.
TABLE 1 | Approaches in the functional evaluation of SNPs.

Computational analyses Outcome

expression quantitative trait locus (eQTL) SNPs regulating gene expression
allele specific expression quantitative trait locus (aseQTL) allele-specific expression
regulatory trait concordance (RTC), joint likelihood mapping (JLIM) shared causal variants between eQTL and a trait (e.g.

BMD)
functional annotation (Combined Annotation Dependent Depletion (CADD), Eigen, RegulomeDB, LINSIGHT,
GWAVA)

the most probable functional SNPs

Functional assays Outcome
high‐throughput chromosome conformation capture (Hi‐C) Whole-genome chromatin interaction
dual luciferase assays validation of allele-specific promoter or enhancer activity
CRISPR/Cas9, dCas9-KRAB, dCas9-DNA demethylase direct evidence of long-range regulation
ChIP, RNAi, Cotransfection assays TF binding affinity of allele-specific enhancer or promoter

activity
animal models (knock-in, knock-out) functional relevance of target gene to bone metabolism
November 2021 | Volume 12 | Article 731217
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CURRENT PRACTICE: GENOMIC
ANNOTATION AND ESTABLISHING
CAUSALITY

With the boom of genetic testing, an opportunity for establishing
possible causalities for the skeletal traits and diseases based on
genomics was discovered. A seminal paper published in 2003 laid
out the foundations and conveyed the key message of the method
called “Mendelian randomization” (60). The main focus of this
method is to establish the relationship between an exposure
(a SNP) and an outcome (an endo- or exo-phenotype) via a
“proxy”, an instrumental variable, that within a specific degree of
certainty cannot be influenced by neither intrinsic nor extrinsic
influences, i.e. confounders. Thus, the association between the
exposure and outcome can indeed be established to arise from the
two alone and not due to other factors. The results of such analyses
may predict both the direction as well as the effect-magnitude.
In terms of genomics, SNPs were proven to be a good fit for
these instrumental variables. With time and technological
advancements, large-scale GWAS provided well-powered and
reproducible association results for risk prediction of common
diseases (61), including the skeletal field (62). Many such studies in
the field of skeletal diseases have since been performed, with a
notable one scrutinizing the clinical risk factors of fracture (38). In
contrast to low BMD, an established “causal” determinant of
fracture, three is no evidence to suggest that increasing vitamin
D (25-hydroxyvitamin D) levels in “sufficient” individuals will
modify fracture risk.

Use of GWAS to identify quantitative trait loci (QTLs): The
method of Mendelian randomization is not constrained to the
results of GWAS alone. SNPs can also act as QTLs where they
correlate with the expression of genes (eQTLs). Other QTLs
include protein expression (pQTLs) (63, 64), DNA methylation
(mQTLs) (65, 66), and chromatin acetylation and chromatin
accessibility QTLs [reviewed by (9)]. eQTLs are abundant, with
48% of common genetic variants estimated to act as eQTLs for at
least one gene (9).

Within such Mendelian randomization configuration, the
effect of gene expression, as an exposure, can be tested for
association against chosen traits, the outcome(s). The challenge
that such studies face is that gene expression is highly tissue-
specific; thus, expression in one tissue may not fully predict
expression in another. This is especially important since it is
unclear which cells are the true drivers of a disease (i.e., in which
cell type GWAS variants act), as the pathophysiology of complex
diseases often implicates interactions of multiple cell types (9).
As of yet, there are not many studies that implement gene
expression from bulk bone tissue. There are some that
leveraged eQTL data obtained from whole blood and tested for
effect on estimated BMD (eBMD) (5), and more recently eQTLs
obtained from osteoclast-like cells derived from human
peripheral blood mononuclear cells were tested for effect on
the same eBMD trait (67, 68) as well as in the case of the newly
reported osteomorphs (69) using a mouse model.

Co-localization: Co-localization analyses integrate eQTL and
GWAS data (70, 71). Within their scope, the position of the
Frontiers in Endocrinology | www.frontiersin.org 6
(usually) topmost associated SNP(s) on each locus between the
two datasets are analyzed, with results indicating whether the same
SNP(s) drive both the gene expression at that particular region and
the GWAS signal (e.g. where the SNPs effect on the GWAS trait is
mediated by the gene expression). The difference with the
Mendelian randomization-based approach is that the co-
localization does not estimate the effect size and direction, but
provides the probability of (a) shared causal variant(s).
CURRENT PRACTICE: GENOMIC
ANNOTATION FOR CODING AND
NON-CODING REGIONS

Identification of candidate genes is more straightforward for
coding variants, which may directly disrupt the structure of a
protein (9). However, as early as 2012, it was realized that only a
minority of GWAS hits fall within transcribed regions, with most
of them mapping to introns (4.9% and 41.2% respectively (72).
The leftover majority of GWAS hits thus cannot be easily linked
to a candidate causal gene.

Also, in 2012, the ENCODE Project Consortium set out to
map and describe functional elements encoded in the human
genome across 1,640 data sets involving 147 different cell types,
amongst which were also human osteoblasts (73). The mapping
was expanded in 2015 by the Roadmap Epigenomics Consortium
(74). The consortia assayed the available cells for eight histone
modifications. By further integrating five specific histone
modification marks (histone H3 lysine 4 trimethylation and
monomethylation – H3K4me3 and H3K4me1 respectively;
trimethylations of histone H3 lysine 36 – H3K36me3; histone
H3 lysine 27 –H3K27me3; histone H3 lysine 9 –H3K9me3) they
were able to build the 15-chromatin-state model (and later
expand it to the 18-state model by inclusion of the histone H3
lysine 27 acetylation; Figure 3).

In short, by combining information on the methylation and
acetylation dynamics, they were able to predict local chromatin
states that were roughly divided into 8 active and 7 repressed
states, now used to study the relationship between histone
modification patterns, RNA expression levels, DNA
methylation, and DNA accessibility. Their findings additionally
showed tissue-specific enhancer regions, epigenomic dynamics
during lineage specification, and both similarities and differences
thereof between various tissue and cell types (74). Importantly,
both consortia freely released their data repositories for use by
others. This data can be integrated and tested against for
enrichment e.g., by incorporating it into GARFIELD (GWAS
Analysis of Regulatory of Functional Information Enrichment
with LD correction) or by using the partitioned heritability
function of the LDSC (linkage disequilibrium score) regression
method (75, 76). This allows researchers to further functionally
analyze and annotate their results and potentially discover novel
cell and tissue specific genomic patterns.

One of the goals of in silico and in vitromethods is to translate
findings to in vivo models. Historically, mouse – and more
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recently, zebrafish models - have been used to explore variants
present in protein-coding regions. Recently it has been shown
that despite poor evolutionary conservation in non-coding
genome sequences, this model can still be used to compare
enhancer activity of putative variants as predicted by in silico
findings (77).

With WES being increasingly applied to large population-based
settings, the American College of Medical Genetics and Genomics
and the Association for Molecular Pathology (ACMG-AMP) have
released standards and guidelines for the interpretation of sequence
variants (78). According to these guidelines, the variants are
classified as 1) benign, 2) likely benign, 3) uncertain significance,
4) likely/expected pathogenic, and 5) (known) highly pathogenic.
Databases can follow this classification system, whereas others, such
as Human Gene Mutation Database (HGMD), use their adaptation
of functional classifications (79, 80). The Combined Annotation
Dependent Depletion (CADD) (81) is a tool that uses a machine
learning approach for scoring the deleteriousness of both coding as
well as non-coding variants. It has been shown that the occurrence
of known pathogenic and expected pathogenic variants in healthy
populations are higher than expected based on disease prevalence
(82–84). Many variants predicted to be potentially pathogenic have
a lower than expected penetrance in healthy populations. To this
effect, the UK BioBank has recently forayed into the venture of
sequencing whole genomes of its participants, identifying rare
variants to improve the prediction of monogenic and complex
traits. The first tranche of results (n=49,960) was released to be used
by the wider scientific community (85), with an addition of exome
sequencing data on 150,000 volunteers added to the UK BioBank
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database (https://www.ukbiobank.ac.uk/2020/10/uk-biobank-
makes-available-new-exome-sequencing-data).

As a proof of this concept, evaluation ofWES data with clinical
information has been done in a deeply phenotyped cohort study
(86). They discovered 26 variant carriers, but only three of them
experienced a clinical event related to the identified variant. When
they consulted two main databases, ClinVar and HGMD, for
clinical interpretation of the variants, they found a high degree of
disagreement between the two databases. Moreover, the clinical
classifications within ClinVar in different releases over five years
(2014-2018) evidenced a trend of changing the clinical
interpretation of formerly expected pathogenic variants towards
class 1 (benign), 2 (likely benign) or 3 (uncertain significance). As
shown, the definition of known pathogenic variants is ambiguous
between databases, yet also differs between different versions of the
same database. Moreover, potentially pathogenic variants do not
always have a clinical impact. This presents challenges that
researchers, as well as clinicians, face and must address while
interpreting their findings.
NON-CODING VARIANCE AND REGULOME

ncRNAs/miRNAs
Recent technical advances in the high-throughput genomic
platforms have revealed that only 1–2% of the human genome
is protein-coding. Previous findings (72) suggest that GWAS
variants could modify the regulatory activity of non-coding
elements in a cell-type specific manner. Schmidt et al. (87)
FIGURE 3 | Chromatin state definitions in the 18-state chromatin model as defined by the relative enrichment of respective histone marks.
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confirmed that GWAS SNPs are generally enriched in active
regulatory regions compared to random SNPs. A vast majority of
intergenic signals are represented by ncRNAs, thus implicating
their potential role in contributing to the GWAS phenotype.
The two most abundant types of regulatory ncRNAs are the
miRNAs (~22 nucleotides) and long non-coding RNAs
(lncRNAs, ≥200 nucleotides). To our knowledge, while a broad
spectrum of ncRNAs has a potential impact on MSK metabolism,
miRNAs have been investigated in bone diseases more than others.
Most studies focused on measuring the levels of miRNAs in either
bone tissue or in circulation to find disease specific miRNA
signatures which could be used as biomarkers or endophenotypes
and are described in the above section “Need for Intermediate
traits (endophenotypes) and new biomarkers of skeletal disease”.
Much less is so far known regarding genetic contribution to
miRNA regulation.

