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Abstract: A growing body of preclinical evidence recognized selective sirtuin 2 (SIRT2) inhibitors as
novel therapeutics for treatment of age-related diseases. However, none of the SIRT2 inhibitors have
reached clinical trials yet. Transformative potential of machine learning (ML) in early stages of drug
discovery has been witnessed by widespread adoption of these techniques in recent years. Despite
great potential, there is a lack of robust and large-scale ML models for discovery of novel SIRT2
inhibitors. In order to support virtual screening (VS), lead optimization, or facilitate the selection of
SIRT2 inhibitors for experimental evaluation, a machine-learning-based tool titled SIRT2i_Predictor
was developed. The tool was built on a panel of high-quality ML regression and classification-based
models for prediction of inhibitor potency and SIRT1-3 isoform selectivity. State-of-the-art ML al-
gorithms were used to train the models on a large and diverse dataset containing 1797 compounds.
Benchmarking against structure-based VS protocol indicated comparable coverage of chemical space
with great gain in speed. The tool was applied to screen the in-house database of compounds, corrob-
orating the utility in the prioritization of compounds for costly in vitro screening campaigns. The
easy-to-use web-based interface makes SIRT2i_Predictor a convenient tool for the wider community.
The SIRT2i_Predictor’s source code is made available online.

Keywords: virtual screening; Python GUI application; QSAR; machine learning; SIRT2 inhibitors;
regression; classification

1. Introduction

SIRT2 is a NAD+-dependent protein deacetylase involved in the regulation of many
important biological functions, including the maintenance of genome stability, metabolism,
aging, tumorigenesis, and cell-cycle regulation [1–5]. Studies on cellular and animal models
of disease revealed the promising potential of SIRT2 inhibition in the treatment of age-
related diseases, including neurodegenerative disease and carcinoma [6,7]. Preclinical
evidence generated during the last decade has resulted in growing interest in the develop-
ment of small-molecule SIRT2 inhibitors, particularly as novel anticancer therapeutics [7].
The inhibition of SIRT2 was shown to be an important factor in the treatment of various
aspects of tumor development and progression, including inhibition of proliferation, inva-
sion, angiogenesis, and metastatic potential [8–10]. In addition to cancer development and
progression, SIRT2 was proven to be involved in conferring re-sistance to cancer treatment.
Great potential for synergistic combinations of SIRT2 inhibitors with clinically approved
drugs was revealed just recently by examining the role of SIRT2 inhibitors in overcoming
drug resistance to dasatinib, doxorubicin, or paclitaxel in treatment of melanoma or specific
subtypes of breast cancer cells [11–13]. Furthermore, the recent study examined selective

Pharmaceuticals 2023, 16, 127. https://doi.org/10.3390/ph16010127 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph16010127
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0001-9972-3492
https://orcid.org/0000-0003-0582-4415
https://orcid.org/0000-0002-3656-9245
https://doi.org/10.3390/ph16010127
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph16010127?type=check_update&version=2


Pharmaceuticals 2023, 16, 127 2 of 24

SIRT2 inhibitors as an augmentation to tumor immunotherapy due to their ability to ac-
tivate tumor-infiltrating lymphocytes. This approach opened exciting opportunities for
future usage of selective SIRT2 inhibitors in overcoming poor clinical response to the TIL
(tumor-infiltrating lymphocyte) or CAR-T (chimeric antigen receptor–T cell) immunother-
apies [14]. In spite of two decades of vigorous research efforts around the world and
many discovered SIRT2 inhibitors, none of the described compounds have entered clinical
trials, which signifies the need for novel advances in the field [15]. The most common
limitations of known inhibitors includes poor selectivity, potency, or physicochemical
properties [10,15,16].

The catalytic core of sirtuins consists of a larger Rossmann-fold domain and a smaller
zinc-binding domain connected with several flexible loops (Figure 1A). All sirtuins share
the same catalytic mechanism, which involves the formation of a positively charged O-
alkylimidate intermediate between NAD+ and acetyl–lysine substrate. After several steps,
this intermediate hydrolyzes to produce deacetylated polypeptide and 2′-O-acetyl-ADP-
ribose (Figure 1B) [17]. Most known inhibitors interfere with this catalytic mechanism
by binding to the catalytic site of sirtuins positioned in the cleft between two domains
(Figure 1C). Due to the conserved structure of the catalytic site of sirtuins, achieving the
selectivity of small-molecule SIRT2 inhibitors turned out to be one of the greatest challenges
in the development of this group of compounds (Figure 1C) [15,18]. Recently described
pharmacological advantages of selective SIRT2 inhibition over non-selective inhibition of
other isoforms of the sirtuin family, particularly sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3),
positioned selectivity as one of the most important objectives in development of novel SIRT2
inhibitors [19]. Furthermore, a recent study indicated that the complex conformational
behavior of SIRT2 in interaction with inhibitors represents one of the major obstacles in
the discovery of novel inhibitors through structure-based computer-aided drug-design
(CADD) approaches [20]. However, years of searching for novel SIRT2 inhibitors resulted
in large and diverse datasets that could greatly benefit ligand-based CADD approaches
relying on specific machine-learning techniques.
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Figure 1. Summary of the sirtuin structures and catalytic mechanism. (A) Two domains of sirtuins 
exemplified on the structure of SIRT3 (PDB ID: 4FVT). NAD+ and substrate are presented in green 
sticks; (B) overview of the mechanism of sirtuin-mediated deacetylation; (C) problem of achieving 
sirtuin inhibitor selectivity exemplified through aligned structures of SIRT1 (yellow) (PDB ID: 4I5I), 
SIRT2 (pink) (PDB ID: 5D7P), and SIRT3 (gray) (PDB ID: 4BV3) (some parts omitted for clarity). 
Structurally related inhibitors (gray, pink, or yellow sticks) share the same binding mode across all 
isoforms. NAD+ and ADP–ribose are presented in gray, pink, or yellow lines. 

Figure 1. Summary of the sirtuin structures and catalytic mechanism. (A) Two domains of sirtuins
exemplified on the structure of SIRT3 (PDB ID: 4FVT). NAD+ and substrate are presented in green
sticks; (B) overview of the mechanism of sirtuin-mediated deacetylation; (C) problem of achieving
sirtuin inhibitor selectivity exemplified through aligned structures of SIRT1 (yellow) (PDB ID: 4I5I),
SIRT2 (pink) (PDB ID: 5D7P), and SIRT3 (gray) (PDB ID: 4BV3) (some parts omitted for clarity).
Structurally related inhibitors (gray, pink, or yellow sticks) share the same binding mode across all
isoforms. NAD+ and ADP–ribose are presented in gray, pink, or yellow lines.

Discovery of novel drugs under the scope of the precision medicine (NIH) initiative
heavily relies on integration of large datasets into the drug-discovery pipelines through
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cheminformatics approaches [21]. The big-data-driven era in modern drug discovery rec-
ognized artificial intelligence (AI) as one of the most important tools that could drastically
reduce the time and cost of drug discovery in preclinical phases [22,23]. Escalated develop-
ment and the usage of machine-learning (ML) tools in modern drug discovery was mainly
allowed by the availability of large datasets and the democratization of AI. Public databases
of pharmacologically active compounds with an ever-increasing number of records on
biological activities allowed for a more comprehensive approach to modern drug discovery
by the utilization of ML in the modeling of structure–activity relationships [21–23]. Quan-
titative structure–activity relationship (QSAR) modeling is a well-known computational
technique for establishing classification-based or regression-based relationships between
structural properties of compounds and biological activities [24]. The QSAR technique
represents one of the most successful strategies to avoid inactive compounds or to eliminate
side effects in pre-clinical drug development [21,22,25]. Retrospective analysis indicated
that updating QSAR models as more data become available generally leads to improve-
ments in the accuracy and usefulness of predictions. QSAR models trained on the larger
and more diverse datasets are more likely to have a wider applicability domain and to
exert a larger coverage of the chemical space. Considering the general improvements
in quality as well as broadening the applicability domains of QSAR models trained on
larger datasets, global or large-scale QSAR models (i.e., models trained on large data sets
of higher compound diversity) are becoming more and more popular [25–27]. Currently,
there is a lack of large-scale and robust QSAR models for prediction of SIRT2 inhibitor
potency and selectivity. Development of such models could aid virtual-screening studies,
lead-optimization studies, and repurposing studies, or the integration of cheminformatics
with omics data under the more complex precision-medicine pipelines.

