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Abstract: The processing of liquisolid systems (LSS), which are considered a promising approach
to improving the oral bioavailability of poorly soluble drugs, has proven challenging due to the
relatively high amount of liquid phase incorporated within them. The objective of this study was to
apply machine-learning tools to better understand the effects of formulation factors and/or tableting
process parameters on the flowability and compaction properties of LSS with silica-based mesoporous
excipients as carriers. In addition, the results of the flowability testing and dynamic compaction
analysis of liquisolid admixtures were used to build data sets and develop predictive multivariate
models. In the regression analysis, six different algorithms were used to model the relationship
between tensile strength (TS), the target variable, and eight other input variables. The AdaBoost
algorithm provided the best-fit model for predicting TS (coefficient of determination = 0.94), with
ejection stress (ES), compaction pressure, and carrier type being the parameters that influenced its
performance the most. The same algorithm was best for classification (precision = 0.90), depending on
the type of carrier used, with detachment stress, ES, and TS as variables affecting the performance of
the model. Furthermore, the formulations with Neusilin® US2 were able to maintain good flowability
and satisfactory values of TS despite having a higher liquid load compared to the other two carriers.

Keywords: liquisolid systems; mesoporous silica carrier; flowability; direct compression; compaction
behavior; machine-learning

1. Introduction

The low solubility of active pharmaceutical ingredients (APIs) in the gastrointestinal
tract represents one of the biggest obstacles to their application as solid dosage forms
and to achieving the desired therapeutic effects. The number of poorly soluble APIs with
pronounced hydrophobic properties is constantly increasing, which emphasizes the im-
portance of developing methods that can improve both the solubility and the release of
these APIs from the dosage forms and consequently their bioavailability [1]. Over the
years, numerous methods and procedures have been developed to overcome these prob-
lems. They are based on different principles such as reducing particle size (micronization,
nanonization), changing the solid state of the API (amorphization, preparation of solid
dispersions), or improving solubility in gastrointestinal fluids (addition of surfactants and
complexing agents, development of lipid-based formulations) [2].

The technology of liquisolid systems (LSS) represents a simple and cost-effective
approach to overcome the low bioavailability of poorly soluble drugs [3]. The basic
principle of LSS formulation implies that a liquid API or a dispersion of a solid API in
a suitable liquid vehicle is converted into a dry, non-adhesive powder using suitable
excipients with high absorption capacities (carrier and coating material). The obtained
powder admixtures, which are characterized by good flowability and good compaction
properties, can be further processed into the desired dosage form—granules, capsules, or
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tablets [4]. Solid, poorly soluble drugs are the most common candidates for formulation
using liquisolid (LS) technology. The presence of these APIs within the LSS in the form of a
solution/suspension enables faster and more complete release from the applied dosage
form, mainly due to the increase in surface area, improved wettability, and, to some extent,
an improvement in solubility [5]. The formulation of LSS is based on a mathematical
approach developed by Spireas [6]. The two main formulation factors are the carrier to
coating material ratio (R)—the ratio between the amount of carrier (Q) and coating (q)
material, and the liquid load factor (Lf)—the ratio between the amount of liquid (W) and
carrier (Q).

The potential of the LS technique to improve the bioavailability of poorly soluble drugs
has been extensively researched over the years. In a multitude of in vitro studies, including
a wide variety of model drugs, significantly improved dissolution profiles were achieved
with LS tablets compared to directly compressed tablets of the same composition or similar
commercially available formulations [7–12]. The results of in vivo studies indicate an
improvement in the rate and extent of absorption, higher plasma concentrations, improved
bioavailability, and significantly more pronounced therapeutic effects [13–19]. However,
despite its advantages, the LS technology has yet to find its place in practice. This is mainly
due to the limitations related to the amount of liquid phase incorporated into the system
and the resulting compaction problems. Namely, a higher amount of the liquid phase, often
necessary to disperse the required amount of API, can lead to poor mechanical properties
of the obtained LS compacts. In addition to low tensile strength (TS) values, visible defects
such as capping, lamination, and chipping often occur, especially when detaching and
ejecting the LS compacts from the tableting equipment. The mechanical characteristics
of LS tablets, such as friability and resistance to crushing, have been investigated in
several studies over the years [5,20–23]. However, few recent studies have discussed the
influence of formulation factors on the behavior of LSS during compaction [24–27] and
a more detailed insight into the complex relationship between the formulation of LSS
and the process parameters during all stages of compaction is still lacking. Therefore, the
application of this technology requires not only a good understanding of the LS formulation
and an accurate calculation of the required amounts of excipients but also an understanding
of the tableting process and all its stages.

