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SUMMARY

Benzodiazepines are well established as
inhibitory modulators of memory processing.
This effect is especially prominent when applied
before the acquisition phase of a memory task.
This minireview concentrates on the putative
subtype selectivity of the acquisition-impairing
action of benzodiazepines. Namely, recent
genetic studies and standard behavioral tests
employing subtype-selective ligands pointed to
the predominant involvement of two subtypes of
benzodiazepine binding sites in memory modu-
lation. Explicit memory learning seems to be
affected through the GABA, receptors
containing the «; and os subunits, whereas the
effects on procedural memory can be mainly
mediated by the o, subunit. The pervading
involvement of the o; subunit in memory
modulation is not at all unexpected because this
subunit is the major subtype, present in 60% of
all GABA, receptors. On the other hand, the
role of os subunits, mainly expressed in the
hippocampus, in modulating distinct forms of
memory gives promise of selective pharmaco-
logical coping with certain memory deficit states.
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INTRODUCTION

A few amino acids exist in high concentrations
in the central nervous system (CNS), playing a
neurotransmitter role. Among them is y-amino
butyric acid (GABA), which acts through two
types of receptors. GABA, receptors mediate the
most of fast inhibitory neurotransmission in the
mammalian brain and are involved in the
regulation of vigilance, anxiety, muscle tension,
epileptogenic activity, and memory functions
(Korpi et al., 2002; Rudolph & Mdhler, 2004). In
addition to the site of action of GABA itself, there
are several modulatory sites at GABA, receptors.
These sites mediate the actions of many
substances, notably benzodiazepine drugs (Chebib
& Johnston, 2000; Korpi et al., 2002).

The characterization of the diverse pharmaco-
logical effects of the benzodiazepines (sedative,
hypnotic, anxiolytic, muscle relaxant, anticonvul-
sive, and amnesic actions) can be considered a
major success of behavioral pharmacology (Sanger
et al.,, 2003). Since the introduction of chlordiaz-
epoxide in 1960, benzodiazepines have been
extensively prescribed to cope with anxiety,
insomnia, muscle spasm, and epilepsy. These drugs
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are still thought of as a pharmacological gold
standard for treating anxiety disorders (Sramek et
al., 2002). Nevertheless, the unwanted effects of
the benzodiazepines have become obvious over the
years. Psychomotor and cognitive impairment is
common, and such more serious neuropsychiatric
reactions as amnesic and aggressive episodes, can
occur (Lader, 1999). Drug-induced impairment of
mnesic function could be desirable in certain
situations (perioperative surgical periods, proce-
dures like endoscopies) (Buffett-Jerrott & Stewart,
2002). On the other hand, most patients taking
benzodiazepines do not complain of memory
problems (Barbee, 1993). Nevertheless, the amnesic
action, most commonly thought of as an unwanted
effect, will be treated in such a way in this paper.

Three kinds of allosteric modulators act through
the benzodiazepine binding site: positive (agonist),
neutral (antagonist), and negative (inverse agonist)
modulators (Chebib & Johnston, 2000). It is well
established that agonists at the benzodiazepine site
present anxiolytic and amnesic properties, whereas
inverse agonists, such as B-carbolines, exert anxio-
genic and learning-enhancing actions (Venault et
al., 1986, 1987; Jensen et al., 1987; Krazem et al.,
2001). The bidirectional influences of GABA,
receptor modulation on memory processing have
been thoroughly reviewed (Chapouthier & Venault,
2002). In the present minireview, we concentrate
on the amnesic effects of the benzodiazepines and
particularly on the results of contemporary investi-
gations into the GABA, receptor subtypes that
contribute to this action. These findings stem from
both genetic studies and standard behavioral para-
digms employing subtype-selective ligands.

