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SUMMARY

 

We have studied the effect of mycophenolate mofetil (MMF), a new drug used in prevention of trans-
plant rejection, on differentiation, maturation and allostimulatory activity of human monocyte-derived
dendritic cells (MDDC). MDDC were generated 

 

in vitro

 

 with granulocyte macrophage-colony stimu-
lating factor (GM-CSF) and interleukin (IL)-4 in the presence or absence of MMF. MMF reduced the
number of immature MDDC in culture, dose-dependently, by inducing apoptosis and inhibited their
stimulatory activity on allogeneic lymphocytes. These changes correlated with down-regulation of co-
stimulatory and adhesion molecules such as CD40, CD54, CD80 and CD86. No differences were
observed in mannose receptor (MR)-mediated endocytosis, measured by the uptake of fluorescein
isothiocyanate (FITC)-dextran. MDDC differentiated in the presence of MMF showed significantly
reduced maturation upon stimulation with lipopolysaccharide, as judged by lower expresson of CD83
and co-stimulatory molecules, lower production of tumour necrosis factor (TNF)-

 

a

 

, IL-10, IL-12 and
IL-18 as well as lower stimulation of alloreactive T cells including naive CD4

 

+

 

 CD45RA

 

+

 

 T cells. In con-
trast, MDDC matured in the presence of MMF showed a more marked decrease in the FITC-dextran
uptake than mature MDDC cultivated without MMF and the phenomenon correlated with down-
regulation of the MR expression. These results suggest that MMF impairs differentiation, maturation
and function of human MDDC 

 

in vitro

 

, which is an additional mechanism of its immunosuppressive
effect.
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INTRODUCTION

 

Mycophenolate mofetil (MMF), a new immunosuppressive drug
[1–3], has been used in different models of allogeneic transplan-
tation [4–8], autoimmune skin disorders [9,10] and rheumatoid
arthritis [11]. In human medicine, MMF is licensed for the pre-
vention of renal transplant rejection [1,2].

MMF is a morpholinoethylester of mycophenolic acid (MPA),
its active metabolite [2]. The compound has been shown to inhibit
inosine 5?-monophosphate dehydrogenase (IMPDH), a key
enzyme in the purine synthesis pathway of lymphocytes [12,13].
Because T and B lymphocytes rely solely on this pathway for the
production of guanosine nucleotides, the proliferation of these
cells is specifically inhibited by MMF [14,15]. The drug not only
blocks lymphocyte proliferation, but also prevents humoral

responses to antigens and mitogens [16,17] and some other func-
tions of lymphocytes [18,19].

The induction of immune response following allotransplanta-
tion involves a complex interaction between antigen-presenting
cells (APC) and T lymphocytes [20]. Among APC, dendritic cells
(DC) play a central role in antigen presentation and stimulation
of naive T cells. Upon encountering an antigen at a peripheral site,
such as transplanted tissue, immature DC migrate to the draining
lymph node where they mature. The process includes up-
regulation of co-stimulatory molecules, reduction of endocytosis,
processing of antigenic peptides and their presentation to T lym-
phocytes. The contact between mature DC and specific T cells
leads to proliferation and differentiation of T cells to Th1 effector
cells [21,22].

Recent experiments in mice showed that MMF impairs mat-
uration and function of DC [23]. In addition, MMF together with
1

 

a

 

, 25-dihydroxyvitamin D3 induces in mice differentiation of
DC with a tolerogenic phenotype [24]. Similar experiments have
not been performed in humans. In this work we showed that
MMF, at therapeutic concentrations achieved 

 

in vivo

 

 (10 

 

m

 

M

 

) [25],



 

64     

 

 M. oli  

 

et al.Č ć
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significantly inhibited differentiation, maturation, cytokine pro-
duction, endocytic and allostimulatory activity of human
monocyte-derived DC (MDDC) 

 

in vitro

 

.