Machine learning (ML) algorithms have been widely used in various areas of health
sciences in the last two decades. Their ability to process large amounts of multidimensional
data and interpret the mutual influence of a large number of variables means that they can
be used for more efficient analysis of medical data and early diagnosis [28–30]. The appli-
cation of ML in drug delivery has become increasingly prominent with the development
of more complex techniques such as nanosystems or various approaches to personalized
medicine, including 3D printing [31,32]. Over the years, these tools have found their place
in various stages of drug development, from molecule discovery and pre-formulation
studies to optimization of final dosage forms and pharmaceutical processes [33–35]. ML
has been widely used in the development and optimization of solid dosage forms with the
idea of developing appropriate predictive models. One of the first studies in this field was
conducted by Bourquin [36] and coworkers, who used neural networks to model TS and
friability with compression force, dwell time in the compression phase, and the amount
of excipients used as input parameters. Similar studies using artificial neural networks
aimed to investigate the influence of the type and amount of fillers and lubricants with
different APIs on tablet characteristics, including tablet hardness [37,38]. In the research
carried out by Khalid et al. [39], different ML methods were used to model the relationship
between TS as a dependent variable and some of the process parameters (compression
pressure (CP), type of tableting device) and formulation factors (proportion of excipients)
as independent variables. In addition, a variety of other process parameters and material
properties have been used as input variables in different studies, including diameter, mass,
and thickness of compacts, porosity, compression speed, type of polymer used, its con-
centration, etc. [40,41]. Recent studies have also reported the use of convolutional neural
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networks for product characterization based on imaging studies [42,43]. To the best of
our knowledge, in the field of LSS, only Barmpalexis et al. [44] have used ML tools, more
specifically artificial neural networks and genetic programming, to investigate the effects
of formulation variables on the dissolution of LSS using aprepitant as a model drug. The
results of their study suggested that, compared to classical multilinear regression analysis,
ML algorithms performed better at establishing complex relationships between the input
variables and the responses studied.

The three excipients that were chosen as carriers in this research are all silica based.
Silicates are suitable excipients for the incorporation of large amounts of liquids due to their
porous structure. Neusilin® US2 is a synthetic, amorphous magnesium aluminometasilicate
with a specific surface area (SSA) of up to 300 m2/g. It is a multifunctional excipient that
can be used for both direct compression and wet granulation. Eleven different grades
of this excipient are commercially available, and they differ in specific density, water
content, particle size, and pH of the aqueous dispersion. Neusilin® US2 is one of the most
commonly used grades in LSS formulations due to its high SSA value and high absorption
capacity. The manufacturer also states that the excipient has excellent compressibility
and that its use allows the production of tablets with satisfactory hardness even at low
compression loads [45]. Syloid® XDP 3050 and Syloid® XDP 3150 are novel excipients
of the mesoporous amorphous silica type specifically developed for the formulation of
LSS. Their high porosity, density, and liquid absorption capacity make them suitable for
converting the dispersion of the API into a powder with good flowability. The particle
size, morphology, and pore structure of these excipients were designed to be suitable for
incorporating liquid lipophilic APIs without the need to use solvents or surfactants, as
is required for most other carriers. According to the manufacturer, Syloid® carriers also
have a significantly higher capsule filling capacity than other previously used carriers, such
as colloidal silica. In addition, these carriers are said to allow faster and more complete
release of the APIs from solid dosage forms compared to other commercially available
carriers [46]. A better understanding of LSS, especially their compression properties, would
bring us one step closer to their practical application. Industrial production of LSS would
be a highly beneficial approach, using well-known excipients and already established
production processes to obtain safe dosage forms that are already well accepted by patients,
such as tablets, while improving the bioavailability of poorly soluble drugs, which is one
of the main problems the pharmaceutical industry is facing today. The use of predictive
models in drug development and production is consistent with some of the principles on
which the modern pharmaceutical industry is based. It would be beneficial to save time
and resources while maintaining a product of consistent quality.

The aim of this research was to investigate the influence of the formulation factors (R,
Lf, the type of carrier used) and the tableting process on the flowability and behavior of LSS
during compaction. Investigated LS admixtures were prepared with three different types
of carriers: Syloid® XDP 3050, Syloid® XDP 3150, and Neusilin® US2. ML was used for an
in-depth analysis of the obtained data and to model the relationships between different
input variables and TS as a mechanical characteristic of LS compacts.

2. Materials and Methods
2.1. Materials

LSS were prepared using two types of mesoporous silica (Syloid® XDP 3050 and
Syloid® XDP 3150, Grace GmbH, Worms, Germany) and synthetic, amorphous magnesium
aluminometasilicate (Neusilin® US2, Fuji Chemical Industry Co. Ltd., Toyama, Japan)
as carriers. Colloidal silicon dioxide (Aerosil® 200, Evonik Industries AG, Rheinfelden,
Germany) was selected as the coating material, and polyethylene glycol 400 (PEG 400,
Sigma-Aldrich, Taufkirchen, Germany) was used as the liquid phase.
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2.2. Preparation of LS Admixtures

The admixtures were prepared according to the procedure described by S. Spireas [6]
using a mortar and pestle. The carrier was weighed and transferred to a mortar, and the
liquid phase was added in drops. In order to distribute the liquid phase evenly, mixing
is done at a speed of one rotation per second for one minute and then left to rest for five
minutes so that the absorption of the liquid phase into the carrier particles is complete. The
previously weighed coating material was then added, and the admixture was gently stirred
for 30 s. Table 1 shows the ratio of excipients used. A total of 38 admixtures were prepared
using 3 different types of carriers, by varying the proportion of the liquid phase and carrier
to the coating material ratio.