Genetic contribution to circulating miRNA profiles has so far
been demonstrated in monogenic types of osteoporosis caused
byWNT1 (53) or PLS3 (88) mutations. Also, in a limited number
of studies, SNPs affecting miRNA regulation have already been
shown to contribute to the understanding of the genetic
determinants of osteoporosis. These include polymorphisms
in miRNA genes (miR-SNPs) and miRNA binding sites of
target mRNAs (miR-TS-SNPs). The miR-SNPs can affect either
miRNA’s transcription, its processing, or mRNA binding (89).
Polymorphisms at or near miRNA target sites within a mRNA
(miR-TS-SNPs) can either create or eliminate a miRNA binding
site (54). A relevant miR-SNP found by GWAS is rs11614913,
located in precursor MIR196A2, which was significantly
associated with femoral neck and lumbar spine BMD (90), as
well as with lumbar spine area derived from DXA scans and hip
fractures (91). The variant was proposed to affect the stability of
miR-196a-2 (90) and was experimentally confirmed to directly
influence repression of hsa-miR-196a-5p target genes (91). An
example of a functional miR-TS-SNPs is rs1048201 in basic
fibroblast growth factor (FGF2) 3′ UTR which was associated
with lumbar spine BMD and affected binding of hsa-miR-196a-
3p, the other mature miRNA derived from previously mentioned
MIR196A2 (92).

ncRNAs/lncRNAs
Despite previously considered as “transcriptional noise,”
lncRNAs are emerging as key regulators of major biological
processes influencing development, differentiation, and disease
(93–95). They are best known for assembling transcriptional
machinery to trigger the initiation of transcription, recruiting
epigenetic factors to modify chromatin state (94, 96). Some of the
lncRNAs act as sponges for miRNAs, titrating them away from
their target mRNAs (97, 98). In contrast, others are generated
from antisense strands of coding genes and can directly modulate
the coding gene translation via base pairing with the
complementary mRNA (99).

The GWAS-associated variants may affect regulatory elements
that modulate mRNA transcription level modifiers. For example,
enhancers are context-specific; their current annotations are
incomplete. Finucane et al. (76) showed that variants within
enhancers specific to disease-relevant cell types explained a
Frontiers in Endocrinology | www.frontiersin.org 8
substantial proportion of heritability. Therefore, information
must be integrated across tissue contexts and data sources to
identify variants affecting enhancer function (95). Many eQTLs
affect lncRNAs, which in turn can regulate protein-coding gene
expression (100).

A tendency to assign lead variants preferentially to coding
genes close to GWAS hits contributed to a disregard of the role of
non-coding elements (101). We postulate that the upsurge of
databases integrating SNPs and non-coding RNAs with novel
technologies will facilitate the discovery of causal non-coding
variants associated with skeletal phenotypes. The integration of
these comprehensive datasets using a read-across framework will
aid in prioritization and functional validation of candidates
(102). Another problem affecting the ncRNAs, relevant for
both lncRNAs and circular RNAs (circRNAs), is the paucity of
targeted assays. Most of the expression data of skeletal tissues or
cells available in the databases are microarray data, where only
known protein-coding genes are included. For an exhaustive
characterization of the expression pattern of both coding and
non-coding genes, whole transcriptome sequencing should be
performed with ribosomal RNA-depleted total RNA libraries
instead of frequently used poly-A+ RNA-seq libraries.
REPETITIVE SEQUENCES

Traditional GWAS using microchip analysis has been limited to
less than half of the genome, since the major part consists of
various repeated sequences and retrotransposons in which
accurate localization of genomic variants is not possible. This
may, however, change with a trend towards WGS, enabling very
long reads spanning repeated sequences with the newest DNA
sequencing tools. The most abundant retrotransposon, Long
Interspersed Nuclear Element 1 (LINE1, L1), is 6 kb long and
constitutes 20% of the genome (103). Of relevance to bone
metabolism, a recent study showed that blocking L1 activity
hinders differentiation of bone marrow mesenchymal stromal
cells (BMSC) into osteoblasts, while transfection of BMSC from
osteoporotic women with the L1 transcript stimulates osteoblast
differentiation and bone production. In line with these results,
the L1 copy number was increased in bone from healthy
postmenopausal women as compared to osteoporotic women
{Mangiavacchi, 2019 #1773}.

A decrease in CpG methylation status of repetitive sequences
has been demonstrated during osteogenic differentiation of
BMSCs suggesting that their methylation status is important
for the induction of osteogenic differentiation (104). In the blood
of postmenopausal osteoporotic women, the methylation status
of Alu short intersperse elements (SINEs) has been associated
with lower BMD, suggesting a positive correlation between Alu
hypomethylation and age-related phenotype such as loss of BMD
(105). In rare cases, when retrotransposition occurs in germ cells,
unhindered by the host restriction mechanisms, novel mutations
arise in the host genome that can be vertically transmitted to the
next generation. Mutations induced by repetitive sequences were
also reported in genes involved in musculoskeletal development.
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Mouse mutant chagun with skeletal dysplasia and male infertility
has been demonstrated to have LINE-1 insertion in Poc1a gene
(106) [reviewed in (107)]. Mutation in Poc1a (encoding protein
of the centriole 1a) caused centrosome dysfunction which led to
disorganized epiphyseal growth plates of their long bones
[reviewed in (107)]. Seen from an evolutionary perspective, the
youngest and most active retrotransposons are Alu SINEs
comprising 11% of the human genome and unique to
primates. Human endogenous retroviruses (HERVs) are a
group of repetitive sequences that comprises 8% of the human
genome (103). Regarding MSK physiology and pathology,
HERV-W expression has been shown to increase in synovial
fluids of human patients with osteoarthritis (108) and to play a
role in human osteoclast fusion (109, 110).

Mobile genetic elements also shape the regulatory landscape of
the human genome; for example, HERVs alone provide 320,000
transcription binding sites, Alu elements provide numerous
splicing donor sites, whereas LINE-1s contribute to the
generation of retrogenes and probably cause somatic mosaicism.
Under normal conditions the majority of repetitive sequences are
methylated, thus not transcribed. Under stress conditions and in
pathological states (e.g. viral infections, inflammation, cancers) the
expression status of mobile elements is altered and repetitive
sequences are transcribed which can change the transcriptional
regulation of genes and could lead to genetic instability (111). Even
though mobile genetic elements form half of the human genome,
their role in transcriptional regulation in skeletal diseases awaits
further elucidation.
REGULATORY INTERACTIONS BETWEEN
ENHANCERS AND THEIR TARGET GENES

SNPs and other variants in non-coding regions can potentially
influence the binding affinity of transcription factors and
consequently change the regulation of bone homeostasis.
Recently, several comprehensive functional studies of SNPs in
intergenic regions have combined bioinformatics data analysis
followed by functional validation in vitro and in animal models
(112–115). A targeted search for novel potentially functional
SNPs in enhancers that associate with bone metabolism was
performed in five independent cohorts including 5,905 patients
(116). In this study, correlation of SNPs with gene expression
and biological processes resulted in 15 novel SNPs in enhancer
regions (116). Analysis of transcriptional binding sites in the
vicinity of osteoporosis associated SNPs revealed that they could
affect the binding affinity of common transcription factors
(NFATC2, MEF2C, SOX9, RUNX2, ESR2, FOXA1 and
STAT3) which may be affected by SNPs and are involved in
bone metabolism (117). High-throughput assays to speed the
identification of functional variants have been developed in the
last decade. Massive parallel reporter assays allow for the testing
thousands of candidate regulatory sequences through cloning to
a reporter gene followed by deep sequencing and analysis of
transcription activation. This technique has recently been used
to test 1605 SNPs residing in haplotypes implicated in
Frontiers in Endocrinology | www.frontiersin.org 9
osteoarthritis (118), highlighting its value to accelerate SNPs
functional tests and genetic prioritization.

SNPs in the enhancer regions can change transcription factor
binding sites (TFBS) and thus influence transcriptional
regulation in bone metabolism. A study identified 5081
osteoporosis-related SNPs residing in enhancers (119).
Transcription factor enrichment analyses identified EZH2
TFBS as a common binding site typical for osteoporosis
associated enhancer SNPs (119). Comprehensive analysis
combining integrative functional genomics and experimental
validation methods was reported for functional assessment of
osteoporosis risk locus on 1p36 (112). First, the authors
prioritized a particular SNP (rs6426749) with functional
genomics. They then confirmed with dual luciferase assays and
CRISPR/Cas9 silencing that this SNP acts as an allele-specific
enhancer regulating the expression of a lncRNA (LINC00339).
The downregulation of LINC00339 increases the expression of
an important regulator of skeletal development, CDC42 (112).

Moreover, Zhu et al. have performed a comprehensive
analysis to explain associations between SNPs in a potential
RANKL enhancer region located 100 kb upstream of the RANKL
gene and risk for osteoporosis (113). They employed eQTL, high-
throughput chromosome conformation capture (Hi-C),
epigenetic annotation, and functional assays to show that
several SNPs residing in non-coding regions exclusively
correlated with RANKL expression. This study revealed that
RANKL transcriptional regulation is mediated by a long-range
super-enhancer.

The importance of long-range enhancers was also
demonstrated for SOST. As already mentioned, in van Buchem
disease, patients carry a homozygous 52-kb noncoding deletion
that is essential for the transcriptional activation of SOST in the
bone (27). Deletion of specific long-range regulatory element
Ecr5 in mice caused the elevated bone formation and higher bone
mass implying that the ECR5 long distant region is responsible
for transcriptional activation of Sost in the adult skeleton (114).
In an integrative study, Carey et al. searched for BMD associated
SNPs that are enriched in lineage-specific pathways during
osteoclast differentiation (115). An overlay between BMD
GWASs and active enhancers in the myeloid compartment
revealed that the PU.1 transcription factor network is
important for osteoclast differentiation.

The above exemplifies that (a) identification of enhancers is
important, and (b) the combination of GWASs with experiments on
model organisms helps to decipher pathways for skeletal conditions.
OVERVIEW OF -OMICS TECHNOLOGIES
FOR SKELETAL DISEASES:
TRANSCRIPTOMICS, EPIGENOMICS,
PROTEOMICS AND METABOLOMICS

Over the past few decades tremendous advances in -omics
technologies (transcriptomics, epigenomics, proteomics and
metabolomics) have greatly expanded our knowledge into the
cellular and molecular diversity, and pathological mechanisms
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underlying many diseases, including those affecting mostly the
skeleton like osteoporosis and other skeletal conditions (120).
While each -omic technology possesses the potential to capture a
snapshot in a cell’s lifetime or disease state, individually they lack
the power and capacity to capture holistic and spatiotemporal
changes that occur at both the cell and tissue level during disease
pathogenesis and progression. Therefore, there is growing
momentum towards concerted multi-omic studies in the effort
to integrate and unify data from different -omics platforms and
thus better encapsulate all of the multilevel molecular and
functional pathways that underpin a particular disease.
However, the unification of -omics data presents challenges in
combining and interpreting multilevel data sets, which are
inherently large, complex, and call for significant computational
grunt coupled with high-end bioinformatics. There are
advantages of single-omics based approaches described herein,
each that have contributed significantly to our current
understanding of bone cell function and skeletal disease.