 

MATERIALS AND METHODS

 

Cytokines and reagents

 

Human recombinant granulocyte macrophage-colony stimulating
factor (GM-CSF) (Leucomax, spec. activity 4·44 

 

¥

 

 10

 

6

 

 IU) was
obtained from Sandoz-Schering Plough, Basle, Switzerland.
Human recombinant IL-4 was from Roche Diagnostics GmbH,
Mannheim, Germany. MMF (Cellcept

 

®

 

) was from F. Hoffman-La
Roche SA, Basle, Switzerland). Stock solutions were prepared by
dissolving the drug in dimethylsulphoxide (DMSO) and then in
RPMI-1640 serum free medium (ICN, Costa Mesa, CA, USA).
Aliquots were kept frozen at 

 

-

 

20

 

∞

 

C. Lipopolysaccharide (LPS)
and propidium iodide (PI) were from Sigma, Munich, Germany.

 

DC cultures

 

Highly enriched monocytes (about 75–85% puritiy) were
obtained and purified from buffy coats of healthy volunteers by
lymphoprep, gradient (Nycomed, Oslo, Norway) and plastic
adherence, as described previously [26]. Experiments were per-
formed according to the guidelines approved by the Ethical
Committee of MMA, Belgrade and with the informed consent
of the subjects involved. In certain experiments monocytes were
purified from peripheral blood mononuclear cells (PBMNC)
using a monocyte separation kit by MACS technology (Mylte-
nyi Biotec, Bergish, Gladbach, Germany), following the manu-
facturer’s instructions. In brief, PBMNC were incubated with a
cocktail of hapten-coupled monoclonal antibodies (MoAbs) to
CD3, CD7, CD19, CD45RA and CD56, followed by antihap-
ten MoAb coupled with super-paramagnetic MACS Micro-
Beads. Magnetically labelled lymphocytes and natural killer
(NK) cells were removed and the negative fraction was col-
lected. The purity of CD14

 

+

 

 cells in the negative fraction was
92–96%. Monocytes were usually cultivated for 6–7 days in
four-well tissue culture plates (Flow, Irvine, Scotland, UK) in
4 ml of complete RPMI-1640, HEPES/sodium bicarbonate buff-
ered medium with the addition of 10% heat-inactivated fetal
calf serum (FCS) (ICN), streptomycin, gentamycin, penicillin
and 2-ME (Sigma). The medium was supplemented with 100 ng/
ml of GM-CSF and 5 ng/ml of interleukin (IL)-4. After 3 days,
cultures were fed with 3 ml of fresh medium with GM-CSF and
IL-4. After 6 or 7 days non-adherent cells (predominantly
immature MDDC), were transferred to new plates and half the
medium was replaced with GM-CSF and IL-4 alone or GM-
CSF and IL-4 with 1 

 

m

 

g/ml LPS. Cells were cultivated for an
additional 2 days. In cultures with MMF, the compound was
added at different concentrations at the beginning of monocyte
cultivation and at the time of medium replacement.

 

Flow cytometry

 

Non-adherent MDDC, cultivated with or without MMF, were col-
lected, washed in phosphate buffered saline (PBS) with 0·1%
sodium azide and 2% FCS (PBS/FCS) and adjusted at concentra-
tions of 2 

 

¥

 

 10

 

5

 

 cells/tube. Cells were stained in suspension using
appropriate dilutions of the following MoAbs to: HLA-DR
(Becton-Dickinson), CD14, CD40, CD54, CD80, CD83 and
CD86 (Serotec) and mannose receptor (MR) (TNO, Rijswik, the
Netherlands). CD14 and CD80 were conjugated with fluorescein

isothiocyanate (FITC), CD86 was coupled with PE, whereas
other MoAbs were unconjugated. After washing in PBS/FCS
antimouse (Fab-2) Ig-FITC antibody (Serotec) with 5% normal
human serum was added to cells, incubated previously with
unconjugated MoAbs. Controls consisted of samples with irrele-
vant mouse MoAbs reactive with rat antigens. After washing, cells
were analysed on a flow cytometer, EPICS XL-MCL (Coulter,
Krefeld, Germany). At least 5000 events per sample were
analysed.

 

Endocytosis assay

 

MR-mediated endocytosis was measured as the cellular uptake of
FITC-dextran and quantified by flow cytometry. Cells (2 

 

¥

 

 10

 

5

 

 per
sample) were incubated in RPMI-1640 medium with the addition
of FITC-dextran (1 mg/ml; mol. mass 40·000; Sigma) for 60 min at
37

 

∞

 

C or at 

 

+

 

4

 

∞

 

C (for control binding). After incubation, MDDC
were washed twice with PBS and fixed with 1% formaldehide. The
uptake of FITC-dextran by MDDC, cultivated previously under
different condtions, was determined by flow cytometry. At least
5000 cells per sample were analysed.