MEMORY STAGES AND BENZODIAZEPINES

Memory is composed of three stages: acqui-
sition, consolidation, and retrieval (Abel & Lattal,
2001). Yet, no one has ever measured learning or
memory: these processes can be inferred only from

behavior (Cahill et al., 2001). A memory task
represents a behavioral procedure to which an
animal is repeatedly (usually twice) exposed. The
first exposure is the learning or acquisition session,
whereas the effects of training are assessed, after
an appropriate delay, in retention session(s).
Experimental treatments can be applied (a) shortly
before the learning session, (b) just after the
learning session, or (c¢) before the retention session.
Such interventions are intended to affect the
acquisition, consolidation, and retrieval stages of
memory, respectively. Experimentally isolating the
different stages of memory can be quite difficult,
however, because experimental techniques can
affect two or more stages, depending on the time
course of the manipulations (Abel & Lattal, 2001).
Additionally, behavior is affected by processes
other than learning and memory. Notably, pre-
session treatment can indirectly affect acquisition
or retention performance through influences on
such factors as motor function, attention, sensory
receptor sensitivity, motivation, and general arousal
level (Cahill & McGaugh 1998; McGaugh &
Izquierdo, 2000).

Benzodiazepines have been repeatedly found
to impair memory acquisition (in clinical termin-
ology, they cause anterograde amnesia). In other
words, the compounds affect the type of learning
that depends on building novel associations in
memory; this effect will be discussed later.
Exceptionally rarely, benzodiazepines administered
just after the acquisition session can impair
retention performance in a memory task like
passive avoidance (Jensen et al, 1979). With
regard to the retrograde memory effects, despite
the reservations of one author (Cole, 1986), the
results of most animal studies rule out an action of
benzodiazepines on retrieval in different memory
tasks (Venault et al., 1986; McNamara & Skelton,
1991). In tests that included a significant emotional
component, however, several results pointed to the
inhibitory (Cole and Michaleski, 1984; Cole, 1986)
as well as the facilitative (Savic et al., 2003;
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Obradovic et al., 2004) influences of the benzo-
diazepines on memory retrieval. In fact, as
suggested by the Yerkes-Dodson hypothesis (1908),
one can expect a curvilinear relation between
arousal and/or anxiety and performance, such that
a moderate level of anxiety can benefit cognitive
performance, depending on task difficulty (Eysenck,
1985).

Similar to reports of animal studies, the frequent
conclusion from human studies is that benzo-
diazepines do not significantly influence memory
retrieval (Ghoneim & Mewaldt, 1975; Lister,
1985). Nevertheless, retrieval impairment in young
adult males has been reported (Block & Berchou,
1984), and memory facilitation in humans is some-
times seen as well (Hinrichs et al., 1984; File et al.,
1999; Fillmore et al., 2001). Hinrichs & coworkers
hypothesized that this phenomenon is not a true
facilitation of retrieval processes but rather could
be the result of reduced interference from items
presented after drug administration as a paradoxical
consequence of drug-induced anterograde amnesia.
Nevertheless, facilitating effects on retrieval pro-
cesses that are more specific have also been
proposed (File et al., 1999).

AMNESIA INDUCED BY BENZODIAZEPINES:
FINDINGS OF STUDIES ON HUMANS

Amnesic effects in humans were first
recognized by anesthesiologists using benzodiaz-
epines as pre-medication (Brandt & Oakes, 1965;
Haslett & Dundee, 1968). Such effects have been
repeatedly confirmed (for example Rodrigo &
Lusiardo, 1988; Kain et al., 2000), and thoroughly
reviewed (Lister, 1985; Curran, 1991; Buffett-
Jerrott & Stewart, 2002). We should note that most
of these studies investigated the effects of acute
doses of benzodiazepines in healthy volunteers
having no history of benzodiazepine or other
psychotropic medication use. Unfortunately, the

amnesic effects of benzodiazepine-like drugs have
been increasingly misused to facilitate crimes like
sexual assault and robbery (Goulle & Anger, 2004).
Benzodiazepine-induced amnesia resembles
certain forms of organic amnesia, and many efforts
to model organic amnesia pharmacologically have
been employed (Brown et al., 1982; Weingartner,
1985). Hence, such drugs can be useful tools for
studying normal and abnormal memory mechanisms
(Duka et al., 1996). Moreover, Danek et al. (2002)
related the transient global amnesia in a previously
healthy woman to the putative endogenous benzo-
diazepines. Namely, the resolution of an unex-
plained amnesic episode coincided with the test
administration of 0.5 mg flumazenil: the patient’s
first memories corresponded to the short period
after the injection of benzodiazepine antagonist.