Table 1. Composition of prepared LS admixtures and their flow properties.

Carrier R 1 Lf
2 PEG (%) Flow Rate (g/s) CI 3 (%) HR 4

Neusilin® US2

10 * 0.7 38.9 1.81 ± 0.09 14.6 ± 0.6 1.17 ± 0.01
10 * 0.8 42.1 1.81 ± 0.03 15.0 ± 1.4 1.18 ± 0.02
10 * 1.0 47.6 2.40 ± 0.03 13.9 ± 1.7 1.16 ± 0.02
10 1.2 52.2 2.30 ± 0.06 14.2 ± 1.4 1.17 ± 0.02
10 1.3 54.2 2.05 ± 0.11 13.9 ± 1.0 1.16 ± 0.01

20 * 0.7 40.0 1.23 ± 0.03 18.3 ± 0.2 1.22 ± 0.00
20 * 0.8 43.2 1.30 ± 0.03 18.4 ± 0.8 1.23 ± 0.01
20 * 1.0 48.8 2.22 ± 0.06 15.2 ± 1.8 1.18 ± 0.03
20 1.2 53.3 2.68 ± 0.04 11.4 ± 0.1 1.13 ± 0.00
20 1.3 55.3 2.43 ± 0.05 14.0 ± 0.9 1.16 ± 0.01

30 * 0.7 40.4 2.14 ± 0.11 12.7 ± 1.4 1.15 ± 0.02
30 * 0.8 43.6 1.17 ± 0.02 18.2 ± 0.8 1.22 ± 0.01
30 * 1.0 49.2 2.02 ± 0.08 14.8 ± 1.8 1.17 ± 0.03
30 1.2 53.7 2.42 ± 0.14 12.2 ± 1.1 1.14 ± 0.01
30 1.3 55.7 2.32 ± 0.04 14.5 ± 2.8 1.17 ± 0.04

Syloid® XDP 3150

10 * 0.6 35.3 4.48 ± 0.49 15.0 ± 1.0 1.17 ± 0.01
10 * 0.7 38.9 3.46 ± 0.20 15.2 ± 1.8 1.18 ± 0.02
10 0.8 42.1 3.30 ± 0.26 14.2 ± 1.0 1.17 ± 0.01
10 1.0 47.6 4.75 ± 0.37 17.0 ± 0.0 1.21 ± 0.00

20 * 0.6 35.3 4.50 ± 0.68 10.0 ± 0.0 1.11 ± 0.00
20 * 0.7 38.9 3.31 ± 0.19 14.0 ± 2.0 1.17 ± 0.03
20 0.8 43.2 3.28 ± 0.39 13.2 ± 0.2 1.15 ± 0.00
20 0.9 46.2 4.74 ± 0.49 11.0 ± 0.0 1.13 ± 0.00

30 * 0.6 36.7 5.25 ± 0.50 11.0 ± 1.0 1.13 ± 0.01
30 * 0.7 40.4 3.93 ± 0.54 13.0 ± 1.0 1.16 ± 0.02
30 0.8 43.6 2.96 ± 0.26 12.7 ± 1.1 1.15 ± 0.01

Syloid® XDP 3050

10 0.5 31.3 2.43 ± 0.32 19.0 ± 1.0 1.23 ± 0.02
10 * 0.6 35.3 2.77 ± 0.23 18.0 ± 0.0 1.22 ± 0.01
10 * 0.7 38.9 2.40 ± 0.22 17.0 ± 0.0 1.21 ± 0.00
10 * 0.8 42.1 1.60 ± 0.04 16.2 ± 0.7 1.19 ± 0.01
10 1.0 47.6 2.98 ± 0.19 15.0 ± 1.0 1.18 ± 0.01

20 * 0.6 35.3 1.95 ± 0.24 17.0 ± 0.0 1.20 ± 0.00
20 * 0.7 38.9 1.80 ± 0.01 16.0 ± 2.0 1.20 ± 0.04
20 * 0.8 43.2 1.85 ± 0.02 15.7 ± 1.0 1.19 ± 0.01
20 * 0.9 46.2 2.53 ± 0.10 15.0 ± 1.0 1.17 ± 0.01
30 * 0.6 36.7 2.54 ± 0.36 15.0 ± 2.0 1.16 ± 0.01
30 * 0.7 40.4 2.16 ± 0.04 17.0 ± 1.0 1.21 ± 0.02
30 * 0.8 43.6 2.05 ± 0.09 15.0 ± 2.0 1.18 ± 0.03

1 carrier to coating material ratio; 2 liquid load factor; 3 Carr index; 4 Hausner ratio; * LS admixtures that were
compressed in order to analyze the properties of LSS during compaction.