 

Cytokine assays

 

After 6 days MDDC, cultivated with or without MMF, were
replated (6 

 

¥

 

 10

 

5

 

 cells/ml) in medium with GM-CSF/IL-4 and LPS
or GM-CSF/IL-4, LPS and MMF. Cells were cultivated for an
additional 2 days and supernatants were collected. TNF-

 

a

 

 was
determined using the L929 cytotoxic assay as described [27],
whereas IL-10, IL-12 and IL-18 were determined using a sand-
wich ELISA assay, following the manufacturer’s instructions. IL-
10 and IL-12 ELISA kits were from R&D Systems (Minneapolis,
USA) and IL-18 was from MBL (Nagoya, Japan).

 

Allogeneic mixed leukocyte reaction (MLR)

 

PBMNC were isolated from buffy coats using Lymphoprep gra-
dient. T cells were purified from PBMNC using immunomag-
netic sorting with pan-T cell or CD4

 

+

 

 isolation kits (MACS,
Myltenyi Biotec), following the manufacturer’s instructions.
CD4

 

+

 

 CD45RA

 

+

 

 T cells were isolated by addition of anti-
CD45RO antibody (Serotec) to CD4

 

+

 

 cells followed by anti-
mouse Ig microbeads and subsequent depletion of positive cells.
The purity of T cells or T cell subsets recovered in negative frac-
tions was higher than 95% as checked by anti-CD3 FITC, anti-
CD4 FITC and anti-CD45RA PE MoAbs (all from Serotec) and
flow cytometry.

Purified T cells, CD4

 

+

 

 T cells or CD4

 

+

 

 CD45RA

 

+

 

 T cells
(2 

 

¥

 

 10

 

5

 

 cells/well) were cultivated with different numbers of allo-
geneic MDDC in complete RPMI medium 

 

+

 

 10% FCS in 96-well,
flat-bottomed cell culture plates for 5 days. Cells were pulsed with
[

 

3

 

H]-thymidine (1 

 

m

 

CI/well, Amersham, Bucks, UK) for the last
18 h. Labelled cells were harvested onto glass fibre filters. Radio-
activity was counted in a Beckman scintilation counter and expre-
ssed as counts per minute (cpm) 

 

±

 

 s.d. of triplicates.

 

Apoptosis assay

 

In MDDC cultures, using monocytes purifed by immunomagnetic
sorting, non-adherent and loosely adherent cells were collected
after 3 and 5 days of cultivation and their numbers were counted.
Apoptosis was determined as described previously [28]. Cells
were centrifuged and the pellets were gently resuspended in
1·5 ml hypotonic PI solution (50 

 

m

 

g/ml PI in 0·1% sodium citrate
plus 0·1% Triton X-100, Sigma). Cells were left in the dark at
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room temperature for 30 min and then analysed. The PI fluores-
cence of individual nuclei was measured by flow cytometry. The
percentage of apoptotic cells (subdiploid DNA peak in the DNA
fluorescence histogram) was determined.

 

RESULTS

 

MMF impairs differentiation of MDDC

 

We studied first the effect of MMF on differentiation of MDDC.
Human monocytes, purifed from PBMNC by immunomagnetic
sorting, were cultivated with different concentrations of MMF. At
day 3 most cells became non-adherent, displayed short cytoplas-
mic protrusions and down-regulated CD14, whereas 10–20% cells
were loosely adherent. The appearance of cultures was similar at
day 5, but most cells were CD14

 

–

 

 (Table 1).
MMF decreased survival of MDDC dose-dependently, and

the finding correlated with increased apoptosis. At day 3, MMF
slightly prevented down-regulation of CD14, whereas after 5 days
the differences in CD14 expression between MMF-treated and
control cells were not statistically significant. (Table 1).

 

Phenotypic characteristics of MMF-treated MDDC

 

Based on previous findings, we chose the 10 

 

m

 

M

 

 dose of MMF for
further experiments and for phenotypic characterization of
MDDC. As shown in Fig. 1, MDDC generated in control cultures
with GM-CSF and IL-4 for 8 days expressed the phenotype of
immature DC, such as high levels of MHC class II, moderate lev-
els of CD40, CD54 and CD86 and a low level of CD80. The cells
were mainly CD83

 

–

 

. MDDC developed in the presence of MMF
showed reduced expression of all the molecules examined, except
MHC class II.

MDDC have been induced to mature by LPS. As presented in
Fig. 1, maturation of these cells was followed by up-regulation of
all molecules examined and by the expression of CD83. MMF sig-
nificantly inhibited maturation of MDDC as manifested by lower

expression of CD54, CD80, CD83 and CD86. No significant effect
was seen regarding the expression of MHC class II molecules and
CD40.