AMNESIA INDUCED BY BENZODIAZEPINES:
FINDINGS OF STUDIES ON ANIMALS

The number of experiments involving the
testing of cognitive functions has increased
remarkably (Sarter, 2004). However, in addition to
limitations regarding differentiation of memory
stages/distinct actions of treatment (given above),
we should mention that to distinguish between the
changes in behavior that occur because an animal
remembers prior events and changes in behavior
that occur merely because these prior events have
happened is difficult (Morris, 2001). Hence, the
results obtained in animal studies of memory
should be interpreted cautiously.

According to a recent survey (Myhrer, 2003),
the tests most widely used to assess learning and
memory in laboratory rodents encompass the Morris
water maze, the radial maze, passive avoidance, and
spontaneous alternation. In these paradigms, benzo-
diazepines were repeatedly shown as acquisition-
impairing agents; a review of findings was given in
Myhrer (2003).
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TABLE 1

GABA , receptor benzodiazepine binding site subtypes mediating distinct pharmacological
effects of diazepam in knock-in mice.

Receptor subtype
Effect o o2 o3 o5
Sedation +(1) - -2 -3
Anxiolysis (1) +?) -2 B
Anterograde amnesia +1) nd. nd. nd#
Miorelaxation -(1) +(4) +(4) +3)
Anticonvulsant activity +1) -2 - -(3)-
Hypnosis (EEG changes) -9 +(6) -7 nd.
Tolerance (to sedation) -8 -® -8) +8)

+, behavioral effect of diazepam was absent in mice with point mutation in the designated subunit.
+, behavioral effect of diazepam was diminished in mice with point mutation in the designated subunit, when drug was administered

at very high dose (30 mg/kg).

-, point mutation did not change the effect of diazepam, in comparison with wild-type mice.

n.d. not determined.

# Studies with pharmacologically untreated as-knock-in (Crestani et al., 2002) and as-knock-out (Collinson et al., 2002) mice pointed

to the role of the as-subunit in modulation of cognitive processes.

Cited from: (1) Rudolph et al. (1999); (2) Low et al. (2000); (3) Crestani et al. (2002); (4) Crestani et al. (2001); (5) Tobler et al.
(2001); (6) Kopp et al. (2004); (7) Kopp et al. (2003); (8) van Rijnsoever et al. (2004)

BENZODIAZEPINE SITE(S) OF ACTION AND
GABA, SUBTYPES INVOLVED IN LEARNING
AND MEMORY PROCESSING

The huge diversity of GABA 4 receptor subtypes
has become clear in recent years (Barnard et al.,
1998). GABA 4 receptors are pentameric membrane
proteins that operate as GABA-gated chloride
channels. The receptors are assembled from several
families of subunits, of which at least 19 subunits
occur in the CNS. Nevertheless, the vast majority of

receptors appear to be an association of two a-
subunits, two B-subunits, and a single y-subunit,
which make up a central ion channel. The majority
contain a benzodiazepine binding site located at the
interface of the y;-subunit and the respective o-
subunit (a,;, o, o3 or as) (Korpi et al., 2002).
Recent research using genetically modified
mice has pointed to the specific contribution of
individual receptor subtypes to the pharmacologic
spectrum of benzodiazepines (Table 1). Specifically,
the sedative and anterograde amnesic effects of
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TABLE 2

Involvement of different GABAA subunits in memory effects of benzodiazepines: findings from
studies with subtype selective ligands vs. knock-in mice vs. knock-out mice. Only behavioral tests
used in at least two types of studies are included.

Type of memory/test
Receptor Working/delayed matchin
Type of study Explicit/ passive gidelay 9
subtype P \ P Procedural/active avoidance to place version of the
avoidance )
Morris water maze test
studies with o -(1: A, +(2: A, Anf) +(3:A, Ant) n.d.
subtype selective
"gands (15 n.d. n.d. +(4’ IA)
studies with knock- o +6) nd. nd.
in mice os nd. nd. nd.
studies with knock- o nd nd nd
out mice os n.d. © +(6)

+, the given subunit involved in modulation of memory type tested
-, the given subunit not involved in modulation of memory type tested

A: subtype selective agonist; Ant: subtype selective antagonist; IA: subtype selective inverse agonist

n.d. not determined.