With preclinical proof of pharmacological potential of selective SIRT2 inhibitors to
treat various modalities of cancer, or to synergize with existing therapies, including im-
munotherapies, selective SIRT2 inhibitors could prove to be a valuable asset to the existing
palette of drugs in the emerging era of personalized medicine. In order to provide open-
source computational tools to facilitate the development of SIRT2 inhibitors, in this work
we aimed to develop a framework for fast screening and evaluation of novel compounds on
SIRT2 inhibitory potency and selectivity. The defined framework, named SIRT2i_Predictor,
was built on set of high-quality large-scale classification and regression QSAR models
implementing publicly available datasets on selectivity and potency of SIRT2 inhibitors. By
creating an appealing and easy-to-use web-based interface, SIRT2i_Predictor was made
available to the broader community.

2. Results and Discussion
2.1. Datasets for Modelling

Available data on the structures and activities of SIRT2 inhibitors were collected from
ChEMBL data and literature (see Section 3), resulting in a total of 1797 unique records.
Considering the biological-activity measurements (e.g., some of the compounds were tested
on additional activities on isoforms SIRT1 or SIRT3, whereas some others were not), the
initial pool of data was distributed into four datasets (Datasets 1–4) (Figures 2 and 3 and
Table 1). Dataset 1 was intended for building a regression QSAR model, whereas Datasets
2–4 were intended for building different types of classification models. Distributions
of activity values (pIC50 in Dataset 1) across different activity classes (Datasets 2–4) are
depicted in Figure 2, whereas the main characteristics of Datasets 1–4 are summarized in
Table 1.

Dataset 1 was built solely on records of compounds with reported SIRT2 inhibitory
activity expressed as pIC50 values. This dataset contained 1002 compounds with a range
of pIC50 values from 4 to 7.96. With 1797 entries, Dataset 2 was the largest among the
datasets and encompassed all compounds, including activities expressed as both pIC50
and Inh%. Considering the criteria presented in Section 3, compounds within Dataset 2
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were assigned to the two classes—SIRT2 active and SIRT2 inactive—resulting in almost
one-third of compounds assigned as inactive (Figure 2).
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Figure 2. Descriptive statistics of the datasets used in the study. (A) PCA analysis of the chemical
space of the datasets. PCA plots were calculated in accordance with the descriptors/fingerprints of
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the Lipinski’s rule of 5.
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Table 1. Description of the datasets.

Dataset 1 Dataset 2 Dataset 3 Dataset 4

No. of compounds 1002 1797 984 612
Expressed activity pIC50 pIC50 and Inh% Inh% Inh%
Activity towards SIRT2 SIRT2 SIRT1, SIRT2 SIRT2, SIRT3
Encoded activity pIC50 Active, inactive Selective, nonselective, inactive Selective, nonselective, inactive

Dataset 3 was composed of the compounds that reported inhibitory activities on both
SIRT1 and SIRT2 (expressed either as pIC50 or Inh%), whereas Dataset 4 was composed of
the compounds that reported SIRT2 and SIRT3 inhibitory data, expressed as pIC50 or Inh%.
Therefore, Datasets 3 and 4 were composed of three classes of compounds: SIRT1(3)/SIRT2
inactive compounds, SIRT2 selective compounds, and SIRT1(3)/SIRT2 nonselective com-
pounds (Figure 2 and Table 1). It should be noted that the bioactivity values used in this
study were heterogeneous in origin, determined with different experimental approaches
(fluorimetric assay, luminescence assay, electrophoretic mobility shift, scintillation counting)
and conditions (time of incubation, acetyl–lysine substrates of different Km values, etc.). In
order to make a clearer distinction between classes and eliminate potential noise coming
from different experimental conditions, during the creation of Datasets 2–4 compounds
with activities lying near fuzzy borders of different classes were omitted. This small group
of compounds, referred to in the manuscript as “twilight zone” compounds, had an activity
range of IC50 = 50–90 µM (for Inh% criteria see Section 3). The recent growth of interest in
large-scale QSAR models utilizing datasets from ChEMBL that are heterogeneous in origin
has resulted in many studies with similar data-acquisition and -processing strategies as
those presented in this work [28–33].

Descriptive analysis across different datasets indicated that most of the available com-
pounds obeyed Lipinski’s rule of 5, with several outliers in each dataset (Figure 2) [34].
Compounds from the datasets were pre-processed, and molecular descriptors and finger-
prints were calculated using approaches explained in the Section 3. Prior to modeling,
all datasets were split into training and test sets using stratified random sampling (70%
training set and 30% test set) to ensure the sampling from the same activity distributions.
Principal component analysis of different datasets indicated that the splitting strategy was
able to maintain equal coverage of the chemical space with training- and test-set com-
pounds (Figure 2). Considering the slight imbalance inside classification datasets (Datasets
2–4), the SMOTE algorithm was used to oversample the minority classes by synthesizing
new minority instances prior to training the classification models.

2.2. Model Development and Validation

In this study, different regression, binary, and multiclass classification machine-
learning models were developed using the combination of five machine-learning algorithms
(random forest (RF), support-vector machines (SVM–support-vector classification (SVC)
and support-vector regression (SVR)), k-nearest neighbors (KNN), extreme gradient boost-
ing (XGBoost), and deep neural networks (DNN)), as well as four descriptors/fingerprints
(Mordred descriptors, ECFP4, ECFP6, and MACCS key fingerprints) (see Section 3). Due
to the their easy calculation and the very positive results obtained through cheminfor-
matics studies over the years, recent literature recognized ECFP and MACCS as the most
popular ones among commonly used fingerprints [21]. The abovementioned reasons
were the discriminatory criteria for the selection of ECFP and MACCS fingerprints in
our study, as well. The general workflow of the study is presented in Figure 3. Differ-
ent regression or classification models for each dataset were trained thorough a process
of hyperparameter tuning using Bayesian optimization with five-fold cross-validation.
The list of values of hyperparameters used for Bayesian optimization is presented in the
Supplementary Materials (Table S1). For DNN models, more comprehensive optimization
of hyperparameters related to the network structure (number of hidden layers, units, and
dropouts) was performed using the Keras Tuner with the Bayesian search method. The
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list of optimized hyperparameters for each combination of modeling approach and de-
scriptor/fingerprint is provided in the Supplementary Materials (Table S2). The quality of
each model trained with optimized hyperparameters was primarily evaluated through an
inspection of internal and cross-validation parameters. Afterwards, predictive performance
of each model on the “unseen” data was accessed through external validation with the
test set. The top-performing models were selected using the consensus approach after
evaluating the predictive performance of each model with additional tests. Additional
evaluation approaches were chosen depending on the type and purpose of the model.
Specificities of each of additional evaluation test are addressed below. The final selected
models were considered for constructing the framework of SIRT2i_Predictor (Figure 3).