Transcriptomics
Until recently, transcriptomic studies (i.e. the global survey of
RNA transcripts; usually mRNA) in bone and its cellular
residents have traditionally relied on microarray-based
platforms, such as Affymetrix and Illumina chips. These have
queried average transcriptome levels of osteoblasts (121),
osteoclasts (122) and osteocytes (123). Despite their abundance
in the bone, osteocytes remain comparatively underrepresented
due to technical complexities when accessing these deeply
entrenched bone mechanosensors.

Next-generation sequencing techniques strongly impacted
transcriptomics with the development of RNA-seq (124), which
has progressively replaced microarrays enabling a deeper dissection
of the transcriptomes of bone cells (125). RNA-seq has been pivotal
to the development of a high-resolution transcriptome of the
osteoblast, as well as to the better characterization of changes
along osteoblast differentiation (112, 126–133). Furthermore, it
has unravelled the transcriptomic changes occurring in human
MSCs that may contribute to the age-related impairment in
osteoblast formation and/or function (134), and to the
development and progression of osteoporosis (133, 135–137).

One of the demurs in bulk bone transcriptome profiling are
both the temporal and spatial nature of transcriptomic studies.
Whilst the former can be controlled for with experimental design,
the latter provides a bigger challenge when trying to disentangle
the bone tissue specific signals from those stemming from others
i.e., bone marrow vs blood. Studies utilizing same methodologies,
but integrating gene expression data obtained from blood-derived
cells showed vastly different results, highlighting the need for tissue
specificity (68). Recently, Youlten et al. integrated a strategy
wherein matched intra-sample controls were used to distinguish
genes enriched for osteocyte expression compared to other tissues
(138). Whilst this approach controls for possible tissue
contamination, it may be monetarily prohibitive since it
warrants repeat analyses of the samples. As such, correction for
tissue heterogeneity is most often utilized (139). Future
developments in combining analytical approaches promise
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attenuation of such limitations of bulk sequencing by
deconvolution of separate tissue contributions.

In parallel, the coupling of RNA-seq with cell sorting
methodologies has now provided an unprecedented
opportunity to gain detailed insights into the transcriptome of
bone resident cells at a single-cell resolution (125, 140). To date,
only a limited number of studies have applied single-cell RNA-
seq (scRNA-seq) to bone cells, to investigate the transcriptome of
osteoblasts at a single cell level (126, 141–143). Currently, a
limited number of RNA-seq studies have been applied to
osteoclasts. Still, this technique has been instrumental in
clarifying the cellular origin of osteoclasts, both in human and
mouse (142, 144); a more detailed osteoclast transcriptome is
now available (145). RNA-seq has also been employed to study
the osteocyte’s transcriptome to understand how it is modulated
by fluid flow mechanotransduction (146) or PTH signaling
(147). Single-cell resolution uniquely enables the identification
of rare cell types, such as, reversal cells (43, 46), osteomorphs
(69) and osteomacs (148), and to accurately define cellular
heterogeneity between cell populations.

Meanwhile, the development of third-generation sequencing
technologies, such as single-molecule real-time sequencing, is
nowadays already enabling an even more accurate characterization
of cellular transcriptomes at a single-molecule level (149). Third-
generation sequencing methods will also improve our currently
limited understanding of how a myriad of molecular mechanisms
globally regulate transcriptomics in bone biology.

Epigenomics
There is rapidly growing appreciation of the intimate interplay
that exists between genes, the environment, as well as the fine
regulatory control afforded by genome-wide epigenetic
modifications including DNA methylation and histone
modification. These have considerable effects on the
differentiation and functional activities of bone cells, and may
thus underscore mechanisms of skeletal disease pathogenesis.
Comprehensive GWAS models only explain a fraction of the
observed BMD variation. This prompts researchers to consider
both the genes of interest and their regulation. The most direct
approach would be to measure the protein levels since it is those
that are responsible for downstream effects. However, due to
inaccessibility of bone tissue it can be challenging to determine
protein levels in an in vivo setting especially when dealing with
humans – and even more so for diagnostic purposes. As a
surrogate marker for gene and protein expression,
epigenomics, at least in theory, is a more accessible approach.
When aiming for clinical applications, DNA methylation is of
particular interest because: 1) it acts as a master-regulator of
histone modifications that govern gene expression, 2) it can shut
down or open up gene expression, 3) it reflects inheritance,
lifestyle, and environmental influences, and 4) it is stable even
during sample handling e.g. blood sampling (150–152).

Indeed, recently it was shown that DNA methylation analyses
based on blood were able to, at least partly, match the DNA
methylation profile found in bone specimens obtained from
osteoporotic women as well as with BMD (153). Yet, despite its
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obvious advantages it has not, until now, found clinical use in the
osteoporosis field. Unexpectedly, despite far larger cohorts, two
other studies were not able to show strong links between blood
DNA methylation profiles and BMD (154, 155). Yet, recent
findings showed that DNA methylation levels of the DCSTAMP
gene were reduced with age resulting in higher expression levels,
and that this would stimulate human osteoclast formation and
activity both in in vivo and in vitro (156, 157). Still, it is important
to remember that investigations on DNA methylation profiles to
predict osteoporosis are just beginning. Up until recently, cost
effective tools to do such analyses were missing. In recent years,
this has changed primarily due to the dramatic drop in costs for
WGS as well as the development of array-based techniques
covering more than 850,000 CpG sites. This development makes
epigenome-wide association studies (EWAS) possible. Of note, the
only EWAS study of BMD performed to date, based on whole
blood samples, revealed negative findings (155), suggesting
limitations driven by tissue specificity and/or limited power to
identify epigenomic effects.

Proteomics
Proteomics enable unbiased identification and quantification of
the total protein inventory of a particular cell type or tissue.
Compared with data arising from genomic and transcriptomic
studies, proteomics is closer to the phenotype, and is therefore
considered a more suitable and reliable approach for mechanistic
studies, disease typing, and as biomarkers (158, 159). Mass
spectrometric analysis of proteins from organisms with
sequenced genomes is advantageous as it allows for their
routine identification, and modifications in analyzed proteins
to be detected simultaneously. Thus, mass spectrometry (160), in
particular tandem mass spectrometry has emerged as a powerful
technique for the parallel quantitation and identification of
proteins, with quantitation broadly assigned into two
categories: label and label-free proteomics. While mass
spectrometry is not inherently quantitative, several labeling
methods are now available that afford robust quantification
(161, 162). The development of sophisticated ‘delayed
normalization’ techniques such as the MaxLFQ algorithm in
MaxQuant has enabled accurate proteome-wide label-free
quantitation. However, label-free techniques remain less robust
than labeled methods (163). To date, there have been a number
of seminal proteomic contributions (both quantitative and
qualitative) at whole bone tissue and cellular levels, especially
in the context of osteoporosis. At the cellular level, proteomic
studies of osteoblasts [e.g (164); reviewed extensively elsewhere
(165, 166)] and osteoclasts are available [reviewed in (167)], but
osteocytes remaining comparatively unexplored.

With respect to osteoclasts, most proteomic analyses were
performed in the context of RANKL-induced osteoclast
differentiation (168, 169). However, also the proteome of
secreted proteins (i.e. the secretome) (169), lysosomal
hydrolases (168), and those enriched on membranes and lipid
rafts (170, 171) were analyzed. Unfortunately, only few identified
proteins have been validated experimentally. Of these, the Na+/
K+ ion transporter (Nhedc2), was confirmed to play a role in
bone resorption in vitro (170). Quantitative proteomic studies
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arising from the Hoflack laboratory unveiled several additional
modulators of osteoclast polarization and function, such as the Src
tyrosine kinases (172), and actin andmembrane bridging proteins
such as the Cdc42 guanine nucleotide exchange factor FGD6 (173)
and ARAP1 (ArfGAP with RhoGAP domain, ankyrin repeat and
PH domain-containing protein 1), the latter confirmed in mouse
(174).Thus, quantitativeproteomicapproaches offeropportunities
to uncover new molecules whose functions previously remained
unassigned to bone. These may represent new therapeutic targets
for the management of skeletal diseases.

Metabolomics
Whereas the above mentioned -omics platforms are now
mainstay in systems approaches to the study of skeletal
diseases, the application of metabolomics (i.e. the study of
small molecule chemicals, such as lipids, amino acids, short
peptides, nucleic acids, sugars, alcohols, or organic acids)
remains in relative infancy. The importance and utility of
metabolomics in the bone field has, however, gained increasing
appreciation in recent years, particularly towards its largely
untapped potential to identify novel biomarkers of bone
turnover/metabolism in skeletal disease settings such as
osteoporosis [summarized in Yang et al. (120)]. As with other
-omics technologies, metabolomics utilizes advanced analytical
chemistry and statistical methods combined with bioinformatics
to analyze the total metabolites within a cell, tissue, biofluid,
or organism (175). Metabolites can be classified as either
(i) “primary metabolites”: i.e. synthesized endogenously, or
(ii) “acquired metabolites”: i.e. from dietary intake such as
essential amino acids (phenylalanine, histidine, isoleucine,
lysine, leucine, methionine, threonine, valine, and tryptophan)
and vitamins (vitamins A, B, C, D, E, and K).

The inherent complexity in detecting and measuring different
classes of chemicals that constitute the metabolome, in scales of
magnitude larger than both the genome and proteome,
necessitates wider and more sophisticated equipment. Such may
be nuclear magnetic resonance spectrometers, mass spectrometers,
gas chromatography, and liquid chromatography that are often
employed in combination (See (175) for an extensive review).
There are also different approaches to metabolomics experiments
depending on the underlying questions being asked with the most
common being targeted and untargeted approaches. While
targeted metabolomics is widely applied in clinical applications
for biomarker detection, untargeted metabolomics enables an
unbiased approach to survey thousands of metabolites and has
been the method of choice to compare the metabolomes of both
humans (176–183) and rodents (184) in the context of
osteoporosis. Although the number of metabolites tested to date
(<2000) represents only a fraction of those circulating in plasma,
serum, urine, and other biofluids, measurable differences in several
amino acid and lipid metabolites have been detected, including
increased glutamine (179, 182) and decreased proline (181) in
menopausal women with low BMD. Whilst vast ly
underrepresented compared to other -omics technologies, as we
move further towards an integrative multi-omics and holistic
approach to skeletal diseases, the number of metabolomic
studies is primed to accelerate and will undoubtedly uncover
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hitherto unappreciated but important metabolites that contribute
to the regulation of skeletal homeostasis and disease.
OVERVIEW OF –OMICS DATA RESOURCES
FROM HUMAN BONE TISSUE

Since bone is a relatively inaccessible tissue, few -omics data
resources are available; more specifically, data related to
chromatin/DNA structure are missing. A summary of -omics
data resources originating from human bone tissue is presented
in Table 2.