2.3. LS Admixtures’ Flowability

The flowability of the prepared LS admixtures was tested using an Erweka flowmeter
type GDT (Erweka GmbH, Heusenstamm, Germany). The time for which 20 g of the sample
passes through the funnel of the device was measured, and the results were expressed as
mass flow rate (g/s). Results are shown as the mean value of three measurements. Bulk
and tapped densities were measured using a 100 mL graduated cylinder and a shaking
volumeter, STAV 2003 (J. Engelsmann AG, Ludwigshafen, Germany). Carr index (CI) and
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Hausner ratio (HR) were calculated afterwards according to Equations (1) and (2) [47],
respectively, where ρt is tapped density and ρb is bulk density:

Carr index (%) = 100 × (ρt − ρb)/ρt (1)

HR = ρt/ρb (2)

2.4. Dynamic Compaction Analysis

Dynamic compaction analysis [48] was performed on 25 selected LS admixtures
(designated in Table 1) using a laboratory compaction simulator (GTP D series, Gamlen
Tableting Ltd., Beckenham, UK), at a compaction speed of 60 mm/min, using 6 mm flat
faced punches. Each compact weighed 75 mg and the applied compression load ranged
from 250 to 500 kg, with an increment of 50 kg. Admixtures with Syloid® carriers were first
exposed to a pre-compression load that was half the amount of the compression load used
afterwards. At least three compacts were prepared for each compression load, and results
were presented as the mean value. Force-displacement curves generated during different
phases of the compaction process were used for further calculations in order to analyze the
behavior of LSS during compaction. In order to examine the correlation between the values
of these parameters and the TS of LS compacts, the following parameters were monitored:
CP, detachment stress (DS), ejection stress (ES), net work of compression (NWC), and elastic
recovery (ER).

TS was calculated according to Equation (3) [49]:

σ = 2F/πDt (3)

where σ is TS, F is the force required to break the compact, D is the compact diameter, and t
is the out-of-die compact thickness after 24 h.

The force required to break the compact and the compact diameter were measured
using the Ewreka TBH 125H tablet hardness tester (Ewreka GmbH, Langen, Germany).
The thickness of the compacts was measured with a vernier caliper (Digi plus line, Vogel).
TS was calculated for at least three samples, and the obtained results were expressed as the
mean value.

CP and DS were calculated using Equations (4) and (5), respectively, where Fc is the
maximum force recorded during tablet compaction, Fd is the maximum force recorded
during tablet detachment, and r is the compact radius.

CP = Fc/r2π (4)

DS = Fd/r2π (5)

ES is a parameter that indicates the adhesive properties of the material and was
calculated according to Equation (6):

ES = Fe/πDt (6)

where Fe is the maximum force recorded during compact ejection, D is the compact diameter,
and t is the compact thickness in the ejection phase.

NWC was calculated as a difference between the total work of compression and elastic
work. The total work of compression was calculated from the area under the compression
force-displacement curve, while the elastic work was calculated from the area under the
curve in the decompression phase, and the trapezoidal method was used in both cases.
ER was calculated using tablet thickness at maximum compression force (hmax) and 24 h
after compression (hmin), according to Equation (7). The thickness of the compact 24 h after
compression was measured with a vernier caliper (Digi plus line, Vogel).

ER (%) = (hmax − hmin)/hmax × 100% (7)
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2.5. Data Analysis

The analysis of the obtained data was performed using Orange software version 3.31.1
(Bioinformatics Laboratory, Faculty of Computer and Information Science, University of
Ljubljana, Ljubljana, Slovenia) [50]. The selection of methods used in this study was based
on a review of the available literature and the most commonly used algorithms in the field
of pharmaceutical technology. The influence of formulation factors (R, Lf and the type of
carrier used) on the flowability of the LS admixtures was examined first. The analyzed data
set consisted of 6 variables with 39 entries each (Table 1). Pearson’s correlation was used to
test the presence of correlations between variables, while different types of graphs and a
decision tree were used for data visualization. Data correlation was also assessed through
principal component analysis (PCA).

In order to analyze the properties of LSS during compaction, a new data set was
obtained by varying the compression load at 6 levels ranging from 250 to 500 kg with a
50 kg increment for each of the 25 compressed admixtures (marked with * in Table 1). The
data set consisted of 9 variables with 150 entries each. The type of carrier used was defined
as a categorical variable, while the remaining 8 variables were numerical and included the
formulation factors R and Lf, as well as TS, CP, DS, ES, NWC, and ER. TS was chosen as the
target variable, while the influence of the other variables on TS was investigated. A visual
representation of the proposed methodology can be found in Figure 1.