2.2.1. Regression Models

The combinations of five machine-learning methods with four features (MACCS,
ECFP4, and ECFP6 fingerprints, as well as Mordred descriptors [35]) were explored for
the development of global regression-based QSAR models using Dataset 1. After the
feature-selection procedure (see Section 3), 52 Mordred descriptors were selected for the
final QSAR modeling (Supplementary Materials, Table S3). Fingerprints were used without
further reduction of the number of beats. After training the models through the Bayesian
hyperparameter optimization procedure with five-fold cross-validation (CV), the quality
of each model was accessed initially using internal validation parameters: the coefficient
of determination for the training set (R2) and cross-validated correlation coefficient (Q2),
root mean square error (RMSE) of fitting the training set (RMSEint), and the RMSE of cross-
validation (RMSECV). Thresholds for R2 and Q2 were set according to the criteria proposed
by Golbraikh and Tropsha (R2 > 0.6, Q2 > 0.5) [36]. Parameters of internal validations,
presented in the Supplementary Materials (Table S4), indicated the internal predictive
power, stability, and robustness of each model. Y-scrambling was performed as a part of
the internal validation procedure by generating 100 models on randomly shuffled data.
The Y-scrambling procedure indicated that the models were not obtained by chance and
were highly reliable (Figure 4).
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Figure 4. Top promising regression-based XGBoost:ECFP4 model. (A) Plot of experimental vs.
predicted pIC50 values; (B) results of Y-scrambling; (C) applicability domain of the model. Dashed
line indicates the leverage-threshold value (h*).

External validation was performed in order to examine the predictive power of the
models outside the training data. In alignment with the Organization for Economic Co-
operation and Development (OECD) principles, the external validation of the QSAR models
could be performed by measuring the goodness-of-fit by coefficient of determination
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(R2
ext, should be > 0.6) and root mean square error (RMSEext parameter, should be as low

as possible) [37,38]. All models performed almost equally well according to these two
criteria, with slight predominance in the quality of the models build with ECFP4 and
ECFP6 fingerprints (Table 2). However, as discussed by many authors before, relying
solely on the simplistic R2

ext in some cases could lead to an overoptimistic estimation of
the model’s external predictive performance due to the dependence of R2

ext on the range
of the response values of the test set and their distribution pattern around the training-
/test-set mean [39–42]. Therefore, additional evaluation of the QSAR models’ external
predictive power was performed using a set of additional parameters developed accounting
for precision (deviation of observations from the fitting line), accuracy (deviation of the
regression line from the slope 1 line passing through the origin of Yobserved vs. Ypredicted
curve), and by ensuring that no bias was introduced based on the response scale [40,42].
As additional criteria, the r2

m metrics by Roy et al. (r2
m > 0.5 and ∆r2

m < 0.2) [39,43], the Q2
Fn

metric, and the CCC with thresholds proposed by Chirico and Gramatica (Q2
F1, Q2

F2, and
Q2

F3 > 0.7, and CCC > 0.85) [40,44] were used (Table 2). Furthermore, the criteria proposed
by Golbraikh and Tropsha ((R2−R2

0)/R2 < 0.1 or (R2 − R′20)/R2 < 0.1, 0.85 ≤ k (or k’) ≤ 1.15

and
∣∣∣R2 − R′20

∣∣∣ < 0.3) were assessed as well (Supplementary Materials, Table S4) [36]. The

created models satisfied almost all of the proposed additional criteria, except ∆r2
m and

CCC, which failed for some of the models (see Table 2). After discarding the models
according to the ∆r2

m and CCC criteria, two the most promising models were selected: the
XGBoost:ECFP4 model (Figure 4) and the KNN:ECFP6 model (Table 2 and Supplementary
Materials, Table S4).

Table 2. External validation parameters of regression QSAR models.

ML
Algorithm Molecular Feature R2

ext RMSEext r2
m ∆r2

m Q2
F1 Q2

F2 Q2
F3 CCC

RF

Descriptors 0.7 0.55 0.52 0.27 0.7 0.7 0.7 0.81
ECFP4 0.75 0.5 0.6 0.23 0.75 0.75 0.75 0.85 a

MACCS 0.71 0.53 0.55 0.26 0.71 0.71 0.71 0.82
ECFP6 0.77 0.48 0.62 0.21 0.77 0.77 0.76 0.86 a

SVR

Descriptors 0.62 0.61 0.44 0.31 0.62 0.62 0.62 0.77
ECFP4 0.74 0.51 0.63 0.13 * 0.74 0.74 0.73 0.84

MACCS 0.68 0.57 0.55 0.21 0.68 0.68 0.68 0.81
ECFP6 0.74 0.51 0.63 0.18 * 0.74 0.74 0.74 0.86 a

XGBoost

Descriptors 0.67 0.58 0.53 0.25 0.68 0.68 0.68 0.82

ECFP4 0.75
(0.79) b

0.5
(0.46) b

0.64
(0.7) b

0.17
(0.17) *,b

0.74
(0.75) b

0.74
(0.75) b

0.74
(0.74) b

0.86
(0.86) a,b

MACCS 0.71 0.53 0.58 0.24 0.7 0.7 0.7 0.82
ECFP6 0.73 0.52 0.62 0.2 0.73 0.73 0.73 0.87 a

KNN

Descriptors 0.68 0.56 0.56 0.23 0.68 0.68 0.68 0.86 a

ECFP4 0.74 0.51 0.64 0.13 * 0.74 0.74 0.74 0.87 a

MACCS 0.6 0.63 0.47 0.16 * 0.6 0.6 0.6 0.79

ECFP6 0.76
(0.77) b

0.49
(0.48) b

0.66
(0.68) b

0.12
(0.11) *,b

0.76
(0.76) b

0.76
(0.76) b

0.76
(0.76) b

0.87
(0.87) a,b

DNN

Descriptors 0.66 0.58 0.57 0.03 * 0.66 0.66 0.66 0.81
ECFP4 0.74 0.51 0.63 0.18 * 0.73 0.73 0.73 0.84

MACCS 0.68 0.56 0.56 0.16 * 0.68 0.68 0.67 0.80
ECFP6 0.73 0.52 0.63 0.17 * 0.73 0.73 0.73 0.81

Criteria >0.6 >0.5 <0.2 >0.7 >0.7 >0.7 >0.85

* Marks the values within the threshold ∆r2
m < 0.2. a Marks the values above the proposed threshold CCC > 0.85.

b Number in brackets represent values after applicability domain corrections.