 

MMF inhibited allostimulatory function of MDDC

 

We examined further whether the observed effect in down-
regulation of co-stimulatory and adhesion/signalling molecules by
MDDC treated with MMF correlated with their allostimulatory
function. Figure 2 shows that MMF-treated immature MDDC
caused less stimulation of both allogeneic T lymphocytes as well
as naive CD4

 

+

 

 CD45RA

 

+

 

 T cells, compared to MDDC generated
without MMF.

As expected, mature MDDC were more potent stimulators of
allogeneic T cells than immature MDDC. MDDC matured in the
presence of MMF and LPS had lower allostimulatory activity for
CD3

 

+

 

 T cells and CD4

 

+

 

 CD45RA

 

+

 

 T cells than MDDC matured in
the presence of LPS alone (Fig. 2). Similar results were achieved
using purified total allogeneic CD4

 

+

 

 T cells as responders (not
shown).

 

Effect of MMF on cytokine production by mature MDDC

 

We also studied production of TNF-

 

a

 

, IL-12, IL-10 and IL-18 by
MDDC induced to mature by LPS. Culture supernatants of six
different donors were analysed. All cytokines were detected, but
considerable variations in their levels were observed. In cultures
with MMF and LPS, production of IL-18 was almost completely
inhibited, whereas the levels of IL-10, TNF-

 

a

 

 and IL-12 were
reduced by about 87%, 80% and 71%, respectively (Table 2).

 

Effect of MMF on endocytic activity of MDDC

 

It is known that immature DC posses stronger endocytic activity
than mature DC. This is confirmed in our experiments using the
FITC-dextran uptake, an MR-mediated endocytosis assay. MMF
did not significantly modulate the FITC-dextran uptake by imma-
ture MDDC, as presented in Fig. 3a, or slightly decreased endoc-

 

Table 1.

 

Effect of MMF on survival, apoptosis and CD14 expression by human MDDC

Cultures (days) MMF (

 

m

 

M

 

) Survival (%) Apoptosis (%) CD14 expression (%)

0 None 100% 2·3 

 

± 

 

0·6 93·2 

 

± 

 

2·7

3 None 93·7 

 

± 

 

4·3 3·7 

 

± 

 

1·3 34·2 

 

± 

 

7·9

2·5 89·3 

 

± 

 

6·9 5·0 

 

± 

 

1·8 46·2 

 

± 

 

5·1*

5 89·6 

 

± 

 

4·8 5·7 

 

± 

 

1·5 50·0 

 

± 

 

7·3*

10 80·2 

 

± 

 

5·5** 8·5 

 

± 

 

3·1* 51·7 

 

± 

 

9·5*

25 65·7 

 

± 

 

5·6** 13·5 

 

± 

 

3·3** 52·5 

 

± 

 

9·9*

5 None 88·2 

 

± 

 

6·4 5·0 

 

± 

 

1·4 9·7 

 

± 

 

2·9

2·5 82·2 

 

± 

 

8·5 6·7 

 

± 

 

1·2 9·7 

 

± 

 

4·6

5 77·7 

 

± 

 

5·3* 6·5 

 

± 

 

1·7 7·7 

 

± 

 

1·8

10 75·3 

 

± 

 

5·0* 12·0 

 

± 

 

1·4** 11·5 

 

± 

 

3·4

25 53·1 

 

± 

 

6·4*** 19·5 

 

± 

 

4·0** 11·2 

 

± 

 

3·3

Monocytes,  isolated  from  PBMNC  by  immunomagnetic  sorting  (contaminating  lymphocytes  were  less  than  2%)  were  cultivated  in  24-well  plates
(1 

 

¥

 

 10

 

6

 

 cells/well in 1 ml of medium) in control GM-CSF/IL-4 medium or GM-CSF/IL-4 medium with different concentrations of MMF. After 3 and
5 days, non-adherent and loosely adherent cells, easily detached by pipetting, were collected and counted. Cells were stained with propidium-iodide as
described [28] or with anti-CD14 MoAb followed by a secondary FITC-antibody and analysed by flow cytometry. Apoptotic cells were regarded those
with hypodiploid nuclei. Survival of cells (%) was determined on the basis of starting number of monocytes used as 100%. *

 

P

 

 

 

<

 

 0·05; **

 

P

 

 

 

<

 

 0·01;
***

 

P

 

 

 

<

 

 0·005 (

 

n

 

 

 

=

 

 4) compared to corresponding cultures without MMF.
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ytosis in some cultures (data not shown). However, MMF
additionally lowered endocytic activity of mature MDDC and the
finding correlated with down-regulation of the MR expression
(Fig. 3b).