To best exploit the power of the various -omics data, genetic
alterations must be combined in order to understand the
interaction between features like SNPs, chromatin structure,
DNA methylation, coding transcripts, non-coding transcripts,
metabolomics, and bone status/bone metabolism, ideally
supplemented with functional studies in cells and model
organisms. GWAS follow-up studies are necessary to interpret
GWAS results and to infer the exact disease-causal variants, the
genes they regulate, and the cells in which they act (9).

With Hi-C, the chromatin loops and topologically associating
domains (TADs) can be mapped (236). The hierarchical
organization of chromatin can be further detailed with Assay of
Transposase Accessible Chromatin sequencing (ATAC-seq),
which maps nucleosome-free DNA available for transcription
(237, 238). Furthermore, DNA methylation, as well as genome
variants, can influence binding of gene regulatory proteins,
thereby regulating gene expression levels. The DNA methylation
pattern is also associated with the three-dimensional structure of
DNA (239). DNA accessibility peaks indicate regions available for
transcription factor (TF) binding to histone modifications (e.g.
H3K4me1, H3K4me3, H3K27ac, and H3K27me3) (240). In
particular, H3K4me3 peaks highlight gene promoters while
H3K27ac peaks mark active enhancer and promoter regions
(241). Thus, to promote the understanding of the underlying
molecular mechanism of bone metabolism, several -omics
analyses should be performed on the same sample in cells from
patients with osteoporosis and controls. Unfortunately, such
comprehensive studies are still missing, and at best, analyses of
two or three different -omics layers have been combined in the
same study. Current searches are largely limited by the availability
of comprehensive reference functional data sets and the emerging
set of analytical tools for multi-omic analysis.

The various studies often have different designs and purposes,
and therefore are not directly comparable. Sclerostin is a central
inhibitor of the Wnt signaling pathway, and various parts of the
Wnt signaling system have been associated with bone status in
most types of -omics analyses including GWAS, e.g., b-Catenin
and DKK1 in proteomics (187); SOST, DKK1, WIF1, CTNNB1,
and WNT5B in transcriptomics (193, 196); FZD10, TBL1X,
CSNK1E, WNT8A, CSNK1A1L, SFRP4, and SOST in DNA
methylation studies (221, 223). Also, TGF-b signaling genes
(187, 196, 198) and regulators of osteoclast function (187, 197,
199, 242) have been identified in more than one type of -omics
analysis. Furthermore, a study of DNaseI hypersensitive sites
during osteoblast differentiation identified changes in chromatin
Frontiers in Endocrinology | www.frontiersin.org 12
and expression of several genes within the Wnt and TGF-b
signaling pathways (232).

Some GWAS studies have included eQTL results, but often
transcript levels of genes near the resulting variants are neither
associated with the allele frequency nor BMD (243). A recent
study indicates that Hi-C type methods are well suited to identify
the effectors of causal genomic variants (230). In this study, the
chromatin capture technique was combined with ATAC-seq to
map 46 BMD GWAS loci to 81 gene promoters in human MSC-
derived osteoblasts. Consequently, several novel genes physically
interacting at the three-dimensional (3D) genome level with the
causal variants of BMD were identified.

From Table 2 it follows that gene expression is available for a
wider set of cells and tissues than other types of -omics data (9).
However, to get a comprehensive understanding of the genomic
changes underlying bone diseases, it is necessary to identify
eQTLs with different effect sizes at different stages of cell
differentiation (dynamic eQTLs). This applies to cells of MSC
progeny as well as those of monocyte lineage.
AVAILABILITY OF THE BONE -OMICS DATA

To date, there is not one single online resource that has collected
data from all the available -omics analyses done on human bone
tissue. At best, the resources are scattered throughout several such
outlets. Sequence Read Archive (13), wherein high-throughput
sequencing data is curated, is one of those (244). Even though the
database itself is rather large, advanced search functionality built
into it allows for easier navigation through the contents, which can
be used to discover human bone tissue derived data. SRA is
complemented by Gene Expression Omnibus (GEO) that may
also host these same datasets, yet often enough, unique data can be
found there as well (245). Since GEO is integrated into the
National Center for Biotechnology Information (NCBI), like
SRA is, its built-in search functionality allows for a similar
navigation of the contents. ProteomeXchange is a portal
dedicated to protein expression datasets (246), listed as one of
the primary information resources by the Human Proteome
Organization. Although human bone is a rare tissue in
proteomic studies, bone-derived proteomic datasets are available
on ProteomeXchange, although not in the same abundance as
transcriptomic studies in other comparable resources.

Perhaps the closest approximation of “one-size-fits-all”
collection of -omics datasets may be the OmicsDI platform,
which acts as an integrational portal for proteomics, genomics,
metabolomics, and transcriptomics datasets (247). The built-in
search function in the portal has certain limitations e.g. improper
implementation of the “NOT” operator in order to filter out
undesirable results. The platform does though include a feature
RESTful API for a possibility of implementing the search
functionality within another website, or automating and
curating the search results via a scripting language of choice,
which may overcome the aforementioned limitations.

SkeletalVis is a portal devoted to exploration, visualization,
linking of- and meta-analyzing skeletal transcriptomic data (248).
Publicly available data resources (such as SRA, GEO, and
November 2021 | Volume 12 | Article 731217
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TABLE 2 | Overview of –omics data resources from human bone tissue by technology.

Description (author) Number
of

samples

Availability of data assessment
type: global
or targeted

Proteomics
Immunological quantification of targeted proteins from postmenopausal iliac bone
biopsies (185, 186)

56 Authors/publication Targeted
(SOST,
DKK1,
sFRP3, WIF1)

Western analysis of postmenopausal intertrochanteric bone biopsies (25 osteoporotic
with fracture + 29 with OA) (187)

54 Authors/publication Targeted
(DKK1, b-
catenin)

LC-MS analysis of young adult alveolar bone from two healthy females and two males
(aged 15−21 years) (188)

4 PRIDE Project PXD011524 Global

Stable isotope labeling by amino acids in cell culture (SILAC) analysis of primary
cultured human osteoblasts co-cultured with human umbilical vein endothelial cells
(HUVECs) (189)

2 PRIDE Project PXD011844 Global

Shotgun proteomics (LC-MS) of archeological human bone from 4 adults and 2 infants
(190)

6 PRIDE Project PXD006256 Global

LC-MS/MS analysis of cranial suture samples stripped of periosteum from 5 infants
(ages 3–12 months) (191)

10 PRIDE Project PXD003215 Global

LC-MS/MS analysis of alveolar bone and dental cementum from 5 females and 2
males ranging from 20 to 30 years old. (192)

7 PRIDE Project PXD000420 Global

Transcriptomics
RNA-seq of transiliac bone biopsies and subchondral femoral head samples (Prijatelj
et al.) publication in progress

121 Authors Global

eQTL analysis of transiliac bone biopsies (Prijatelj, Reppe et al.) publication in progress 76 Authors Global
RNA-seq of purified osteoblasts from male iliac bone biopsies (127) 6 Authors/publication Global
Microchip RNA profiling of postmenopausal transiliac bone biopsies (193) 84 EMBL-EBI repository, ID: E-MEXP-1618. Global
PCR based and microchip profiling of postmenopausal iliac or femoral bone biopsy
ncRNAs. (194)

84 + 18 Authors/publication Global

Microchip RNA profiling of 19 spine and 5 iliac crest bone biopsies from 13 male
donors. (195)

24 EMBL-EBI repository, ID: E-MEXP-2219 Global

Microchip profiling of postmenopausal intertrochanteric bone biopsies (10 with OA +
10 osteoporotic + 10 autopsies from controls) (196, 197)

30 Authors/publication Global

PCR profiling of postmenopausal intertrochanteric bone biopsies (25 osteoporotic with
fracture + 29 with OA) (187)

54 Authors/publication Targeted,
including
mRNAs and
miRNAs

PCR profiling of postmenopausal/male intertrochanteric femoral bone biopsies (49 with
OA + 50 osteoporotic + 14 autopsies from controls) (198–200)

113 Authors/publication Targeted

PCR profiling of femoral head bone biopsies from non-osteoporotic women (10
postmenopausal + 7 pre-menopausal) (201, 202)

16 Authors/publication Targeted
(>150 genes)

PCR profiling of male iliac crest bone biopsies (9 osteoporotic + 9 healthy) (203) 18 Authors/publication Targeted
PCR profiling of elderly male femoral head bone biopsies (12 with osteoporosis/
fracture + 10 with OA) (204)

22 Authors/publication Targeted

PCR profiling after fracture of male and female femoral bone biopsies (45 with fracture/
osteoporosis + 15 with fracture/non-osteoporotic) (205)

60 Authors/publication Targeted

miRNA profiling of postmenopausal femoral neck bone biopsies (6 with osteoporosis +
10 with OA) and primary cultured osteoblasts from knee (n=4) (206)

16 Authors/publication Global

miRNA profiling of postmenopausal femoral head biopsies (27 with fracture + 27 with
OA) (207)

54 Authors/publication Global

mRNA and miRNA PCR profiling of postmenopausal or male femoral bone biopsies
after fracture (20 osteoporotic + 20 non-osteoporotic) (208)

40 Authors/publication Targeted

PCR profiling of postmenopausal and male femoral bone (6 osteoporotic + 20 with OA)
(209)

12 Authors/publication Targeted
(172 genes)

RNA-seq of centrifuged postmenopausal iliac crest bone biopsies from denosumab
treated or untreated donors (210)

30 GEO Accession: GSM4209348 Global

RNA-seq of explant osteoblast cultures from human patients with non-syndromic
craniosynostosis (n=23) and controls (n=8) (211)

31 GEO Accession: GSM1333404 Global

Microchip profiling of transiliac crest bone biopsies from 9 patients with endogenous
Cushings syndrome before and after treatment (212)

18 GEO Accession: GSE30159 Global

Microchip profiling of transiliac crest bone biospies from 7 patients with primary
hyperparathyroidism before and one year after parathyroidectomy (213, 214)

14 EMBL-EBI: E-MEXP-847 Global

(Continued)
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TABLE 2 | Continued

Description (author) Number
of

samples

Availability of data assessment
type: global
or targeted

Microchip profiling of transiliac bone biopsies from 2 male controls and 2 male patients
with clinically characterized Fibrogenesis imperfecta ossium (215)

4 GEO Accession: GSE43861 Global

RNA-seq of centrifuged postmenopausal iliac crest bone biopsies from young women
(n=19), postmenopausal women treated with estrogen (n=20) and postmenopausal
controls (n=19). (216)