Following the OECD principles, chemical space boundaries where the model achieved
reliable predictions, also known as the applicability domain (AD) of the QSAR model,
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should be defined as part of external validation and considered when the model is ap-
plied for predictions of unknown compounds [37,38,45]. One of the most widely used
methods for estimating the boundaries of AD in regression QSAR models is the lever-
age method [45]. Leverage values are considered proportional to the distances of each
compound from the centroid of the training set in the molecular-features space. Leverage
values of selected QSAR models are presented through Williams plots (leverage versus
standardized residuals) where compounds with leverages and/or residuals above thresh-
old values could be easily detected (Figure 4). Several compounds from the test set were
detected to be outside of the applicability domains for the two of the most promising
models (XGBoost:ECFP4 and KNN:ECFP6) (Table 2 and Figure 4). The KNN:ECFP6 model
was more limited in respect to the coverage of the chemical space, with 39 compounds of
the test set being out of the defined AD boundaries compared to the 24 compounds of the
XGBoost:ECFP4 model. Additionally, excluding compounds from outside the AD borders
resulted in significant improvements in the XGBoost:ECFP4 model statistics compared
to those of the KNN:ECFP6 model (Table 2). These results may indicate lower predictive
power and lower coverage of chemical space of the KNN:ECFP6 model inside AD borders.
Additionally, the KNN:ECFP6 model showed lower robustness through internal valida-
tion (Supplementary Materials, Table S4, cross-validation parameters). Since the global
QSAR models are aimed at having broader coverage of chemical space, robustness, and
optimal external predictive power, the XGBoost:ECFP4 model was selected for further
work. However, it is important to note that regression models were trained on Dataset 1,
where most of the compounds were active according to the class assignments (914 active
compounds, whereas only 88 compounds were in the “twilight zone” (IC50 = 50–90 µM) or
“inactive” (IC50 > 90 µM)) (see Section 3). This largely limits the usage of regression models
only for the pIC50 predictions of the active compounds or compounds predicted to be
active by classification models, which is further discussed in Section 2.3. Furthermore, the
heterogeneity of the data introduced by the numerous sources that populate the ChEMBL
database could contribute to the prediction error of the regression models [28]. Therefore,
classification-based models that circumvent the abovementioned issue could be expected
to have better performance in the identification of active compounds.

2.2.2. Binary Classification Models

According to the general protocol of the study (Figure 3), the combination of five
different ML algorithms and four molecular features was explored through Bayes hyper-
parameter optimization with five-fold CV to develop binary classification models using
Dataset 2. The main aim of this part of the study was to train models for the classification
of SIRT2 inhibitors and inactive compounds. The rules for the assignment of compounds
to the SIRT2 active/inactive class of inhibitors were addressed in the Section 3. Mordred
descriptors used for training the binary models were, prior to model training, submitted to
the feature-selection protocol (see Section 3 and Supplementary Materials, Table S3). 233
Mordred descriptors were selected for final modeling. Fingerprints were used without
further reduction of the number of beats.

Parameters of internal validation indicated the internal predictive power, stability, and
robustness of each model (Supplementary Materials, Table S5). The external predictive
power of the trained binary models was evaluated using the test set. The following pa-
rameters were used for monitoring performances on the external set of different models:
balanced accuracy (BA), Matthews correlation coefficient (MCC), area under the receiver
operating characteristics curve (ROC_AUC), precision, recall, and F1-score (Table 3). Al-
most all of the modeling algorithms displayed equally good external predictive power
on the external set, with mild predominance of the RF, SVC, and DNN models build
using descriptors.
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Table 3. External validation parameters of the binary classification models.

ML Algorithm Molecular Feature BA MCC ROC_AUC Precision a Recall a F1 a

RF

Descriptors 0.88 0.74 0.94 0.86 0.88 0.87
ECFP4 0.84 0.66 0.92 0.82 0.84 0.83

MACCS 0.82 0.62 0.91 0.8 0.82 0.81
ECFP6 0.85 0.68 0.92 0.83 0.85 0.84

SVR

Descriptors 0.88 0.74 0.95 0.87 0.88 0.87
ECFP4 0.81 0.63 0.9 0.82 0.81 0.82

MACCS 0.8 0.59 0.87 0.79 0.8 0.79
ECFP6 0.79 0.62 0.9 0.83 0.79 0.81

XGBoost

Descriptors 0.86 0.72 0.94 0.85 0.86 0.85
ECFP4 0.81 0.62 0.91 0.8 0.81 0.81

MACCS 0.8 0.6 0.9 0.8 0.8 0.8
ECFP6 0.81 0.62 0.91 0.81 0.81 0.81

KNN

Descriptors 0.79 0.56 0.88 0.77 0.79 0.77
ECFP4 0.82 0.62 0.9 0.8 0.82 0.81

MACCS 0.82 0.62 0.88 0.8 0.82 0.81
ECFP6 0.84 0.65 0.91 0.81 0.84 0.82

DNN

Descriptors 0.89 0.75 0.94 0.85 0.86 0.86
ECFP4 0.83 0.65 0.91 0.8 0.81 0.8

MACCS 0.8 0.58 0.89 0.8 0.8 0.8
ECFP6 0.82 0.64 0.9 0.79 0.82 0.8

a Average values across classes are presented.

Aiming to recover active molecules from large databases enriched with inactive com-
pounds, virtual screening (VS) is one of the possible real-life applications of this type of
ML model. VS models that are able to encompass a larger portion of chemical space are
considered more useful since the main objective of screening studies is to find chemically
novel and diverse active compounds. Trained on the largest dataset—Dataset 2—the binary
model could be expected to have the largest chemical space coverage and to be more useful
in VS purposes compared to the models trained on other datasets. In order to additionally
evaluate the applicability of selected binary models in the VS, real-life application was
simulated by generating almost 20,000 virtual decoy molecules and assigning them to the
inactive class. Decoys were created by enforcing 2D topological dissimilarity with known
active molecules while retaining similar physical properties. The decoy dataset was merged
with an external set, creating the imbalanced database with ratio active:inactive = 1:40. The
models were further tested on their ability to recover the active molecules.

In these settings, statistical parameters of the models were recalculated with the
addition of early enrichment metrics (Table 4). Early enrichment metrics represent one
of the most important parameters for the evaluation of early recognition of VS models
since only the top-ranked compounds are usually considered for experimental evaluation.
Early recognition is the direct reflection of the models’ ability to rank active molecules
very early in an ordered list. Herein, we used ROC EF 0.5%, 1%, 2%, and 5%, which
quantified the area covered by the curve at 0.5%, 1%, 2%, and 5% of the screened false
positives, respectively [20,46]. With the dataset containing a significantly larger number
of chemically diverse inactive compounds, the RF:ECFP4 binary model stood out as the
model with the greatest predictive power (Table 4 and Figure 5). In the heavily disbalanced
decoy set, the RF:ECFP4 binary model displayed better sensitivity, specificity, precision,
and robustness but also better early recognition. In 0.5% of false positives, the RF:ECFP4
binary model was able to find over 70% of true active molecules (Table 4). It is worth noting
that the most of the true inactive compounds from Dataset 2 were chemically similar to
the active compounds, whereas the decoy dataset was enriched in topologically dissimilar
compounds. Since the parameters calculated on the decoy dataset represented the more
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reliable estimation of the model’s predictive performance in VS settings, the RF:ECFP4
model was selected for further work.

Table 4. The predictive performance parameters of the binary models on the decoy dataset.