Results from: (1) Belzung et al. (2000); (2) Savic et al. (2005a); (3) Savic et al. (2005b); (4) Street et al. (2004); (5) Rudolph et al.

(1999); (6) Collinson et al. (2002

benzodiazepines were mainly attributed to oy~
containing GABA, receptor subtypes, anxiolytic
action to the o,-containing receptors, anti-
convulsant activity (partially but not fully) to the
a-containing receptors, and muscle-relaxant effect
largely to the o,-containing receptors (Rudolph et
al., 1999; McKernan et al., 2000; Low et al., 2000).
However, in attempts at elucidating the functional
relevance of structurally diverse GABA, receptor
subtypes, the pharmacologic approach, using sub-
type selective ligands, complements the genetic
studies and is necessary to corroborate and amplify
insights provided by genetic studies (Millan,
2003).

TYPES OF MEMORY AND EFFECTS OF
BENZODIAZEPINES: SUBTYPE SPECIFICITY?

Memory can be classified according to its
duration (short-term and long-term memory) and
according to content (explicit and implicit ones).
The distinction between explicit (declarative)
memory and implicit (non-declarative) memory
depends on whether a memory is accompanied by
conscious recollection. Whether any non-human
species displays explicit memory, defined as an
ability to report the memory, is highly disputable
(Izquierdo et al., 1999; Morris, 2001; Squire,
2004). Nevertheless, animals can recall the ‘what,
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where and when’ of discrete events and display
this in an overt behavior (Clayton et al., 2001).

Explicit memory is often assumed to be the
only aspect of memory that is vulnerable to
amnesia. Studies of neuropsychological patients
have shown that individuals who suffer from
amnesia have impairment on explicit memory tasks
but no performance deficit on measures of implicit
memory (Warrington & Weiskrantz; 1974) because
many implicit memory tasks do not require associ-
ative processing. Nevertheless, whenever a task
requires the associative processing of information,
regardless of whether that information is explicit or
implicit in nature, memory could be impaired (Park
et al., 2004). Accordingly, we will concentrate on
the published experiments that have aimed to
discern subtype specificity of amnesic effects of
benzodiazepines (Table 2), especially in the
context of a distinction between the explicit and
implicit—mainly procedural—memories. Such
distinctions could be exemplified through two
types of avoidance conditioning—the active and
the passive.

The passive avoidance paradigm might be
viewed as measuring explicit memory, to the point
that terms such as ‘declarative’ or ‘explicit’ can be
applied to experiments using rodents (Izquierdo et
al., 1999). The task is learned very rapidly, and
memory can be easily and reliably assessed
(McGaugh & Izquierdo, 2000). The anterograde
amnesic effects of agonists at the benzodiazepine
site in this paradigm are well established
(Jzquierdo et al., 1990; Salgueiro et al., 1997;
Anglade et al, 1999). For the retention of this task,
the preserved biochemical events in the
hippocampus, one of the key brain areas involved
in learning and memory, are necessary (Izquierdo
& Medina, 1997). The possibility has been
suggested that because of their low binding affinity
for os-containing receptors in the hippocampus,
oy-selective agonists may produce less memory
impairment than do non-selective agonists
(Morselli, 1990). Studies with pharmacologically

untreated as-knock-in (Crestani et al., 2002) and
as-knock-out (Collinson et al., 2002) mice pointed
to the importance of the as-subunit for performing
certain memory tasks (trace fear conditioning and
Morris water maze, respectively). In a recent
passive avoidance study, we found that both, the
non-selective  agonist midazolam and the
preferential o;-subunit selective agonist zolpidem
induce amnesia in rats in a dose-dependent manner
(Savic et al., 20052). Similarly, zolpidem disrupts
the acquisition of conditioned fear (Sanger et al.,
1986) and passive avoidance (Tang et al., 1995;
Edgar et al., 1997) in mice. Moreover, the results
of the passive avoidance test and the lick suppres-
sion paradigm in a,-knock-in mice demonstrated
that the anterograde amnesic effect of benzo-
diazepines could be attributed to a;-containing
GABA, receptor subtypes (Rudolph et al., 1999).
The involvement of the o,;-subunit in the amnesic
effects of benzodiazepines in the passive avoidance
paradigm could be, at least in part, related to the
immunocytochemical findings: abundant staining
in the rat hippocampus for the oy~ and o,-, in
addition to the as-subunit (Pirker et al, 2000).