58 GEO Accession: GSE72815 Global

Microchip profiling of osteoclasts treated with bisphosphonates (n=6) and controls
(n=3) (217)

9 GEO Accession: GSM1537946 Global

Microchip profiling of primary osteoclast precursors differentiated with CSF-1 and
RANKL or CSF-1 alone (115)

4 GEO Accession: GSE107297 Global

Microchip profiling of OA (n = 20) and non-OA (n = 5) knee lateral tibial and medial tibial
plateaus subchondral bone biopsies. (218)

50 EMBL-EBI: GSE51588 Global

DNA methylation
Microchip DNA methylation profiling of postmenopausal transiliac bone biopsies (219,
220)

84 Authors/publication Global

Microchip DNA methylation profiling of postmenopausal femoral bone biopsies (221) 30 Authors/publication Global
PCR/pyrosequencing of femoral head bone DNA from postmenopausal women/elderly
men subjected to hip replacement due to fracture or OA and RNA expression analysis
of RANKL, OPG and BGLAP (222)

21 Authors/publication Targeted

Sequencing of bisulfite-converted femoral bone DNA from 32 males or females with
fracture, of whom 16 were non-osteoporotic and RNA expression analysis of RANKL,
OPG, SOST (223, 224)

32 Authors/publication Targeted

Sequencing of bisulfite-converted femoral bone DNA from 20 postmenopausal women
with fracture, of which 8 were non-osteoporotic, and RNA expression analysis of SP7,
RUNX2, SOST, ERa (225)

20 Authors/publication Targeted

Microchip DNA methylation profiling of mesenchymal stem cells from postmenopausal
femoral head bone biopsies (22 with fracture and 17 with OA) and RNA-seq of MSC
samples from 10 women with fracture and 10 women with OA (136)

39 Authors/publication Global

RRBS of primary cultured osteoblasts (226) 2 GSM683881, GSM683928 Global
Microchip DNA methylation profiling, changes during monocytes to osteoclast
differentiation (227)

6 EMBL-EBI: GSE46648 Global

Microchip DNA methylation profiling of femoral head trabecular bone biopsies from
females (n=46) and males (n=2). (228)

48 EMBL-EBI: GSE64490 Global

Pyrosequencing of DNA from human osteoclasts generated from women ages 40 to
66 years. Differentiation, fusion, bone resorption, and in vivo characteristics were
evaluated in the context of DNA methylation of DCSTAMP and CTSK (156, 157)

49 Authors/publication Targeted

Chromatin structure
Hi-C and RNA-sec of primary cultured human osteocytes (Hsu, Kiel et al.; publication
in progress)

1 Authors Global

Dnase1-seq, ChIP-seq (H3K4me3), 5C and RNA-seq of primary cultured osteoblasts.
(229)

1 GEO Accessions: DNase1-seq: GSE29692,
GSE32970; ChIP-seq: GSE35583; RNA-seq:
GSE19090, GSE15805, GSE17778; 5C:
wgEncodeEH002102

Global

ATAC-seq, RNA-seq and 3C analysis of osteoblasts and adipocytes derived from
human bone-marrow MSC (230)

4 European Bioinformatics Institute (EMBL-EBI)
Capture C: E-MTAB-6862; ATAC-Seq: E-MTAB-
6834; RNA-Seq: E-MTAB-6835

Global

ChIP-seq and RNA-seq experiments in MSC and immortalized osteoblastic cells
(hFOB 1.19) before and after differentiation. ChIP-seq was done for H2A.Z, H2Bub1,
H3.3, RNAPII and CHD1 in differentiated FOB with control or CHD1 siRNA treatment
(231)

35 GEO Accession: GSE89179 Global

DNase1-seq and microchip RNA profiling of immortalized osteoblastic cells (hFOB
1.19) before and after differentiation (232)

10 GEO Accession: GSE75232 Global

Chip-seq of primary cultured osteoblasts in which DNA was precipitated with 11
different histone antibodies (233)

11 ENCSR786NTC Global

DNase1-seq of bones from female and male embryos (98 and 81 days, respectively)
(234, 235)

5 ENCSR805XIF, ENCSR976XOY, ENCSR431UEM,
ENCSR274SDO, ENCSR449HOQ

Global
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ProteomeXchange mentioned before) are mined, undergo a QC
procedure, and re– analyzed. The strengths of the platform include
inter-experiment comparison options using signed Jaccard index,
an approach that is also species-agnostic, visualizing datasets’ (dis)
similarity using the t-distributed stochastic neighboring
embedding, as well as other possible downstream analyses,
whilst presenting the results in a user-friendly web interface.

Another user-friendly tool is a correlation browser to identify
highly correlated transcripts in trans-iliac bone biopsies from 84
postmenopausal women (193). The correlation browser enables
targeted searches among >260 million transcript correlations.
This tool (http://app.uio.no/med/klinmed/correlation-browser/
iliac-v2.0/) enables e.g. identification of candidate targets of
transcription factors. It has been expanded to include mature
miRNAs, thus also enabling identification of candidate
interacting mRNAs/miRNAs (unpublished).

The flourishing of analytic in silico tools and software is
remarkable, and increases the speed at which data can be processed
and analyzed. However, with this abundance of possibilities, caution
is warranted, as no single tool is comprehensive and none is infallible.
It is imperative to understand the principles behind bioinformatic
tools and to sensibly choose the most suitable one(s) for the purposes
of the end user’s project(s).
CELL CULTURE MODELS AND RESOURCES
AVAILABLE IN THE GEMSTONE NETWORK
Cellular models that accurately resemble/reflect the morphology
and physiology of their originating/native tissue are pivotal tools
to study bone biology and disease. However, the isolation of
homogenous and functional primary bone cell populations
remains technically challenging as most cellular residents are
Frontiers in Endocrinology | www.frontiersin.org 15
bound tightly to bone surfaces (i.e. osteoclasts and osteoblasts) or
deeply entrenched in mineralized tissue (i.e. osteocytes), thus
requiring specialized isolation methods. An amalgamated
cellular repository: i) composed of a wide variety of primary
and transformed skeletal cells; ii) derived from relevant skeletal
tissue types, and iii) of multiple species of origin would therefore
facilitate rapid and transparent inter-institutional exchange of
cellular resources and methods. To this end, a survey of cellular
resources within reach of this consortium (from 17 research
teams) is illustrated in Figure 4. The scheme encapsulates both
primary and immortalized cell lines, the majority being human
or mouse origin (N=79 and N=55, respectively) but also includes
rabbit, rat, and monkey. Multipotential MSCs derived from
primary tissue sources are best represented (N=46 human) and
(N=39 mouse) followed by tumor-derived osteoblast cell lines
(N=18) and those of myeloid lineage/PBMCs (N=4 human,
N=16 mouse). Osteoblasts are by far the most represented cell
type (N=71) followed by osteoclasts derived from either human
(N=13) or mouse origin (N=16), respectively. Not surprisingly,
osteocytes are comparatively underrepresented (N=11), with
only four derived from primary human sources. This cellular
resource is not limited to bone cells, but also extends to
neighboring and intersecting tissues/cell types.

Collectively, the shared cellular models will serve as a powerful
resource towards accelerating the functional validation of new
molecular targets potentially implicated with skeletal biology and
disease. However, although bone cell cultures are an easy and useful
tool for the discovery and/or functional validation of variants
associated with bone cell differentiation, they do not fully reflect
the in vivo situation. Complex interactions between cells and the
surroundingmatrix are oftenmissing.Despite these drawbacks, cell
cultures have several benefits including analysis on a specific cell
type, excluding the influence of endocrine factors and complex
FIGURE 4 | Collection of cellular resources available among 17 research teams of the GEMSTONE consortium.
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tissue interactions, ease of gene manipulation, and they are cost
effective. It canbe seen fromFigure4 that roughlyhalf of the cellular
resources used are immortalized/transformed cells. These are
especially helpful because the cells in culture are rather uniform
and can more readily be genetically modified, in contrast to many
primary cell cultures. However, immortalized cells should be used
with caution since the cell cycle is artificially altered through the
transformation thatmay potentially affect cellular signaling.Where
possible, confirmation in primary cell cultures could be of benefit.

We find that the most important step needed to make
progress on the functional validation of GWAS findings using
cell cultures, is that experts throughout Europe and the rest of the
World share cells, protocols, and expertise with each other (249).
Resource from Figure 4 is a first step in this direction, but the
GEMSTONE consortium will further substantiate this
collaboration within the network, thus we strongly encourage
other research groups to join us in this effort.
ADDING COMPLEXITY BUT GAINING
PHYSIOLOGY: USE OF MICROFLUIDICS
AND 3D TECHNOLOGY IN
BONE RESEARCH

To date, most of the data generated in laboratory settings are
either 2D in vitro culture systems or animal models. Cell cultures
often involve human cell types, whereby one or more cell lines
are (co)cultured, which nonetheless lack some of the complexity
as observed in real life. Hence, there is a pressing need for models
that better reflect human bone metabolism, in which certain
aspects can be included, such as a 3D environment, shear stress
and chemotaxis. Approaches that have been taken to overcome
these issues can be divided into 3 categories: 1) 3D printed bone
scaffolds, 2) Bioprinting of scaffolds (containing cells), and
3) Microfluidic models (Organ-on-Chip).

3D printed bone scaffolds have been employed with
numerous compositions, surface modifications, coatings,
biomechanical properties, and porosities (250, 251). Initially,
by implementing MSCs/osteoblasts to study osteogenesis, the
complexity has gradually been increased by including e.g.
endothelial cells/vasculature leading to vascularized bone
tissue-engineered constructs (252). Taking this one step
further, efforts in the leukaemia/bone tumor research field have
led to models (partially) mimicking the human bone marrow
microenvironment, enabling the study of complex pathology
through simultaneous interactions between multiple cell types
and their extracellular environment in vitro (253). More recently,
3D bioprinting tools have become available, which allow for
generating a 3D structure with the cell type(s) of interest
included in the printing process (254, 255). 3D scaffolds have
been widely used as in vivo bone regeneration models, but their
translation value for human bone biology is yet unclear.

Over the last decade, simple microfluidic set ups have evolved
into multi compartment-based chips, often coined Organ-on-
Chip (OoC), in which relevant physiological aspects can be
Frontiers in Endocrinology | www.frontiersin.org 16
studied, including shear stress and chemotaxis. Many OoC
models have studied shear stress for endothelial cell function,
but evidence is growing that also MSCs, osteoblasts and
osteocytes perform better under fluid flow as evidenced by
increased proliferation and altered marker genes expression
(256–258). This suggests that OoC models may better reflect
biology than conventional cultures. Similar to 3D printed
scaffolds, OoC approaches have also led to employing more
complex microenvironments, for example breast cancer-derived
bone metastases or the so-called Bone Marrow-on-a-Chip (259,
260). The small format of OoCs may also allow for personalized
medicine initiatives and for compound screening, as small
amounts of cell numbers and materials suffice for cell culturing
(261, 262).