ML
Algorithm

Molecular
Feature BA MCC ROC_AUC Precision a Recall a F1 a EF05% EF1% EF2% EF5%

RF

Descriptors 0.68 0.09 0.87 0.51 0.68 0.35 0.63 0.67 0.68 0.73

ECFP4 0.81
(0.9) b

0.19
(0.52) b

0.87
(0.89) b

0.53
(0.67) b

0.81
(0.9) b

0.49
(0.73) b

0.74
(0.74) b

0.74
(0.74) b

0.76
(0.76) b

0.77
(0.8) b

MACCS 0.66 0.08 0.82 0.51 0.66 0.35 0.55 0.56 0.59 0.62
ECFP6 0.75 0.14 0.87 0.52 0.75 0.43 0.72 0.74 0.76 0.78

SVR

Descriptors 0.69 0.1 0.89 0.51 0.69 0.36 0.43 0.56 0.62 0.71
ECFP4 0.46 −0.06 0.8 0.48 0.46 0.05 0.75 0.75 0.75 0.76

MACCS 0.62 0.06 0.83 0.51 0.62 0.32 0.39 0.61 0.68 0.74
ECFP6 0.47 −0.07 0.8 0.47 0.47 0.03 0.76 0.76 0.77 0.77

XGBoost

Descriptors 0.71 0.11 0.85 0.51 0.71 0.39 0.41 0.44 0.48 0.54
ECFP4 0.74 0.13 0.87 0.52 0.74 0.42 0.35 0.39 0.43 0.52

MACCS 0.64 0.07 0.73 0.51 0.64 0.32 0 0 0.02 0.2
ECFP6 0.71 0.11 0.85 0.51 0.71 0.39 0.37 0.38 0.44 0.5

KNN

Descriptors 0.66 0.08 0.76 0.51 0.66 0.37 0.09 0.23 0.26 0.29
ECFP4 0.72 0.12 0.8 0.52 0.72 0.41 0 0 0 0

MACCS 0.64 0.07 0.75 0.51 0.64 0.33 0 0 0 0
ECFP6 0.72 0.11 0.8 0.52 0.72 0.41 0 0 0 0

DNN

Descriptors 0.72 0.12 0.8 0.51 0.71 0.38 0 0 0 0
ECFP4 0.73 0.13 0.84 0.52 0.73 0.43 0.1 0.25 0.32 0.41

MACCS 0.69 0.1 0.79 0.51 0.62 0.29 0.04 0.08 0.17 0.23
ECFP6 0.67 0.09 0.81 0.51 0.67 0.38 0.17 0.25 0.34 0.43

a Average values across classes are presented. b Number in brackets represents value after applicability domain
corrections.
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The applicability domain of the selected models was defined according to the
indeterminate-zone approach [47–49]. Predictions that predicted probabilities falling into
indeterminate zones (in-zone predictions) are considered unconfident and vice versa. For
binary models, this zone was set to 0.5± 0.1 of the prediction probability for corresponding
classes. Considering the applicability-domain corrections, the performance of the selected
RF:ECFP4 model significantly improved (Table 4 and Figure 5).
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2.2.3. Multiclass Classification Models

Being assigned to the same class of sirtuins—Class I—SIRT1 and 3 are the closest
homologues to SIRT2, which explains the difficulties in achieving selectivity of SIRT2
inhibitors [50]. With recent links established between the safety of SIRT2 inhibitors and
selectivity profiles, achieving the selectivity of novel compounds appears to be a rising
trend in the drug-discovery efforts of SIRT2 inhibitors [19]. A notable amount of available
structure–activity data on ChEMBL contains molecules with parallel inputs on activity
towards different sirtuin isoforms, the most abundant being SIRT1 and 3. However, the
size of the subsets of SIRT2 inhibitors with parallel records on SIRT1 or SIRT3 inhibitory
activity were still significantly smaller and more imbalanced than the global SIRT2 dataset
(Figure 2), which could hamper the predictive power and applicability of models created
using these datasets. The main goal of this part of the study was to create and validate
models for prediction of the selectivity of the potential inhibitors.

In alignment with the general protocol (Figure 3), all previously mentioned ML al-
gorithms and molecule features were used to build and validate selectivity models. Two
types of models were built: a SIRT1/2 selectivity model and a SIRT2/3 selectivity model.
Due to the limited number of compounds with concomitant SIRT1/2/3 records accom-
panied by significant class imbalances, a joint SIRT1/2/3 model was not built. A total of
270 Mordred descriptors was selected for SIRT1/2 selectivity models, whereas 316 Mor-
dred descriptors were selected for SIRT2/3 modeling (Supplementary Materials, Table S3).
Fingerprints were used without further reduction of the number of beats. Selectivity
models were built as multi-class prediction models, where different classes represented
selective SIRT2, non-selective SIRT1/2 or SIRT2/3 and SIRT1/2, or SIRT2/3 inactive
compounds (Figure 2). Similar to the VS binary models, external and internal predic-
tive performance of selectivity models was evaluated using the same set of statistical
parameters (Figure 6 and the Supplementary Materials, Tables S6–S10). Internal vali-
dation parameters indicated good internal predictive performance of the trained model
(Supplementary Materials, Table S6). Interestingly, for the selectivity models, models built
with descriptors performed significantly better on external validation with the test set
compared to the models built with topological fingerprints (Supplementary Materials,
Tables S7 and S9), with a predominance of RF, DNN, and SVC ML approaches. It is more
likely that physicochemical properties encoded in selected descriptors for each modeling
approach played greater importance in selectivity than structural features of the molecules.
It is interesting to note that DNN models achieved the greatest performance across all types
of molecular features for the SIRT2/3 selectivity model, which indicates the ability of the
deep learning approach to more efficiently learn from the limited number of training data
(Dataset 4–the smallest dataset) (Figure 6A).

Practical application of the selectivity models could involve making predictions across
the large number of inactive compounds. Although models have been trained to recognize
inactive compounds, limited chemical space coverage of true inactive compounds of
Datasets 3 and 4 may limit the applicability of these models. In order to emulate behavior in
real-life application of these models, when facing the large number of inactive compounds,
models have been additionally evaluated on decoy datasets (active: inactive = 1:40) similar
to binary models. When enriching the inactive class in a decoy dataset, statistical parameters
showed a slight shift in the model’s predictive power. Surprisingly, the decoy-set analysis
revealed the advantage of ECFP4 molecule representations in the case of the SIRT1/2
models (Figure 6B and Supplementary Materials, Tables S7 and S8). After evaluation of the
decoy dataset, the RF:ECFP4 SIRT1/2 model stood out as significantly better compared to
the other models. A similar situation was seen in the SIRT2/3 models, where the RF:ECFP4
SIRT2/3 model displayed increased predictive performance on the decoy set. However,
in the case of the SIRT2/3 models, the situation was less clear and the DNN:descriptors
SIRT2/3 model showed comparable performance (Figure 6B and Supplementary Materials,
Tables S9 and S10). It should be noted that the SIRT2/3 models generally performed
poorly on the highly imbalanced decoy datasets created by maximization of 2D topological
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dissimilarity of decoy compounds. This limits usage of SIRT2/3 models only on compounds
topologically similar to the already-known active compounds. Generally poor performance
of SIRT2/3 models on the decoy dataset could be attributed to the limited size and diversity
of the dataset used for training.
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In order to further explore the applicability of the selected models, applicability
domains were defined. Similar to the binary models, the indeterminate-zone approach
was used to define AD for the selectivity models. Since our models have three classes as
outcomes, the AD zone where predictions are considered confident was defined as >0.5
for the probability of the predicted class. Considering only the data points within AD, the
greatest improvement in predictive statistics was observed in the case of the SIRT1/2 model
(Figure 6B and Supplementary Materials, Table S8). On the other hand, two promising
SIRT2/3 models with similar performances on the decoy dataset (RF:ECFP4 SIRT2/3
and DNN:descriptors SIRT2/3) displayed just slight improvements after AD corrections
(Figure 6B and Supplementary Materials, Table S10). However, the DNN model had much
better coverage, including almost 19,000 compounds (compared to 9000 for RF) within the
AD borders, so it was retained for further work.
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In summary, the SIRT1/2 model showed excellent predictive power, whereas the
SIRT2/3 models demonstrated lower quality on topologically dissimilar compounds. The
most probable explanation for this result may be in the size differences of the utilized
datasets. Considering the abovementioned limitations in the dataset’s size and diversity
as well as the quality of the models, selectivity models SIRT1/2 and SIRT2/3 are the most
appropriate to be applied as tools for additional selectivity analysis of the virtual screening
results where the activity of the compounds is already predicted with the more accurate
binary models. Conflicting predictions (e.g., when binary models judge a compound as
active, whereas selectivity models judge a compound as inactive) inside the applicability
domain of the models should be addressed with caution, and in that context selectivity
models (specifically, the SIRT1/2 model) could be used as additional confirmation of the
compound activity.