First, a regression analysis was performed with the aim of determining whether TS
could be predicted on the basis of some of the input variables. Six different algorithms
were tested to select the one with the highest degree of prediction. The linear regression
learning algorithm uses a linear function to model a relationship between independent and
dependent variables, in this case input data and responses. It is one of the most commonly
used regression learning algorithms because it is simple and relatively easy to train and
interpret [51]. The multy-layer perceptron (MLP) algorithm is a type of feedforward neural
network that consists of multiple layers of interconnected neurons that can develop non-
linear functions between inputs and outputs. This type of neural network consists of at least
three layers of neurons: input, hidden, and output layers, and each neuron has an activation
function. The algorithm is trained using backpropagation, which means that the output
data is sent back to check the prediction error, which improves the accuracy of the algorithm
the more times the process is repeated [52]. Stochastic gradient descent (SGD) minimizes a
loss function by approximating the gradient descent technique. Instead of considering the
entire data set, only one sample at a time is considered, and based on the calculated gradient
of the loss function, the model is updated. It has been used as an optimization function in
MLP [53]. The decision tree algorithm works on the basis of splitting the data based on a
common feature. The data set is represented by a root node, from which branching starts.
It can be used for both regression and classification and for both numeric and categorical
variables [54]. Random Forrest is an algorithm based on ensemble learning, which means
that it improves the performance of the model by combining multiple classifiers, in this
case, multiple decision trees. Each of the decision trees uses a sample of the data, and the
final output is predicted by combining the results of each tree based on the majority of the
predicted outputs [55]. AdaBoost is a boosting algorithm, meaning that it adjusts the weak
learning units and improves their performance by combining their results into a weighted
sum. It works for both classification and regression [56]. The Support Vector Machine
(SVM) algorithm separates the data into classes by defining the hyperplane (decision
boundary) based on the extreme cases/vectors, also called support vectors. This algorithm
is used in both regression and classification analysis and can be used for both linearly and
nonlinearly separated data [57]. Model validation was performed using the leave-one-out
cross-validation method. A classification analysis was performed afterwards on the same
set of data with the aim of determining the classification accuracy of the model in predicting
the type of carrier used based on other numerical variables. Three algorithms were tested,
including AdaBoost. Naive Bayes is a probabilistic classification algorithm, meaning it
predicts how the data should be classified based on the probability that an object belongs to
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a particular class [58]. Logistic regression is a simple classification algorithm used to predict
the outcome of a categorical dependent variable based on the independent variables. Both
continuous and discrete data sets can be classified using this algorithm, but the result is
always a categorical or discrete value (0 or 1) [59]. Lastly, a new data set that included only
compressed LS formulations containing one of the two Syloid® carriers used, Syloid® XDP
3050 and Syloid® XDP 3150, was analyzed in order to determine how differences in particle
size affected the behavior of these LSS during compaction. The software settings for each
of the algorithms can be found in Table S2 as part of the Supplementary Material.
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3. Results and Discussion
3.1. Flowability of LS Admixtures

Good flowability is one of the basic prerequisites for further optimization of LS for-
mulations and can be expressed as flow rate, CI, or HR depending on the method used to
determine it. The results of all three methods of determination are presented as the mean
value and standard deviation in Figure 2. Regardless of the applied test method, a similar
trend was noted, and the best flowability was observed in the admixtures prepared with the
carrier Syloid® XDP 3150. LS admixtures with the other two carriers showed slightly worse
flowability, and the results were different when different testing methods were applied.
Admixtures with Syloid® XDP 3050 showed the highest values of CI and HR, while the
lowest flow rate was recorded in admixtures containing Neusilin® US2. However, t-test
results showed that there was no statistically significant difference (p > 0.05) between the
mean values of flow rates of admixtures with carriers Neusilin® US2 and Syloid® XDP 3050.
The results confirmed that the difference in flowability between the two admixtures with
Syloid® carriers is statistically significant in the case of both testing methods (p < 0.001).
Statistical significance (p < 0.001) was also observed between the mean values of the flow
rate of admixtures prepared with Syloid® XDP 3150 and Neusilin® US2.
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Based on the values of CI and HR and their corresponding descriptive terms proposed
by the European Pharmacopoeia, the flowability of admixtures with Syloid® XDP 3150
and Neusilin® US2 carriers was described as good, and the flowability of admixtures with
Syloid® XDP 3050 was described as acceptable [47].

Pearson’s correlation showed that a low negative degree of correlation was present
between formulation factors (R and Lf) and flow rate, CI, and HR (correlation factor values
less than −0.4) [60]. It was concluded that the categorical variable, the type of carrier
used, had the most pronounced influence on the flow rate of the examined LSS; however,
formulation factors (e.g., the amount of liquid phase that the system can incorporate)
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depend on the physico-chemical characteristics of the carrier itself (such as the size and
shape of the particles, the SSA, and the diameter and volume of the pores).

In a study conducted by Kostelanska et al. [61], the structural and physical properties
of multiple carriers were compared, including Neusilin® US2 and Syloid® XDP 3050.
Neusilin® US2 was found to be one of the best candidates for a carrier due to a very
high SSA value (approximately 342 m2/g), which was higher than that stated by the
manufacturer, and the pore volume of 0.69 cm3/g, which was among the highest of the
carriers studied. SSA for Syloid® XDP 3050 was determined to be approximately 289 m2/g
while the pore volume was 0.58 cm3/g. Another study investigating mesoporous carriers
determined that Syloid® XDP 3150 had an SSA value of 295.7 m2/g [62]. The liquid load
of all three carriers in the current study was in accordance with these results, Neusilin®

US2 was able to incorporate higher amounts of liquid phase (Lf values up to 1.3) compared
to Syloid® carriers (Lf values up to 1.0) while retaining good flowability. Several studies
reported high values for the flowable liquid-loading potential of Neusilin® US2 [63,64]. A
recent study [26] showed that LS admixtures of the same composition (Neusilin® US2, PEG
400, and Aerosil® 200) with an Lf value of 0.55 and R values in the same range (10–20–30)
had acceptable flowability with CI values from 14.63 to 17.71. In comparison to these
results, the admixtures prepared in this research displayed good flowability with a CI mean
value of 14.73 despite notably higher Lf values (0.7–1.3). These findings indicate that for
porous carriers such as Neusilin® US2, which are characterized by a very high SSA value,
changes in formulation factors (specifically Lf) do not have a notable effect on flowability
and good flowability could be expected with the amounts of liquid phase that are even
higher than those tested in the current study. Carrier particle size proved to be the attribute
with the most notable influence on flowability. The particle size of the three carriers used
was 150 µm, 50 µm, and 100 µm for Syloid® XDP 3150, Syloid® XDP 3050, and Neusilin®