Thus, despite the technical challenges ahead of us, 3D (bio)
printing and microfluidics are at the forefront of a new era that
may enable us to better recapitulate the physiology of bone tissue.
The outcomes from various bone-related GWAS and clues from
monogenic disease states has yielded a valuable list of target
genes to scrutinize in a 3D environment with all the relevant
physiological cues. With the use of primary cells or induced
pluripotent stem (iPS) cells, the toolbox expands to generate a
‘bone-on-a-chip’ that relates to the disease or condition of
interest. Ultimately, this may lead to improved therapeutic
opportunities for bone metabolism and tissue engineering.
ANIMAL MODELS

Laboratory Mouse as a Model Organism
in Skeletal Diseases
Necessity of animal models: Functional validation of bone GWAS
loci is performed frequently through genetic modifications in
model organisms, with analysis of the resulting skeletal
phenotypes. The bone- and joint-specific extreme phenotype
screens in knockout mice [incl. the collaborative cross mouse
panel (263)] identify novel pathways regulating normal bone and
cartilage development, maintenance and resilience, thus
uncovering new genetic determinants of disease, and provide
in vivo models to investigate novel treatments. Skeletal
development and maintenance are regulated by local and
systemic factors; this complexity cannot be modelled ex vivo.
In vitro techniques do not offer an alternative because skeletal
development and bone turnover are dynamic processes, whilst
mechanical forces, movement and tissue responses to injury
modify bone maintenance. Mice are used extensively in studies
of the skeleton. Key molecules that regulate cartilage (e.g. Wnt/
beta catenin, Ihh, PTHrP, Sox9, FGFR3) and bone (e.g. Wnt/beta
catenin, Runx2, FGFR1, osteocalcin, osterix, OPG, RANKL,
TRAP, cathepsin K, TNF) in mice have the same functions in
man, and human genetic disorders causing abnormalities of
cartilage and bone are recapitulated in genetically modified
mice. Similarly, endocrine and metabolic control of bone and
cartilage is faithfully preserved in mice. This way, transgenic
mice overexpressing human genes constitute valuable systems
for the modeling of human diseases.
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Strategies for genetic manipulation: Microinjection of the
exogenous gene into the pronucleus of fertilized oocytes has
been a standard method for the generation of transgenic mice,
whereas a limitation of the technique is the random integration
of the injected DNA into the genome. To achieve a
physiologically relevant expression pattern, large genomic
human transgenes of approximately 200kb usually provide
copy-dependent expression levels, regardless of position effects
(264), as also shown in humanized transgenic mouse models of
osteoporosis expressing human RANKL (265).

On the other hand, the physiological role of a gene in
mammalian homeostasis can be investigated in knockout mice
with global gene deletion through homologous recombination in
embryonic stem cells. In this way, rare genetic human skeletal
diseases can be modeled in mice. If the knockout mice develop
embryonic lethality, the conditional knockouts and inducible
knockouts produced using the Cre/loxP recombination system
allow gene loss in specific cells and tissues (spatial) and at the
desired time (temporal). Transgenic mice expressing Cre
recombinase under bone specific promoters offer excision of
the target gene only in cells of the skeletal system (266).
Furthermore, during the last years gene-editing technologies
including zinc finger nucleases, TALENs, and CRISPR/Cas9
have offered the ability to generate specific alterations in the
genome such as insertions, gene knockouts, and point variations
(267). No matter how the mouse models were generated, it is
important to consider their genetic background as this may be
important for analyzing specific traits. In fact, pure genetic
backgrounds (backcrossed for at least 10 generations) are
preferred over mixed backgrounds to exclude effects that may
stem from the genetics of the mouse instead of the targeted gene
knockout. Apart from the reverse genetics approaches, forward
genetics enable the identification of causal variants through
analysis of mutants displaying bone phenotypes, allowing for
the identification of genes critically involved in bone
homeostasis (268).

Analysis of genetically altered mice: When analyzing the
consequences of genetically manipulated animal models, it is
worthwhile to consider which cell types are affected.
Traditionally, the focus is on the classical members of the
basic multicellular unit, namely the osteoclast, osteoblast, and
osteocyte. However, recent findings from human bone tissue
studies imply that other relevant cell types must also be
considered, including bone lining cells, reversal cells, bone
remodeling compartment canopy cells, and the bone marrow
envelope as osteoblast progenitors (43, 44, 46). These cell types
and structures have also been identified and characterized in
mouse, rabbit, and sheep animal models (269–271). Moreover,
scRNA-seq analyses now provide information into the
subpopulations of osteoblasts and osteoclasts. Thus, when
interpreting the bone phenotype of an osteoblast or osteoclast
“specific” knockout, it is worth considering the possible
influence of these cell types on the phenotype. With respect
to osteoclasts, there may also be differences in their resorptive
characteristics (272), they are affected by gender and age (156,
157, 273, 274), and there might be a variation in their source
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“residence” and precursors (274–277). We would therefore
encourage scientists to consider these nuances when
interpreting bone phenotypes resulting from genetic
manipulation in animal models.

Bone phenotyping can be done at various depths. The
ultimate test to determine bone strength, ideally at various
skeletal sites, is by performing biomechanical testing.
Additionally, micro-computed tomography (µCT) is a useful
tool to determine cortical and trabecular bone microarchitecture.
To obtain information about the presence and function of bone
cells, dynamic bone histomorphometry or at a more advanced
level, time-resolved 4D µCT, is useful. In this way, the number of
cells can be quantified, and by applying fluorescent labels to the
mice, even the bone formation rate within a given time can be
estimated. Measuring bone turnover markers in the serum can
additionally provide information about the activity of bone cells.
Some researchers have developed standardized high-throughput
screens for knockout mice at various depths, taking advantage of
the International Mouse Phenotyping Consortium (278) seeking
to screen phenotypes across KO models of all genes, and
specifically for high-throughput screening of musculoskeletal
phenotypes within the Origins of Bone and Cartilage Disease
consortium (279).

Standardization of bone phenotyping in mice: Notwithstanding
the experimental approach, it is of utmost importance to establish
resource-sharing standards across research groups for the analysis
of bone phenotypes in laboratory mice. Here we propose
fundamental principles and outline a unifying methodology.

1. Use µCT to analyse bone morphometry in 3D in accordance
with the established methodology and nomenclature (280).

2. Analyse cortical and trabecular bone separately, since
growing evidence suggest that genetic variation may
influence these compartments differently (243, 281).

3. Analyse at least two skeletal sites, one appendicular (e.g.
femur) and one axial (e.g. lumbar vertebra), since different
skeletal sites may be under different genetic regulation.

4. Perform in vivo scans to allow longitudinal studies in the
same animal. In the past, this technique lacked in quality and
resolution, but latest in vivo scanners are now offering an
image quality comparable to that of ex vivo systems.

5. Perform biomechanical testing to directly assess bone
strength. At the femur and tibia, 3- and 4-point bending
tests are useful whereas compression tests are recommended
for vertebral bone.

6. Perform dynamic histomorphometry, which is highly
recommended to assess differences in bone turnover.
Calcein double labeling and TRAcP staining are
recommended to evaluate bone formation and resorption,
respectively. To reach higher levels of standardization and
reproducibility between groups, studies should be conducted
in accordance with the standard methodology and
nomenclature (282) and/or use the unified methodology
presented by the Rowe’s group (283).

7. Use alizarin red/alcian blue staining to analyze the skeleton at
the embryonic stage.
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Zebrafish as Animal Model for
Functional Studies of Candidate Loci
in Skeletal Diseases
The teleost Danio rerio (zebrafish) is a small size freshwater fish of
relatively simple and cost-effectivemaintenance. It has emerged as an
advantageous model organism for the study of vertebrate gene
function, also allowing drug and genetic throughput screenings
(Tables 3, 4 and Figure 5) (306, 307). Zebrafish have been of
interest in bone research as their skeletal system shows high
homology with human’s, exhibiting osteoblasts, osteocytes,
osteoclasts, and chondrocytes (308). Embryos are translucent and
develop fast, showing chondrocytes and osteoblasts at three days
post-fertilization (dpf) (309–311) and osteoclasts at around 14 dpf
(312, 313). Functional genetic studies of bone and cartilage are
commonly performed in larval and juvenile zebrafish, where 3D
skeletal analyses can be performed in vivo longitudinally using
transgenic lines labeling specific bone-related cell types allowing
cell trackability (314, 315) (Figure 5). The zebrafish vertebral column
comprises the major skeletal component; it is fully formed by around
two months post-fertilization (316, 317). Similar to mammals, it is
formed by vertebral bodies separated by intervertebral discs;
however, vertebrae show limited trabeculation and are mostly
composed of dense, compact bone (318). Despite being an aquatic
organism, loading patterns of the vertebral column are similar to
bipeds, and can be experimentally controlled by varying applied
forces through water resistance while swimming (319).

Analysis of genetically alteredzebrafish:Alizarin red (in vivoor ex
vivo) and Alcian blue staining (ex vivo) are simple techniques that
allow skeletal assessment from larval to adult stages (320)
(Figure 5). Radiographs and µCT are commonly applied in
adults, permitting longitudinal studies and post-mortem BMD
(cortical bone density) calculations, respectively (286, 319).
Higher-resolution µCTs (< 5µm voxel size), used to study
osteocyte lacunar parameters (number, orientation and shape)
(287, 294, 314, 319), are therefore suitable to investigate the effect
of osteoporosis genes in the 3D organization of osteocytes. The
superficial position of the skulls, fins, and scales also permit the
acquisitionof in vivoand longitudinal imagesusing transgenic lines,
making them attractive systems for drug screens (315), and studies
of skeletal development, regeneration (fin amputation, scale
plucking, and skull trephination) and bone fragility (fin and scale
fractures) (321–325). Similar to other model systems, the
assessment of bone quality is possible through 2D static and
dynamic bone histomorphometry and vibrational spectroscopy
methods (e.g. Fourier transform infrared spectroscopy and
Raman spectroscopy) (287, 319). Bone material properties and
fracture risk are retrieved through nano-indentation or through
compression forces applied on entire segments of the vertebral
column (287, 314, 319, 326).