2.3. SIRT2i_Predictor’s Framework for Discovery of Novel Inhibitors

In order to increase the availability and ensure the best practice in the application of the
created models, a framework for prediction of the activity/selectivity of novel compounds
was defined and encoded into the Python-based application named SIRT2i_Predictor.
The workflow of SIRT2i_Predictor is presented in Figure 7 and roughly consists of (1) a
module selector, (2) a SMILES preprocessor, (3) predictors, and (4) analyzers. With the
aim of making SIRT2i_Predictor easily accessible to the wider community, the appealing
web-based graphical user interface (GUI) was created as well (Figure 8).
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The module selector allows the user to choose between the two modules of the frame-
work: VS and SMILES-Analyzer modules. In the VS module, SIRT2i_Predictor uses CSV
files as an input, which contain compounds in SMILES format with or without compound
IDs (up to 200 MB in size). SMILES are prepared for predictions automatically by a SMILES
pre-processor. The predictor of the VS module relies solely on the binary-classification
RF:ECFP4 model. Compared to the binary model, selectivity models, especially the SIRT2/3
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model, demonstrated limited utility on the decoy set, which could be attributed to the
limited size and the diversity of the training sets (see Section 2.2.3). On the other hand,
regression models, trained mostly on the active compounds, may not be the best choice
for VS purposes. Due to the limited presence of inactive compounds in the training set
(as discussed above in Section 2.2.1), the regression model could represent a valuable
analysis tool for detailed analysis of compounds predicted to be active by the binary model.
Therefore, the binary RF:ECFP4 classification model, due to having the largest and the most
diverse dataset, as well as superior performance in the real-life application, was selected as
the primary virtual-screening model. As an output, the VS module of SIRT2i_Predictors
creates and writes the table of screened molecules (CSV output file), together with the
predicted probabilities and class assignments (“Yes” class if the molecule is predicted to
be an inhibitor, “No” class if not) (Figure 8). This utility could represent a great asset
in the prioritization of compounds and cost reductions in large-scale in vitro screening
campaigns.
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The other module, SMILES-Analyzer, is intended for more detailed analysis of the
VS results. However, it can be used independently of the VS module for analysis of
desirable compounds. The SMILES-Analyzer module requires list of SMILES as an input,
which are pasted by the user into the input box (Figure 8). The predictor of this module
encompass all four ML models (binary RF:ECFP4 model, regression XGBoost:ECFP4 model,
selectivity RF:ECFP4 SIRT1/2, and DNN:descriptors SIRT2/3 models), whereas different
analyzers provide the user with detailed reports on the predicted potencies and selectivity
of predicted inhibitors (Figure 7). The main objective of the SMILES-Analyzer module is to
assist with the analysis and selection of VS results for further experimental evaluation.

Similar to the VS module, the SMILES-Analyzer module could also process a large
number of compounds. However, due to the different requirements of each model on the
inputs, the preprocessing step of this module requires more computational time, which
could be problematic for screening very large databases. In addition to the text and numeri-
cal summaries of predictions for compounds made by all four ML models, the SMILES-
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Analyzer module allows for the detailed inspection of each compound independently
through the graphical interpretations of the predictions (Figure 8). Graphical interpretation
of the predictions includes radar-chart summary of predictions made by all four models,
a histogram of predicted probabilities for estimation of the confidences (applicability do-
main) of classification-model predictions, a leverage plot for estimation of the confidence
(applicability domain) of pIC50 predictions, and the maps of the per-atom contributions
(positive and negative) for predicted SIRT2 activity (with regression and binary models)
(Figure 8). Atomic-contribution maps are built according to the concept of similarity maps,
where the contribution of each atom is calculated with respect to the differences in pre-
dicted probabilities obtained when the bits in the fingerprint corresponding to the atom are
removed [51]. Additionally, GUI provides the predictions of the most similar compound
in the ChEMBL database using Tanimoto similarity and ECFP4 fingerprints. Tanimoto
analysis is provided in order to judge the confidence of SIRT2/3 selectivity predictions
since the DNN:descriptors SIRT2/3 model displayed limited applicability on the diverse
decoy set (see Section 2.2.3). The SMILES-Analyzer module, similar to the VS module, also
outputs a tabular report (CSV file) for predictions on all input molecules.

2.4. Benchmarking SIRT2i_Predictor against the Structure-Based VS Approach

The novel structure-based virtual-screening (SBVS) approach relying on alternative
conformational states of SIRT2 discovered through computationally intensive simulations
of the binding-pocket dynamics was recently published by our group [20]. The utilization
of alternative binding-pocket conformational states, besides showing significant improve-
ments in validation metrics compared to the single-structure approach, resulted in the
expansion of the chemical space coverage of virtual hits. In order to test SIRT2i_Predictor’s
ability to expand the chemical space of virtual hits, we repeated the prospective SBVS
campaign from the aforementioned paper encompassing around 200,000 compounds from
the SPECS database [52]. Self-organizing maps representing chemical space coverage
were constructed and compared between different approaches. SIRT2i_Predictor binary
models showed a surprising expansion of chemical space of virtual hits compared to the
known chemical space of SIRT2 inhibitors (Figure 9A). Compared to the SBVS approach,
the expansion of chemical space was just slightly lower, which places SIRT2i_Predictor as
a comparable tool in search of novel chemical scaffolds of inhibitors. To further explore
the reach of SIRT2i_Predictor in unexplored portions of chemical space, one of the top-
ranked compounds occupying a portion of chemical space not covered either by SBVS
or by ChEMBL compounds was singled out and analyzed using the SMILES-Analyzer
module. This portion of chemical space was occupied by a thiohydantoin derivative, which
was predicted to be a non-selective SIRT2 inhibitor with all probabilities being inside
applicability domains (Figure 9B). Structure–activity analysis of SIRT2i_Predictor based
on similarity maps revealed the thiohydantoin scaffold as crucial for predicted activity
(Figure 9C). To our knowledge, none of the thiohydantoin derivatives had been reported as
sirtuin inhibitors, which further corroborated SIRT2i_Predictor’s capacity to provide novel
scaffolds of inhibitors and demonstrated its utility in creating structure–activity hypotheses.
As expected, the VS module of SIRT2i_Predictor was able to screen 200,000 compounds in a
matter of minutes, which was a significant improvement compared to the SBVS campaign,
requiring hours.

In our SBVS campaign, nine hit molecules extracted from previously unexplored
portions of chemical space were shown to have potency on SIRT2. However, the IC50
values of two lead compounds as well as the Inh% of five compounds were in the “twilight
zone” of the binary models (IC50 = 50–90 µM; Inh%@200 µM = 40–80%), whereas only
two compounds were true inactive compounds. In order to explore the performance of
SIRT2i_Predictor on this group of “twilight zone” compounds from distant portions of
the chemical space of known inhibitors, nine hit compounds were analyzed using the
VS module of the framework. The results of the predictions were in agreement with the
experimental observations (Supplementary Materials, Table S11), where SIRT2i_Predictor
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predicted that none of the compounds would have IC50 < 50 µM, which was the criterion for
classifying a compound as active in binary models. Most of the compounds were assigned
as being outside the applicability domain (5 of 9), which corresponds to the “twilight zone”
and the fact that the compounds were selected from distant portions of chemical space in
the SBVS study. The rest of the compounds were classified as inactive (4 of 9).
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Figure 9. Comparison of SIRT2i_Predictor to the multi-structure SBVS approach. (A) Compar-
isons of the chemical space covered by ChEMBL SIRT2 inhibitors (left), SBVS virtual hits (middle),
and SIRT2i_Predictor virtual hits (right); (B) analysis of probabilities obtained for virtual hits ex-
tracted from a unique portion of chemical space covered by SIRT2i_Predictor (star sign in (A));
(C) structure–activity relationships calculated using similarity maps for a binary model (upper plot)
and a regression model (lower plot) for virtual hits extracted from a unique portion of chemical space
(star sign in (A)). A red glow indicates a region that has a positive influence on the activity, whereas a
blue glow indicates a negative influence.