US2, respectively [45,46]. The best flowability was observed in LS admixtures with the
carrier Syloid® XDP 3150, implying that admixtures with larger carrier particles flowed
better, which was in accordance with the available literature data [65]. The results of the
flow rate were also visualized by the decision tree. It was observed that the type of carrier
was the parameter based on which the initial branching was made, while Lf was the next
parameter with the greatest influence on the flowability of LS admixtures.

In order to better understand the mutual dependence of different parameters (type of
carrier used, R, Lf, flow rate, CI, and HR), multivariate data analysis was carried out using
the principal component analysis (PCA). By applying this method, the number of data
points is reduced by defining “principal components,” (PC) which, among other things,
take into account the maximum variance originating from each of the variables [66]. The
results of the PCA analysis are shown in Figure 3. It was noted that the first principal
component (PC1) was able to explain approximately 41% of the variance and correlated
to a higher degree with the 4 input variables (flow rate, CI, HR, and Syloid® XDP 3150
carrier), with a positive correlation in the case of Syloid® XDP 3150 carrier and flow rate
and a negative one in the case of CI and HR, indicating that admixtures with carrier Syloid®

XDP 3150 achieved better flowability. The second principal component (PC2) was able to
explain approximately 29% of the variance and was positively correlated with the carrier
Neusilin® US2 as well as with the Lf, which was a result of LS formulations with this carrier
having the highest amount of liquid phase incorporated within them.

Figure 4 shows a scatter plot of the dependence of CI on the type of carrier used: Lf is
shown in different colors according to the legend. It is interesting to notice that in the case
of admixtures with Syloid® XDP 3150 as the carrier, the increase in the amount of liquid
phase in the system led to an increase in the CI value, i.e., a decrease in flowability. On the
other hand, in the case of admixtures containing Syloid® XDP 3050, there was a positive
correlation between the increase in the amount of liquid phase and the indirect flowability.
Although the flowability of the admixtures with Syloid® XDP 3150 as a carrier was found
to be better based on the mean values, this type of dependence should also be taken into
account in further formulation considerations, as the aim with these systems is always to



Pharmaceutics 2023, 15, 741 10 of 19

obtain admixtures with the highest possible proportion of liquid phase and consequently
API, while maintaining good flowability.
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3.2. Compaction Behavior of LSS
3.2.1. Regression Analysis

A regression analysis was performed to establish a relationship between a set of
independent variables and TS, which was selected as the dependent variable because it
is one of the most significant indicators of the compacts’ mechanical characteristics. By
establishing this connection, it would be possible to predict the outcomes, i.e., the TS of
LS compacts could be predicted based on the tableting process parameters and/or the
formulation factors. Several models were compared in order to find the one with the best
ability to predict TS values based on the values of the remaining variables (Table 2).
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Table 2. Models tested during regression analysis.

Model
MSE 1 RMSE 2 MAE 3 R2 4

Training
Data Test Data Training

Data Test Data Training
Data Test Data Training

Data Test Data

AdaBoost 0.00015201 0.06507389 0.01232917 0.25509584 0.00312455 0.17468138 0.99986102 0.94050451
SVM 5 0.03555609 0.06479570 0.18856323 0.25454999 0.12102410 0.16794962 0.96749192 0.94075885

Linear Regression 0.06839292 0.08120252 0.26152040 0.28496056 0.19852719 0.21471604 0.93746999 0.92575848
Neural networks 0.05815805 0.07246392 0.24115981 0.26919124 0.18134422 0.20151931 0.94682749 0.93374798

Tree 0.00749373 0.08475951 0.08656636 0.29113486 0.06079310 0.19475213 0.99314866 0.92250642
Random forest 0.06050200 0.08642901 0.24597155 0.29398810 0.18556466 0.23168898 0.94468447 0.92098003

1 mean square error; 2 root mean square error; 3 mean absolute error; 4 coefficient of determination; 5 support
vector machine.

Multiple models showed comparable performance with similar values of training
and test errors. AdaBoost is the so-called “boosting algorithm,” meaning that it considers
the weaknesses of other models and adjusts to improve performance accordingly [67].
Prediction with this model was highly accurate; however, there was a difference in accuracy
depending on the carrier used. The highest accuracy was present for admixtures containing
Syloid® XDP 3050.