The zebrafish vs the human genome: Over 70% of human
genes have at least one zebrafish ortholog (327). Due to whole-
genome duplication events during the zebrafish evolution,
approximately 25% of human genes have more than one
ortholog in zebrafish (328, 329). Despite this teleost-specific
event’s adding more genes and complexity for functional
genetic tests in zebrafish, it can be also seen as an advantage
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for the study of gene function, as genetic manipulation of
individual paralogs might bypass lethality and enable
assessment of larval to adult skeletal phenotypes. Furthermore,
the aquatic environment contributes for long term survival of
those fish almost completely lacking bone from genetic
manipulation (288). Large forward genetic screens, using the
chemical N-ethyl-N-nitrosourea (ENU) as a mutagenesis agent,
have provided models for several skeletal diseases over the years
(330–333). The zebrafish mutation project aiming to generate a
knockout allele for each protein-coding gene made many
mutants available to the scientific community (329). For
example, the chihuahua (chi/+) mutant which recapitulates the
skeletal phenotypes exhibited in human classical dominant OI
(286, 287, 334) (Figure 5). Recently, avenues for new therapeutic
discoveries using adult zebrafish have been demonstrated
through treating the chihuahua with 4PBA and TUDCA
chemical chaperones (334). Other zebrafish genetic models for
MSK are exemplified in Table 4.

Zebrafish geneticmodels:Models to studyosteoporosishaveonly
been developed recently in zebrafish, concomitantly with the study
of the ageing zebrafish spine (335, 336). Recently, Kague et al.
provided strong support of osteoporosis in zebrafish, showing that
aged zebrafish spines display increased susceptibility to fractures
and bone quality deterioration (tendency towards reduction of
BMD, increased bone mineral heterogeneity and poor collagen
organization) (337). Genetic manipulations could provide
consistent and compelling models for osteoporosis, as shown in
Table 4. Functional evidence in osteoporosis through zebrafish
studies is exemplified with ATP6V1H (284), SP7 (285), and LRP5
(338). Co-segregation between a mutation in the ATP6V1H gene
and osteoporosis was reported in a human three-generation
pedigree and functional studies performed in zebrafish using
CRISPR/Cas9. atp6v1h zebrafish mutants showed a reduction in
mature bone, reduced bonemass and density, providing functional
evidence of ATP6V1H in osteoporosis (327). SP7/OSTERIX has
been associated to OI (339), Paget’s bone disease (340) and
osteoporosis by GWAS (341). Zebrafish sp7 mutants showed
reduced BMD, spontaneous fractures, abrogation of osteoblast
differentiation, reduction of number but increase in osteocytes’
volume, and abnormal bone material properties (285, 337).
Similarly, when lrp5 was mutated in zebrafish it led to reduced
BMD, bone volume and cortical thickness, reminiscent of
osteoporosis (338). Despite the limited number of zebrafish
models of osteoporosis available to date, recent studies (337, 338)
have provided additional evidence that zebrafish are naturalmodels
for osteoporosis during ageing and zebrafish mutants for genes
associated to BMD can recapitulate osteoporosis phenotype,
therefore, placing zebrafish as a parallel model along with mice to
functionally study and validate osteoporosis associated genes.

Strategies for genetic manipulation: Among genome editing
technologies, the CRISPR/Cas9 system has become the most
widely used in zebrafish as it provides a straightforward, efficient,
and accurate gene editing (342–344). It has contributed to an
exponential increase in the number of mutants involved in
skeletal phenotypes published in the last years. However, the time
required for the generation of homozygous mutant lines (up to one
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TABLE 4 | Zebrafish genetic models for human skeletal diseases.

Human Disease/condition Zebrafish genetic models References

Osteoporosis atp6V1H (284)
sp7/osterix (285)

Osteogenesis imperfecta (OI) col1a1a (chihuahua) (286, 287)
col1a2 (288)
bmp1a (frilly fins) (289)
plod2 (290)
sp7/osterix (285)
pls3 (291)

Craniosynostosis and ectopic sutures cyp26b1 (dolphin and stocksteif) (292)
tcf12 and twist1 (293)
fgfr3 (294)
sp7/osterix (285)

Fibrodysplasia Ossificans Progressiva acvr1/alk2 (295)
Scoliosis cc2d2a (296)

kif6 (297)
c21orf59, ccdc40, cctc151, dyx1c1 and ptk7 (298, 299)
col8a1a (300)

Osteoarthritis col11a2 (301)
prg4 (302)

ectopic mineralisation (axial skeleton) abcc6a (303)
enpp1/enptd5 (304)
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TABLE 3 | Comparison between mouse and zebrafish.

Characteristic Mus musculus (mouse) Danio rerio (zebrafish)

Maintenance and breeding
Cost and time for animal husbandry Modest (£2.5 per week, 8 animals per cage) Low (£4 per week, 20 animals per

tank)
Facility housing and space required High Low
Sexual maturity ~6-8 weeks ~6-9 weeks
Life span ~2 years ~3.5 years
Fertilization and development Internal External/fast development
Control of fertilization time Limited High, upon exposure to daylight
Number of offspring per female Up to a dozen per month Up to 200 per week
Genomics
Size of genome GRCm38.p6: ~3.49Gbp GRCz11: ~1.67 Gbp
Number of chromosomes 2n=38+2(X/Y) 2n=50
Coding genes 24,278 (MGI, July 2020) 25,592 (GRCz11, May 2017)
Non-coding genes 16,074 6,599
Coding genes with human orthologs ~76% ~71%
Genome engineering and transgenesis
Genome manipulation Modest Relatively easy
Costs of establishing a stable line High Low
Forward genetic screening Yes (high costs) Yes (modest costs)
Reverse genetic screening Yes Yes (modest costs)
Mosaic (G0) screening Non-applicable Yes (modest costs)
Skeletal phenotyping and imaging
in vivo imaging and cell tracking Available (modest) Easy
First bones appear E13.3 (chondrocytes); E15.5 (ossification centres) 3 days post-fertilization
Imaging of early skeleton phenotype Modest (invasive) Easy (translucent)
Availability of exoskeleton? No (except teeth) Yes (fins, scales)
Visualisation of adult bone fracture Invasive Non-invasive (fins) and invasive

(vertebral column)
X-ray (TMD) Easy Easy (full body, relative TMD)
µCT (TMD) Easy Easy (bone structure)
Biomechanical tests 3-point-bending, vertebral compression, nanoindentation nanoindentation, vertebral

compression
Selected repositories for bone
phenotypic data

International Mouse Phenotyping Consortium (IMPC) (www.mousephenotype.org) There is not a specific database
available

INFRAFRONTIER (www.infrafrontier.eu)
Origins of Bone and Cartilage Disease (OBCD) (www.boneandcartilage.com)
Mouse Genome Informatics- The Jackson Laboratory (www.informatics.jax.org)
https://bonebase.lab.uconn.edu/
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year) is a limiting factor when planning to test the vast number
of genes harbored in GWAS identified loci. Proof-of-concept
was achieved by Watson et al. showing that CRISPR genetic
screening through G0s (mosaic fish) can be used for evaluation
of larval to adult skeletal phenotype without the long waiting
time to generate a stable homozygous mutant. The authors
tested two genes (plod2 and bmp1a) involved in OI, and by
comparing them with homozygous mutants showed adult
CRISPR G0s (crispants) to recapitulate homozygous inbred
phenotype in the skeletal system (343). The same approach was
Frontiers in Endocrinology | www.frontiersin.org 20
used to compare lrp5 crispants versus knockouts, showing similar
results inbothgroupsandvalidating theuse of zebrafish crispants to
study genes coupled to osteoporosis (338). Therefore, G0s
(crispants) provide loss-of function genetic screening in zebrafish
allowing to test in parallel all genes harbored in GWAS associated
loci. While deep phenotypic andmolecular characterization can be
performed in mutant lines, crispants represent an efficient in vivo
platform and one of the greatest advantages of using zebrafish to
boost identification of variants with high changes of causality
in osteoporosis.
A

B

C

FIGURE 5 | Zebrafish: a versatile animal model to study bone associated diseases. (A) Illustration of an adult zebrafish showing examples of bones through the
zebrafish body used to model human diseases. Bones are shown stained with Alizarin Red S: skull (F = frontal or metopic; P = parietal), cranial sutures (me= metopic;
co= coronal; sa= sagittal); synovial joint (A= anguloarticular; Q= quadrate); spine (C= centrum; ivd= intervertebral disc); scales and fins (ca= callus formed after fractures).
Pictures were taken using a stereomicroscope (Leica MZ10F). (B) 3D volumetric renders from µCT images of wild-type (wt) and chi+/- (model for OI) adult skeleton, color-
coded to show variations in TMD (red= higher TMD values; blue= lower TMD values). Regions within the dashed boxes are shown in higher magnification. Note the
reduced and uneven TMD distribution in the bones of chi-/- (arrows and dashed arrows). Example of live imaging in juvenile zebrafish. (CI) Juvenile zebrafish carrying the
transgene Tg(Ola.Sp7:nlsGFP)zf132 (305), labeling osteoblasts in green, and live stained with Alizarin Red S, labeling mineralized bones in red (here shown in magenta).
The picture was taken under a fluorescent stereomicroscope (Leica MZ10F). The operculum (CII) and part of the vertebral column (CIII) were live imaged under a
confocal microscope (SP5 Leica) to show the structures in detail. Note single osteoblasts (green) contouring the mineralized bone (magenta) in II and III. Scale bars values
are indicated in each picture.
November 2021 | Volume 12 | Article 731217

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Rauner et al. GEMSTONE Functional Validation Mission Statement
Besides targeting coding genes for functional studies, zebrafish
are suitable to study lncRNAs and cis-regulatory regions. LncRNAs
have been reported during embryonic development and in adult
tissue, emphasizing their conserved biological function despite
their limited sequence conservation (345–348). Transgenic
analyses of cis-regulatory regions in G0s are possible through the
Tol2 transposase system,whose high efficiency guarantees genomic
integrationand rapiddelivery of putative sequences, allowing to test
non-coding variants and their enhancer activity during zebrafish
development (77), with evaluation of multiple tissues at once (i.e.
bone and cartilage) (349). This system allows to test high numbers
of conservedandnon-conserved sequences (349–352), andcouldbe
improved towards the development of throughput systems to test
enhancer activity in vivo (Figure 6). This strategy would benefit
GWAS hits of difficult interpretation, within non-coding sequence,
as demonstrated by identification of an enhancer element in the
vicinity ofBMP2, identified throughGWASas associatedwith non-
syndromic craniosynostosis (353). Evolutionary conservation is
frequently used as a filter to narrow down the number of
sequences submitted to functional evaluation. While CRISPR/
Cas9 systems can also be applied to cause large deletions (354)
and to test conserved sequences; non-conserved sequences can still
be tested for enhancer activity, due todegenerated bindingmotifs of
transcription factors. It has been demonstrated that human
sequences when inserted into the zebrafish genome lead to
reliable enhancer activity in relevant tissues (349, 350).
Frontiers in Endocrinology | www.frontiersin.org 21
Therefore, zebrafish provide a wide-ranging toolbox to
functionally test coding and non-coding sequences identified in
human studies which could be easily incorporated as a post-
GWAS pipeline for osteoporosis.