Further analysis of the utility of SIRT2i_Predictor was performed by analyzing our
small in-house database of compounds (Supplementary Materials, Table S12) [53,54]. Un-
fortunately, predicted probabilities for binary models for all in-house compounds were
outside the defined applicability domain or predicted to be inactive. In order to further
justify SIRT2i_Predictor as a valuable tool in processing the VS data, we utilized our pre-
viously published SBVS model, and four compounds predicted to be active according
to the SBVS model were tested in vitro. Although the compounds showed some level
of SIRT2 inhibitory activity (Supplementary Materials, Table S12), all compounds were
shown to be poor inhibitors (three were in the “twilight zone” and one was inactive ac-
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cording to the criteria for classification models). These results were in agreement with
SIRT2i_Predictor’s estimations, which predicted that the compounds would be either in-
active or outside the applicability domain. As a standard inhibitor, we used compound
EX-527 (IC50 (SIRT2) = 20 µM) [55]. This compound was not included in the training sets
for the binary model of SIRT2i_Predictor. SIRT2i_Predictor clearly distinguished EX-527
from the in-house compounds, whereas the predictions for in-house compounds were in
agreement with the experimental results.

In summary, SIRT2i_Predictor demonstrated utility in discarding the compounds of
lower potency while retaining comparable coverage of chemical space as some of more
computationally demanding SBVS approaches. The presented benchmarking results place
the SIRT2i_Predictor as a complementary tool to the SBVS approaches, which can be utilized
as standalone virtual-screening tool, but also as an additional fast and convenient filter after
virtual or in vitro screening studies to further prioritize the most promising compounds for
biological evaluations.

3. Materials and Methods
3.1. Dataset Preparation

The initial database of structures and biological activities was prepared by collecting all
records from the ChEMBL database (release 30) with the reported SIRT2 inhibitory activity
(expressed as half-maximal inhibitory concentration (IC50) values or percent of inhibition
(Inh%)) [56]. Additional compounds were acquired from patent US20160376238A1 [57]. The
compounds were extracted from the patent document using ChemDataExtractor (v 1.3.0)
software [58]. The raw data were initially divided into the four datasets (Datasets 1–4)
according to the intended purpose (see below). After collecting the raw data, Datasets
1–4 were manually curated by removing records with activities reported for anything
but inhibition of deacetylation reaction (e.g., different defatty-acylation activities, etc.).
Curated datasets were further pre-processed by canonizing the SMILES, removing the
duplicates, stripping the salts, and unchanging the molecules. All pre-processing steps
were performed using the RDKit (v 2021.03.4) [59]. Before removal, duplicated records
with multiple activities were manually inspected, and only records with activity closest to
the average within the group were retained. If the same molecule contained IC50 and %Inh
records, the record with IC50 values was retained.

For the regression models, the IC50 values were converted into pIC50 (pIC50 = −log10
(IC50)), whereas for the classification models the IC50 values and Inh% were encoded
into different classes. In this study, compounds were assigned to the “SIRT2 active” class
if IC50 ≤ 50 µM, or Inh% ≥ 80% (if assayed at 200 µM), or Inh% ≥ 70% (if assayed at
100 µM), or Inh% ≥ 60% (if assayed between 50 and 100 µM), or Inh% ≥ 50% (if assayed
bellow 50 µM). Compounds were assigned to the SIRT2 “inactive” class if IC50 ≥ 90 µM
or Inh% ≤ 40% (if assayed above 100 µM). For multiclass models, the same criteria were
applied with the records on SIRT1 and SIRT3 activities. In subsequent modeling steps,
Datasets 1–4 were further divided into the training (internal) set (70%) and test (external)
set (30%) using the stratified train–test split algorithm of the scikit-learn library (v 1.1.1) [60].
Class imbalance before training the classification models was accessed using the SMOTE
(Synthetic Minority Oversampling Technique) algorithm from the imbalanced-learn library
(v 0.9.1) [61].

3.2. Calculation of Molecular Features and Feature Selection

After preparation of the dataset, all molecules were encoded using 166 bit-long
MACCS key fingerprints, 1024 bit-long extended-connectivity fingerprints (ECFP4 and
ECFP6) as implemented in RDKit, or 1613 two-dimensional descriptors calculated by
Mordred (v 1.2.0) [35]. The number of descriptors was further reduced for each dataset in-
dependently. Firstly, descriptors with zero or “NaN” values were removed. After standard-
ization, low-variance descriptors were removed using the cut-off value 0.1. Correlations
across all pairs of descriptors was calculated using Pearson correlation coefficient. Any
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two descriptors with correlation values higher than 0.9 were regarded as redundant and
only one was retained. The final selection of descriptors for the modeling was performed
according to recursive feature elimination with cross-validation (CV), as implemented in
Python library scikit-learn (v 1.1.1) [60]. A decision tree classifier was used as an estimator,
with 10-fold cross-validation. All descriptors selection steps were performed only for
training-set compounds.

3.3. Model Building and Evaluation

In this study, five ML algorithms were utilized for model building: random forest
(RF), support-vector machines (SVM: support-vector classification (SVC) and support-
vector regression (SVR)), k-nearest neighbors (KNN), extreme gradient boosting (XGBoost),
and deep neural networks (DNN). Repressors and classifiers for RF, SVM, XGBoost, and
KNN models were built using the scikit-learn library with the addition of the XGBoost
Python library (v 1.5.1). DNN models were generated using TensorFlow (v 2.9.1) [62].
For RF, SVC (SVR), KNN, and XGBoost hyperparameter tuning was performed with the
Bayesian optimizations using the five-fold CV as implemented in the scikit-optimized
library (v 0.8.1). For DNN models, hyperparameter optimizations, together with compre-
hensive optimization of the neural network architectures, was performed with custom
Keras Tuner (v 1.1.1) [63] scripts and using the Bayesian optimization with five-fold CV. A
detailed list of all hyperparameters optimized, together with objectives and other specifici-
ties of ML approaches, are presented in Supplementary Materials, Table S1.