In addition to determining the best predictive model, one of the goals of the regression
analysis was to determine which of the input variables were the most important for the
model’s performance, i.e., to what extent removing one of the input variables affected the
model’s predictive ability. The data obtained are shown in Figure 5.
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The carrier type was the variable with the most notable impact on the model output,
and further explanation of the model by the appropriate software features singled out
carrier Neusilin® US2 as the variable with the greatest impact (Figure 6). LS compacts
containing this carrier achieved TS values that ranged from 1.65 to 4.34 MPa. According
to the literature, data compacts with TS values higher than 1 MPa are acceptable [68].
LS compacts with the other two carriers achieved noticeably lower values of TS, 0.40 to
1.10 MPa and 0.50 to 2.00 MPa, for admixtures with Syloid® XDP 3150 and Syloid® XDP
3050, respectively. These results are in line with what has been reported in the literature. In
a study investigating different mesoporous carriers, Mura et al. [62] compared the tablet
crushing force of compacts prepared under the same conditions. With a value of 332.6 N,
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Neusilin® US2 displayed superior compaction properties compared to Syloid® XDP 3150
(tablet crushing force of 13.4 N). Due to its high absorption capacity, Neusilin® US2 has been
widely used as a carrier in lipid-based drug delivery systems as well. Gumaste et al. [69]
reported that Neusilin® US2 was able to absorb the lipid component of the formulation
at a ratio of 1:1 and still retain a TS higher than 1 MPa despite the type of liquid used or
CP applied (45–270 MPa). Despite the highest liquid load, the TS of the LS compacts with
Neusilin® US2 was the highest of the three carriers tested. These findings highlighted
the importance of selecting a carrier with suitable characteristics, such as a high SSA, and
indicated that the properties of the carrier itself were largely responsible for the behavior
of LSS during compaction, while other formulation factors contributed less. These results
also highlight Neusilin® US2 as the carrier that exhibits both good flowability and good
compressibility while retaining large amounts of the liquid phase.
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Among the parameters specific to the tableting process, ES and CP stood out as the
variables with the most prominent impact on the model’s performance (Figure 5). Both of
these parameters can be monitored throughout the tableting process, which meant that
by establishing a suitable model with TS as a dependent variable, it would be possible to
predict the TS of LS compacts during the production process, which is important from the
perspective of the pharmaceutical industry, which relies on approaches such as quality by
design (QbD) and the application of different process analytical technology (PAT) tools in
order to obtain a product of consistent quality. Application of the QbD approach in the case
of LS technology would consider understanding critical material attributes (e.g., carrier
particle size, flowability, bulked and tapped density) and critical process parameters (e.g.,
mixing time and speed, CP, compression speed), as well as their impact on critical quality
attributes such as drug content, disintegration time, dissolution, tablet hardness, etc. The
PAT approach implies constant monitoring of different parameters in real time, which,
together with the implementation of control strategies, enables obtaining products of the
required quality while saving time and resources, and as a result, gives an opportunity for
the use of a real time release strategy [70].

The ES values (Table S2) in the case of both Syloid® carriers were within acceptable
limits (lower than 5 MPa) [71]. On the other hand, the compacts with Neusilin® US2
showed higher values of this parameter regardless of the applied compression pressure,
indicating poor lubricative properties of the material and potential problems that could
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occur during tableting due to the adhesion of the material to the tableting equipment.
However, it was observed that with the increase in the amount of the liquid phase, the
value of ES decreased. The improved lubrication effect could be caused by the small
amounts of liquid phase that were squeezed out by compression and settled on the surface
of the particles.

Depending on the type of carrier used, changes in CP affected TS to a greater or
lesser extent (Figure 6), which could be explained by the differences in the behavior of
different materials during compression. This was confirmed by examining the dependence
of TS on CP, where a positive correlation was observed between these two parameters for
both Syloid® carriers, which meant that with an increase in CP, the TS of the compacts
also increased. In the case of the LS admixtures with Neusilin® US2, changes in CP
did not significantly affect TS. This indicated that this carrier was more robust during
tableting, which is a positive characteristic of the material and allows more flexibility in
the development of the production process. Even though the TS of the LS compacts with
Neusilin® US2 decreased with increasing liquid load, the values obtained, which were
around 2 MPa, were still acceptable and higher than those obtained in LS compacts with
the other two carriers in their composition at the same or even higher CPs.

3.2.2. Classification Analysis

The classification analysis, as one of the basic tools in ML, is based on the idea of
dividing data into multiple groups based on some common characteristic. Type of the
carrier used in the formulation proved to be one of the most significant parameters affecting
flowability and compaction of LSS. Therefore, the goal was to utilize continuous data (Lf,
R, TS, CP, DS, ES, NWC, and ER) for carrier-based classification. Three models were tested,
and the prediction accuracy of the models was assessed based on the parameters shown in
Table 3. The AdaBoost algorithm, which can be used for both regression and classification
analysis, proved to be the best choice in this case as well.

Table 3. Models tested during classification analysis.

Model
AUC 1 CA 2 Precision Recall

Training
Data Test Data Training

Data Test Data Training
Data Test Data Training

Data Test Data

AdaBoost 1.00000000 0.92381536 1.00000000 0.90000000 1.00000000 0.90213558 1.00000000 0.92381536
Naïve Bayes 0.97528595 0.9620098 0.87333333 0.86666667 0.88611765 0.87748252 0.87333333 0.9620098

Logistic Regression 0.92279412 0.90767974 0.78666667 0.78666667 0.78529412 0.78529412 0.78666667 0.90767974

1 area under curve, 2 classification accuracy.