ESTABLISHING DATA AND RESOURCE
SHARING PLATFORM
A cornerstone of science is the ability to replicate results. In the
early 2010s the “replication crisis” was formulated to drive
attention to the problem of inability to reproduce many
findings (355). Part of this issue is also an increasing volume
of scientific research being published (356). As part of the
scientific method involves creating a conjecture, which relies
on observations and prior knowledge, the mentioned crisis
presents a problem that is two-fold: first, even though the
information age makes it ever so simple to allocate desired
material, the direct cause is also the exponential growth of the
amount of data itself (357). Second, even when one is able to find
wanted knowledge, the replication crisis should make researchers
always second-guess the published results on their journey
towards hypothesis creation. Thus, it would be prudent to
bui ld upon a service such as Skeleta lVis and the
“Musculoskeletal Knowledge Portal” [MSK-KP (358)], that
allow not only -omics data resources to be available, but would
also offer an overview, a “curation”, of results, whilst enriching
FIGURE 6 | In vivo functional validation of non-coding variants using zebrafish. (A) An example of a top variant (3-magenta) identified through GWAS. The variant 3
is in linkage disequilibrium (red arrows) with other non-genotyped variants (1-orange, 2 and 4- grey). By combining information from other -omics, functional evidence
is provided by showing an enhancer region overlapping the variant 1 (orange). An in vivo functional approach can be performed using zebrafish, were all organs and
tissues are studied at the same time. (B) For this, each allele is cloned upstream of a generic promoter and a reporter (either GFP or mCherry) within a construct
flanked by Tol2 transposable elements. Tol2 mRNA (transposase) can be easily synthesized. (C) Both or individual constructs in combination with the Tol2 mRNA
are injected in the zebrafish embryo (one cell stage represented), leading to a DNA transposon-mediated integration in the zebrafish genome. (D) Results can be
observed already in G0s (mosaic, founders), which when crossed to a wild-type zebrafish will contribute to germline transmission and generation of transgenic lines
showing tissue-specific expression of the reporter (arrowheads). This system could be used to screen a high number of variants using G0s and precise quantification
of reporter variability.
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them with other sources of relevant information. It is only
through community effort that such advances are possible.

International Federation of MSK Research Societies (IFMRS)
realized that there is a growing urgency for reproducible research
using integrated -omics, similar to all disciplines in science.
Along with the creators of relevant databases, data archives
and knowledge-databases, IFMRS strived to identify common
issues in database development, curation and management, to
create data portals allowing reproducibility of singular -omics
and integrated omics data (358).

IFMRS recently created MSK-KP, designed to facilitate
functional studies of the genetic factors underpinning skeletal
diseases, thus supporting the prioritization of genes and
pathways by experimentalists. The ultimate vision of the MSK-
KP was to consolidate -omics datasets from human and model
organisms into a central repository that can be accessed by
researchers to better understand the biological mechanisms
underlying musculoskeletal disease and apply this knowledge
to identify and develop new disease interventions. To realize this
vision, the team from the Broad Institute (Cambridge,
Massachusetts) was recruited, who had been instrumental in
designing the Knowledge Portals for other complex diseases.
Rather than simply serving as a repository for skeletal datasets
generated by individual laboratories and large consortia, MSK-
KP will provide a much-needed bridge between the statistical
genetic, wet lab and clinical communities (358).

This effort requires making -omics data a resource on a web
server that is publicly available to the scientific community, via
an intuitive and flexible web interface that enables non-specialist
users to mine and interpret -omics data easily (359). Thus, the
summary of the results of existing and ongoing GWAS and
PheWAS analyses is already deposited at the portal. At present,
transcriptomics and epigenomics data are populated there. At
the next stage, proteomics and metabolomics datasets will be
added; in the future, bone-related lipidomics, microbiomics,
spatial transcriptomics, and phenomics data will follow.

MSK-KP group will continue identifying, obtaining, curating
and integrating various -omics datasets from the international
MSK research community, and encourage data sharing through
community collaborative spirit (358). Together with hosting the
data from cellular experiments and animal models, as well as
compound screens, the portal is supposed to integrate such data
with bioinformatics resources. Part of the solution of appropriate
integrating -omics datasets is a requirement for open sharing of
scripts and codes for such analyses. Data provided to the MSK-
KP should adhere to Findability, Accessibility, Interoperability,
and Reusability (FAIR) principles (360). Besides archiving the
data, IFMRS strives to provide guidelines on the integration of
-omics datasets for the development of standardized analytical
pipelines. This can move the skeletal genetics into the “post
GWAS” era.

VISION OF THE FUTURE
This consensus statement aims to create a roadmap for using
functional genomics to interrogate signals from human genetic
studies for osteoporosis and other skeletal conditions. While the
Frontiers in Endocrinology | www.frontiersin.org 22
number of -omics-based studies in bone biology has exploded
over the past decade, high throughput in vitro systems and rapid
phenotyping of model organisms remain equally important in
order to accelerate the functional validation of identified targets.
Our effort nurtures such endeavors by expanding the wealth of
knowledge and resources, represented by keen individuals and
assets at their disposal, and promoting their exchange amongst
participating institutions.

The unification of -omics data will create a wealth of new
information towards the study of skeletal diseases (359). Besides
increasing sample size, algorithms for standardization of
sampling and sample processing, platforms for quantification,
and data analyses should be agreed upon. Bone cell-type-specific
resources might allow high-throughput massive parallel reporter
assays that test the variants altering the activity of putative
regulatory elements (361). Advances in computational analyses
together with novel gene editing techniques that enable
epigenetic manipulations at particular enhancer sites will
further unveil relationships between non-coding SNPs and
disease development.

Functional genomics studies of osteoporosis have limitations,
mostly due to inaccessibility of bone tissue. In particular, not
many resources are dedicated to osteocytes; since longitudinal
studies of (especially human) specimens are limited, studies of
bone loss rate are underrepresented. There are also limited
ATAC-Seq and Hi-C datasets derived from bone cells, and it is
still challenging to determine protein levels in bone in an in vivo
setting, especially for diagnostic purposes. Furthermore, even
though mobile genetic elements form half of the human genome,
their role in transcriptional regulation in MSK diseases awaits
further elucidation. While still vastly underrepresented
compared to other -omics technologies, metabolomic studies of
resident bone cells will undoubtedly uncover hitherto
unappreciated but important metabolites. All this dictates our
joint interest for the near future.

As we start to unravel the proteomes of bone cells and build
towards more complete protein atlases, future approaches should
be aimed at reducing sample complexity. Reducing ‘noise’ will
thus enable precision mapping of proteomes at single organelle
resolution, such as mitochondria or lysosomes. Similarly, rapidly
evolving multiplex technologies such as imaging mass cytometry
(e.g. Hyperion) and imaging mass spectrometry (e.g. Cell DIVE)
coupled with spatial transcriptomic platforms will undoubtedly
afford new and exciting opportunities to systematically map the
molecular, cellular and spatial organization of musculoskeletal
tissues at unprecedented resolution.

There is a need to continue close communication with the
animal modeling groups to assure that in vivo studies cross-
fertilize with cellular and translational ones, allowing the
planning for functional validation of candidate variants to be
taken concomitantly with genetic prioritization. Alongside the
plethora of tools available for functional studies in cell culture
and mice, zebrafish provide alternative and advantageous
solutions for rapid functional screening of coding and non-
coding sequences, and translation of genomic findings to
therapeutics. The combination of functional expertise made
accessible through our collaborative group, allows us to discuss
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data access, curation, and sharing in a collaborative spirit
towards non-overlapping efforts, directing funding resources
towards the boosting of skeletal genetic discovery.

Furthermore, modeling of human disease does not only
require the standardization of both cellular and animal
phenotyping (42), but oftentimes also rethinking of the
disease definition. Employing better defined heritable traits
(endophenotypes) would benefit both the etiological
understanding of the disease in a particular patient, improve
the targeted therapeutic approach with fewer side effects, and
provide more effective treatments. Moreover, gender-balanced
data are needed as most of the -omics studies to date were
focused on women.

As we move closer towards an integrative multi-omics and
holistic approach to skeletal diseases, consortia such as
GEMSTONE become a fundamental tenet of modern
genomics. In the long term, these efforts will allow meaningful
and physiologically relevant data to be extrapolated, will allow
identification of molecular diagnostic biomarkers and translation
of findings into new therapeutic targets with higher effectiveness
and fewer adverse effects, which will contribute to a higher
quality of care for human skeletal diseases.
Frontiers in Endocrinology | www.frontiersin.org 23
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221. Garcıá-Ibarbia C, Delgado-Calle J, Casafont I, Velasco J, Arozamena J,
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GLOSSARY

ATAC-Seq Assay for Transposase-Accessible Chromatin using sequencing
bALP bone alkaline phosphatase
BMD Bone mineral density
BMSC bone marrow mesenchymal stromal cells
circRNA circular RNA
CTX C-terminal telopeptide of collagen type I
DXA Dual X-ray absorptiometry
eBMD estimated bone mineral density
ENU N-ethyl-N-nitrosourea
eQTL Expression quantitative trait locus
GEO Gene Expression Omnibus
GWAS Genome-wide association studies
HGMD Human Gene Mutation Database
Hi-C high‐throughput chromosome conformation capture
KP known pathogenic
lncRNA long non-coding RNA
Mb Mega base pairs
miRNA microRNA
miR-SNPs polymorphisms in miRNA genes
miR-TS-SNPs SNPs that occur in the miRNA target site
mQTLs DNA methylation quantitative trait locus
mRNA messenger RNA
MSC Mesenchymal stromal cells
MSK musculoskeletal
ncRNA non-coding RNA
NMR nuclear magnetic resonance
NTX N-terminal telopeptide of collagen type I
OoC Organ-on-Chip
OI Osteogenesis imperfecta
PBMC peripheral blood mononuclear cell
PheWAS Phenome-wide association study
PINP procollagen type I N-terminal propeptide
pQTL protein expression quantitative trait locus
QCT Quantitative computed tomography
QTL quantitative trait locus
RNA-seq RNA sequencing
scRNA-seq single cell RNA sequencing
SINE short interspersed nuclear element
SNP single nucleotide polymorphism
SRA Sequence Read Archive
TAD topologically associating domain
TF transcription factor
TFBS transcription factor binding site
TGS third generation sequencing
TRAcP (TRAP) tartrate resistant acid phosphatase
UKBB UK BioBank
WES Whole exome sequencing
WGS Whole genome sequencing
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