Briefly, three types of ML models were trained on training sets of corresponding
datasets: regression-based (Dataset 1), binary classification-based (Dataset 2), and multi-
class classification-based models (Datasets 3 and 4). Internal validation of the regression
models was performed using the coefficient of determination for the training set (R2) and
the cross-validated correlation coefficient (Q2), the root mean square error (RMSE) of fitting
the training set (RMSEint), and the RMSE of cross-validation (RMSECV) [64]. Y-scrambling
was performed as a part of an internal validation procedure to check the robustness and re-
liability of top-performing models. Y-scrambling was performed by generating 100 models
using randomly shuffled data with the same hyperparameters used for training the initial
model. Evaluation of external predictive power of regression-based QSAR models was
performed using the set of different validation metrics: determination coefficient of the
test set (R2

ext) (Equation (1)), RMSE of the external set (RMSEext) (Equation (2)) [64], Q2
Fn

metrics (Q2
F1, Q2
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and (7)) [39,43], and the concordance correlation coefficient (CCC) (Equation (8)) [40]. For-
mulas for the calculation of internal validation metrics are presented in the Supplementary
Materials, Supplementary Note S1.
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)2 (8)

In Equations (1)–(8), TR represents the training set, EXT represents the test set (external
set), yi represents the experimental data values, ŷi represents the predicted data values, yi
represents the average of the experimental data values, and ŷ represents the average of
the predicted data values. r2

0 and r2 are the determination coefficients of the regression
function calculated using the experimental and predicted data of the external set, forcing
the regression through the origin (r2

0) or not (r2). r2
m was calculated using the experimental

values on the ordinate axis, whereas r′2m was calculated using the same values on the
abscissa. r2

m is the average of r2
m and r′2m.

hi = xT
i

(
XTX

)−1
xi (9)

h∗ =
3(m + 1)

p
(10)

The applicability domain of the created regression-based models was performed
according to the leverage method [45]. The leverage values (hi) were computed according to
Equation (9), where X is the matrix formed with rows corresponding to the most important
descriptors/bits of molecules from the training set and xi is the descriptor/bit vector for a
query molecule. Typically, the threshold, h*, is computed with Equation (10), where m is
the number of features and p is the number of molecules in the training set. The feature
importance was calculated using the permutation importance approach from scikit-learn
with 30 repeats.

The classification models were evaluated using the following metrics: balanced ac-
curacy, recall, precision, F1-score, Matthews correlation coefficient (MCC), and area un-
der the ROC (receiver operating characteristics) curve (ROC_AUC). All metrics were
derived from confusion matrices created from the number of true-positive (TP), true-
negative (TN), false-positive (FP), and false-negative (FN) predictions. Sensitivity (true-
positive rate, or recall) (Sensitivity = TP/(TP + FN)) and specificity (true-negative rate)
(Specificity = TN/(TN + FP)) reflect the ability of the model to correctly classify a sample
as positive (sensitivity), or negative (specificity) considering all positive data points or all
negative data points, respectively. Balanced accuracy represents the average of the sensitiv-
ity and specificity, which prevents inflated performance estimates in imbalanced datasets
(BA = (Sensitivity + Specificity)/2). Precision reflects the ability of the classifier to correctly
label all positive samples as positive (Precision = TP/(TP + FP)), whereas the F1-score repre-
sents the harmonic mean between precision and recall (sensitivity), which summarizes the
precision and robustness of the classifier (F1 = 2 × (Precision × Recall)/(Precision + Recall)).
MCC could be seen intuitively as the summary of all categories in the confusion matrix
(Supplementary Materials, Supplementary Note S1). This balanced metric can be used
even if the classes have different sizes. Values of MCC above 0 indicate that the classi-
fier performed well in all four confusion-matrix categories. The ROC curve is created by
plotting the fraction of true-positive rates vs. the fraction of true-negative rates at various
thresholds. Additionally, the ROC_AUC value reflects the probability of the classifier
to rank the randomly chosen positive example higher than the randomly chosen nega-
tive example. The values of ROC_AUC, precision, recall and F1 for multiclass models
were calculated as macro-averages using a one-vs-rest approach. Additional evaluation
of external performance of the classification models was performed by creating a decoy
dataset with a DUD-E server, which was further concatenated to the external set [67]. For
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interpretation of atomic contributions and graphical interpretation of the structure–activity
relationships, similarity maps were built according to the RDKit implementation of the
approach proposed by Riniker et al. [51]. Chemical space projections of virtual hits from
virtual screening of the SPECS database [52] were calculated using self-organizing maps,
as described in previous work [20].

In vitro enzymatic evaluation of potency for the in-house library of compounds was
performed using the fluorometric assay, as described elsewhere [68]. The percent of inhi-
bition for all compounds was evaluated in triplicate at 200 µM. Details on the performed
assay are provided in the Supplementary Materials, Supplementary Note S2.

4. Conclusions

An increasing number of preclinical evidence demonstrates the potential of SIRT2
inhibitors as novel therapeutics for the treatment of a number of age-related disorders.
Despite the growing interest in the development of small-molecule SIRT2 inhibitors in the
past decade, none of the SIRT2 inhibitors have entered clinical trials. Currently, there is a
lack of large-scale and robust structure–activity relationship models for the prediction of
SIRT2 inhibitor potency and selectivity, which could greatly reduce the time and cost of
developing novel inhibitors. Inspired to facilitate the discovery of novel SIRT2 inhibitors,
we collected all of the currently available structure–activity information and developed a
set of high-quality machine-learning models for predictions of novel inhibitor potency and
selectivity. After extensive validation of the external predictive power of the models, four
models were singled out: the binary RF:ECFP4 model and the regression XGBoost:ECFP4
model for the prediction of inhibitor potencies, as well as the RF:ECFP4 SIRT1/2 and
DNN:descriptors SIRT2/3 models for the prediction of inhibitor selectivity. To provide the
best practice in the application of the created models, a framework for the prediction of the
activity/selectivity of novel compounds was defined and encoded into the Python-based
application named SIRT2i_Predictor. SIRT2i_Predictor was equipped with an appealing
easy-to-use web-based graphical user interface, which was aimed at enabling usage of
the framework for the wider community. With automatic processing of input format
(SMILES) and a demonstrated ability to rapidly and efficiently evaluate large databases
of compounds on SIRT2 inhibitory potency and SIRT1–3 selectivity, SIRT2i_Predictor’s
main utility is to support virtual-screening campaigns and prioritization of compounds for
costly in vitro studies. Visualization functionalities, which allow for inspection of parts of
molecules that contribute to the activity, make SIRT2i_Predictor a valuable resource for lead-
optimization campaigns as well. Our benchmarking study indicated SIRT2i_Predictor’s
complementarity to the recently published SBVS approach. A set of codes generated
for database curation, model trainings, and GUI could be generalized on a number of
pharmacologically relevant targets as part of the development of wider in silico platforms,
which is one of our future directions.

Intending to aid future virtual-screening studies, lead-optimization studies, repurpos-
ing studies, or the integration of cheminformatics with omics data under the more complex
precision-medicine pipelines, we made SIRT2i_Predictor’s GUI code with trained ML mod-
els freely available at https://github.com/echonemanja/SIRT2i_Predictor, accessed on 13
December 2022.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16010127/s1, Table S1: List of hyperparameters and their
values and objectives considered for optimization through Bayesian search; Table S2: Optimized
hyperparameters for final models included in SIRT2i_Predictor; Table S3: Mordred descriptors
selected after feature-selection procedure; Table S4: Results of internal validation (training set (int)
and cross-validation (CV)) and external (ext) validation for regression models; Table S5: Results
of internal validation (training set (int) and cross-validation (CV)) for binary classification models;
Table S6: Results of internal validation (training set (int) and cross-validation (CV)) for multiclass
classification models; Table S7: External (test set) validation parameters of the multiclass SIRT1/2
models; Table S8: The predictive performance parameters of the multiclass SIRT1/2 models on the
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decoy dataset; Table S9: External (test set) validation parameters of the multiclass SIRT2/3 models;
Table S10: The predictive performance parameters of the multiclass SIRT2/3 models on the decoy
dataset; Table S11: Utility SIRT2i_Predictor for the processing of the previously published structure-
based virtual-screening results; Table S12: Results of in vitro evaluation of the in-house compounds;
Note S1: Internal-validation parameters; Note S2: Supplementary methods.
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