The degree of prediction of the AdaBoost algorithm was illustrated by the so-called
confusion matrix, a matrix showing the percentage of correctly predicted cases. The devel-
oped model had the highest number of correct predictions for admixtures with Neusilin®

US2 (98.1%) and a higher percentage of prediction error for admixtures containing Syloid®

carriers (the percentage of correct predictions was 86.9% for Syloid® XDP 3050 and 83.3%
for Syloid® XDP 3150). Figure 7 represents the influence of the tested parameters on the
model through the decrease in precision that removing certain parameters would cause.
DS, ES, and TS had the greatest influence on the model precision, which is in accordance
with some of the conclusions previously established through regression analysis. Both
TS and ES values were higher in the case of Neusilin® US2 as the carrier, resulting in less
overlap and more precise classification by the model. In addition, in this phase of the
research, excipients such as lubricants were not added to the LS admixtures; therefore,
the parameters DS and ES were influenced primarily by the characteristics of the carrier
itself, which would also explain why these were the parameters with the most significant
influence on the model prediction.
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3.2.3. Analysis of Differences between Syloid® Carriers

Previously conducted classification analysis showed lower prediction accuracy of the
model for LSS with Syloid® carriers, which could be a consequence of their similarities and
the fact that these two carriers are chemically the same, with the main difference between
them being the particle size.

The differences between the two carriers could not be observed graphically by dis-
playing the dependence of TS on one of the tableting process parameters. This led to data
analysis using PCA, which allowed a clear division between the two carriers and managed
to explain approximately 65% of the variance (~39% was explained by PC1 and ~26% was
explained by PC2). The positive correlation between carrier Syloid® XDP 3050 and Lf,
which were both negatively correlated with PC1 was observed (Figure 7). On the other
hand, higher values of PC1 indicated a sample that achieved higher values of DS, ES, and
NWC and contained Syloid® XDP 3150 as a carrier. Following PC2, a positive correlation
between Syloid® XDP 3050 and TS was also observed (Figure 8). From these results, it
was concluded that Syloid® XDP 3150 had slightly worse behavior during compression
and that compacts with this carrier achieved higher values of DS, ES, and NWC and lower
values of TS.

The additional regression and classification analysis performed on the data obtained
for formulations with two Syloid® carriers confirmed some of the previously derived
conclusions. In both cases, AdaBoost was found to be the algorithm with the highest
accuracy of model output (R2 in regression analysis: 0.891, precision in classification
analysis: 0.833). CP and the type of carrier were singled out as the most significant
parameters for model prediction in the regression analysis (Figure 9a). These results are
consistent with the previous conclusion that there is a high degree of correlation between
TS and CP in LSS with Syloid® carriers. It is interesting that ES was not a parameter that
had a pronounced influence on the model in this case, which led to the conclusion that
this was only the case for admixtures with Neusilin® US2. TS, CP, and NWC were the
parameters that had the greatest influence on the classification model’s predictive ability,
which was in accordance with the conclusions from the PCA and regression analysis results
(Figure 9b).
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4. Conclusions

Maintaining the balance between increasing the amount of liquid phase and con-
sequently the amount of API in the LS system while maintaining good flowability and
compaction properties is one of the most common problems faced during the formulation
of the LSS. The main advantage of using ML tools in the development of LS formulations
is that their application allows a more detailed and comprehensive insight into potential
problems and enables easier observation and description of the complex relationships
between individual variables.
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Additionally, it was concluded that the type of carrier had the strongest influence on
the flowability of LS admixtures. The admixtures with the carrier Syloid® XDP3150 showed
the best flowability, while the flowability of the admixtures with the other two carriers was
slightly lower but still within acceptable limits. The type of carrier proved to be one of the
parameters with the greatest influence on the TS of LS compacts. Neusilin® US2 stood out
as a good choice because, even with an Lf value of 1, the values of TS were satisfactory and
were not affected by changes in CP. Compacts containing Syloid® XDP3050 as the carrier
showed slightly higher TS values than compacts with Syloid® XDP3150 as the carrier.
Monitoring the values of tableting process parameters proved promising for predicting
TS. In the case of the Neusilin® US2, ES was shown to be the variable that significantly
affected the model’s prediction, while in the case of the Syloid® carrier, CP had the greatest
influence. The AdaBoost algorithm proved to be the best choice for building predictive
models for both regression and classification analysis with high predictive accuracy—the
coefficient of determination for regression analysis was 0.94, while the precision of the
model for classification analysis was 0.90. The analysis of the differences between the two
Syloid® carriers showed the importance of particle size.

Furthermore, the application of the ML tools proved to be a useful approach in the
development of LSS, providing a more comprehensive insight into the flowability and
compaction properties while also contributing to a better understanding of the whole
tableting process and all its phases, which is the basis of the QbD approach. The developed
models showed a high degree of success in predicting the given outcomes and could form
the basis for further research with selected formulations. The results presented in this paper
provide insight into how ML can be incorporated into the development and optimization
of LSS, which will hopefully help the application of ML reach its full potential in this
research area.
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