Belzung et al. (2000) found that B-CCt failed
to antagonize the amnesic effects of chlordiaz-
epoxide in the passive avoidance task and the
radial arm maze in mice. The complete reversal of
amnesia by the non-selective antagonist flumazenil,
or by the preferential o,;-subunit selective
antagonist $-CCt, was unattainable in the passive
avoidance study in rats as well. Yet, the effects of
zolpidem were significantly attenuated by both
antagonists, whereas only flumazenil was effective
when combined with midazolam (Savic et al.,
2005a). The results of these studies indicate that
other a-subunit(s), in addition to the a,-subunit,
contribute to the amnesic actions of non-selective
benzodiazepine site agonists in an explicit memory
task. First in line is the as-subunit, located in the
hippocampus (Mohler et al., 2004).

Furthermore, it was of interest to test mnesic
effects of the a;-selective agonists in a task that is
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not (predominantly) hippocampal-dependent. The
improved performance of animals with hippo-
campal lesions in two-way active avoidance (Gray
& McNaughton, 1983) suggested that this task
should not be hippocampal-dependent. In accor-
dance with such an interpretation, the as-knock-out
mice, compared with wild-type animals, performed
significantly better in a water maze (hippocampal-
dependent) model but not in an active avoidance
test (Collinson et al., 2002). In a recent study, we
found that both the non-selective agonist midazo-
lam and the preferential a,-subunit selective agonist
zolpidem induced amnesia in rats in a dose-
dependent manner (Savic et al., 2005b). The results
of those studies can be seen to demonstrate the
amnesic activity of an o,-selective agonist in a
procedural (Squire, 1992), hippocampal-indepen-
dent (Gray & McNaughton, 1983; Collinson et al.,
2002) memory task. As in the passive avoidance
test, the amnesic effects were attenuated but not
fully reversed by flumazenil and B-CCt (Savic et
al., 2005b). Similarly, Celik et al. (1999) found
that flumazenil (10 mg/kg) reverses the impairment
of acquisition rate in the 5-day active avoidance
paradigm only in rats injected daily with the lowest
(0.5 mg/kg) but not with higher (1.0 mg/kg and 2.0
mg/kg) doses of diazepam (Celik et al., 1999). In
our study, rats treated with the anxiolytic dose of
midazolam (2.0 mg/kg) significantly deteriorated
in retention performance relative to the first day
session; the group co-injected with PB-CCt,
although still successful in the training session (an
anti-anxiety activity), performed in the retention
session on the control level, i.e. the amnesic effect
was lacking (Savic et al.,, 2005b). The results
suggest that the o,-subunit is substantially
involved in procedural memory processing.

In conclusion, the results of experiments using
the preferential a,-subunit selective antagonist (-
CCt suggest that the inhibitory effects of benzo-
diazepine site agonists on the formation of explicit
memory (passive avoidance test) involve other o-
subunits in addition to the o, subtype (Savic et al.,

2005a). Hippocampal GABA, circuits expressing
the os-subunit may be substantially involved in
processing of this form of memory task (M&hler et
al., 2004). On the other hand, these effects on the
procedural memory may predominantly depend on
the a,-containing GABA, receptors (Savic et al.,
2005b). The pervading involvement of the oy~
subunit in memory modulation is not unexpected
because this subunit is the major subtype, present
in 60% of all GABA, receptors (Mohler et al.,
2002). On the other hand, the role of os-subunits,
mainly expressed in the hippocampus, in modu-
lating distinct forms of memory, gives promise of
coping with some memory deficit states through
the selective inverse agonism in this receptor
subpopulation (Street et al., 2004).
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