 

DISCUSSION

 

MMF has been shown to be a very potent immunosuppressive
drug [3]. It reduces the likelihood of allogeneic rejection, acting as
a selective inhibitor of lymphocyte proliferation [18]. In this study
we demonstrated that MMF affects human MDDC 

 

in vitro

 

. To
our knowledge, this is the first report showing the direct inhibitory
effect of MMF on human DC.

Our work has been initiated by the recent data in mice which
showed that MMF impairs maturation and function of bone mar-
row-derived DC 

 

in vitro

 

 [23]. In addition, MMF in combination
with 1

 

a

 

, 25-dihydroxyvitamin D3, by acting on DC, induces tol-
erance to fully mismatched islet allografts 

 

in vivo

 

 [24]. In most of

 

Fig. 1.

 

Effect of MMF on phenotypic characteristc of MDDC. Immature MDDC were generated by cultivating monocytes (isolated by
adherence to plastic) with GM-CSF and IL-4 for 8 days, whereas mature DC were prepared by subsequent cultivation of immature DC
from day 6 to day 8 with LPS. MMF (10 

 

m

 

M

 

) was present from the beginning of monocyte cultivation. MDDC were peleted and stained
in suspension using different MoAbs (CD80-FITC, CD86-PE, HLA-DR, CD40, CD54 and CD83 unconjugated, followed by antimouse,
Ig-FITC) and analysed by flow cytometry. Results are presented as histograms of fluorescence and percentages of positive cells. Grey
histograms represent fluorescence of MDDC cultivated with MMF, whereas white histograms show fluorescence of control MDDC
cultivated without MMF. Horizontal bars were positioned on the basis of non-specific fluorescence (cells stained with irrelevant mouse
MoAbs). Negative controls (black histograms) are presented on HLA-DR histograms. Similar profiles were obtained using other controls
(not shown). The results shown here are representative of three independent experiments.
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Table 2.

 

Effect of MMF on cytokine production by MDDC matured in 
the presence of LPS

Cytokine

Levels (pg/ml)

Control MMF

TNF-

 

a

 

8885·3 

 

± 

 

4759·0 1808·7 

 

± 

 

1815·4**
IL-10 1216·8 

 

± 598·6 152·9 ± 177·5***
IL-12 63·5 ± 54·3 18·3 ± 26·2*
IL-18 129·3 ± 109·9 0·4 ± 1·1**

MDDC generated in the presence of 10 mM MMF or without MMF
(control) were induced to mature at day 6 by LPS (1  mg/ml) for an addi-
tional 2 days. In cultures with MMF the compound (10  mM) was added
together with LPS. The levels of cytokines were determined as described
in Materials and methods. Results are presented as mean ± SD (n = 6).
*P < 0·05; **P < 0·01; ***P < 0·005 compared to values in the control.
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our experiments we used MMF at concentrations of 10 mM. The
dose slightly reduced the number of DC in culture by inducing
apoptosis, but caused significant phenotypic and functional
changes of MDDC. It has been shown that in patients on standard
MMF therapy plasmatic concentrations of the active metabolite
of the drug reached levels of about 10 mM [25].

We observed the following  phenotypic changes of MDDC in
the presence of MMF: down-regulation of CD86, CD40 and CD54
on immature MDDC and CD80, CD86, ICAM-1 and CD83 on
mature MDDC. As a consequence of these changes, lower allo-
stimulatory activity of both mature and immature DC in MLR was
observed. The significance of co-stimulatory molecules, CD40 and
CD54, in stimulation and proliferation of naive T cells is well doc-
umented [22]. Mehling et al. [23] showed similar phenotypic and
functional changes of murine DC, including lower production of
IL-12, cultivated in the presence of 10 times lower concentrations
of MMF than we used. These differences probably reflect species
differences in reactivity of mouse and human DC to the drug.

It is known that LPS induces production of TNF-a, IL-10, IL-
12 and IL-18 by MDDC [29]. All these cytokines were detected in
our culture supernatants in the presence of LPS. TNF-a was
detected in culture supernatants of immature MDDC, whereas
levels of other cytokines were undetectable or very low (data not

shown). TNF-a stimulated maturation of DC [30] induced pro-
duction of IL-10 by activated monocytes [31] and together with
prostaglandin E2 stimulated production of IL-12 by human DC
[30]. IL-12 is produced most abundantly by DC that are beginning
to respond to maturation stimuli [32] and IL-12-driven Th1
immune response is enhanced significantly by IL-18 through the
induction of INF-g [33]. In contrast, IL-10 inhibits mainly the pro-
duction of IL-12 and therefore promotes either Th2 response or
tolerance [32,34].

We showed that MMF almost completely (IL-18) or signifi-
cantly (TNF-a, IL-10 and IL-12) inhibited production of cytok-
ines by MDDC stimulated with LPS. Except for decreased
production of IL-12 [23,24], secretion of other cytokines by DC
have not been examined directly. Durez et al. [35] showed that
MMF inhibited production of TNF-a in mice treated with LPS,
whereas the level of IL-10 was increased. Maksimivic-Ivanic et al.
[36] also demonstrated an increase in the IL-10 level after MMF
treatment, using a model of diabetes in rats. In other mouse mod-
els the IL-10 gene expression in spleen cells was not modulated
significantly by MMF [37].

Decreased production of IL-18 and IL-12 by MDDC treated
with MMF in our culture system suggests an additional mecha-
nism for attenuation of transplant rejection by suppressing the

Fig. 2. Effect of MMF on the allostimulatory capacity of MDDC. Immature (a, c) and mature (b, d) MDDC were generated as described
in Fig. 1. MMF (10 mM) was added at the beginning of monocyte cultivation and was present during the whole period. MDDC were washed
three times and co-cultivated with allogeneic (CD3+) T cells (a, b) or CD4+ CD45RA+ T cells (c, d) (prepared by negative immunomagnetic
sorting, as described in Materials and methods) in 96-well plates, both at concentrations of 2 ¥ 105 cells/well at different DC/T cell ratio.
Cell proliferation was measured after 5 days using the [3H]-thymidine uptake assay, as described previously. Results are presented as mean
cpm ± s.d. (triplicates of one representative experiment). Similar results were obtained in additional four (T cells) and two experiments
(CD4+ CD45RA+ T cells), respectively.
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Th1 immune response [38]. It is known that insufficient amounts
of IL-12 and CD80 expression by APC during antigen presenta-
tion have been implicated in anergy and tolerance, both of which
render T cells functionally unresponsive [39].

We showed that MMF did not modulate significantly the
MR-mediated endocytosis (FITC-dextran uptake) by immature
MDDC. However, a significant reduction in endocytosis was
observed by MDDC cultivated in the presence of MMF + LPS
compared to MDDC cultivated with LPS alone, and the finding
correlated with down-regulation of the MR expression. Similar
experiments have not been performed until now. It is known that
mature DC reduced endocytic activity [20,21]. Based on the phe-
notype profile of MMF-treated MDDC, induced to mature by
LPS, an opposite effect could be expected. Piemonti et al. [40]
showed that glucocorticoids affect the differentiation of MDDC
by freezing the cells at an immature stage, and the effect was fol-
lowed by an increase in MR-mediated endocytosis. Decreased
endocytosis of MMF-treated DC could be associated with the
direct action of MMF on MR. The hypothesis is based on previ-
ous observations that some anti-inflammatory effects of MMF,
such as reduced recruitment of leucocytes to sites of inflamma-
tion, are connected with the inhibition of mannosylation of
human monocyte surface glycoproteins, including adhesion
molecules [41].

An intriguing question resulting from our work and the pre-
vious study [23] is whether the observed action of MMF on dif-
ferentiation and maturation of DC is mediated through blocking
of IMPDH isoforms and subsequent synthesis of guanosine. Our

recent experiments in rats [42] and human (manuscript in prepa-
ration) showed that certain guanosine analogues stimulate matu-
ration of DC and significantly abrogated the inhibitory effect of
MMF on DC differentiation. These data suggest that not only
lymphocytes, but also DC, may depend on the de novo synthesis
of guanosine.

In conclusion, our results support the concept that MMF
impairs not only the function of T and B cells, but also DC. Both
T cells and DC are of key importance for alloreactivity and trans-
plant tolerance. The results that MMF inhibits production of IL-
10, IL-12 and IL-18 by MDDC open further studies regarding the
influence of MMF on polarization of the immune response. Some
of these experiments are currently in progress in our laboratory.
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