de Gennaro, Bruno

Link to this page

Authority KeyName Variants
00d6633a-03be-4f71-a9a5-e64e7957c429
  • de Gennaro, Bruno (2)
Projects

Author's Bibliography

Adsorption of the mycotoxin zearalenone by clinoptilolite and phillipsite zeolites treated with cetylpyridinium surfactant

Marković, Marija; Daković, Aleksandra; Rottinghaus, George E.; Kragović, Milan; Petković, Andela; Krajišnik, Danina; Milić, Jela; Mercurio, Mariano; de Gennaro, Bruno

(Elsevier Science BV, Amsterdam, 2017)

TY  - JOUR
AU  - Marković, Marija
AU  - Daković, Aleksandra
AU  - Rottinghaus, George E.
AU  - Kragović, Milan
AU  - Petković, Andela
AU  - Krajišnik, Danina
AU  - Milić, Jela
AU  - Mercurio, Mariano
AU  - de Gennaro, Bruno
PY  - 2017
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/2929
AB  - In this study, organozeolites were prepared by treatment of the natural zeolites (clinoptilolite and phillipsite) with cetylpyridinium chloride (CP) equivalent to 50 and 100% of their external cation exchange capacities (ECEC). Organoclinoptilolites (ZCPs) and organophillipsites (PCPs) were characterized by FTIR spectroscopy, thermal analysis, determination of the point of zero charge and zeta potential. Adsorption of zearalenone (ZEN) by ZCPs and PCPs at pH 3 and 7 was investigated. Results showed that adsorption of ZEN increases with increasing amounts of CP at the zeolitic surfaces for both ZCPs and PCPs but the adsorption mechanism was different. Adsorption of ZEN by ZCPs followed a linear type of isotherm at pH 3 and 7 while ZEN adsorption by PCPs showed non linear (Langmuir and Freundlich) type of isotherm at both pH values. Different interactions between the ZEN molecule (or ion) and ZCPs and PCPs occurred: partition (linear isotherms) and adsorption in addition to partition (non linear isotherms), respectively. For the highest level of organic phase at the zeolitic surfaces, the maximum adsorbed amount of ZEN was 5.73 mg/g for organoclinoptilolite and 6.86 mg/g for organophillipsite at pH 3. Slightly higher adsorption: 6.98 mg/g for organoclinoptilolite and 7.54 mg/g for organophillipsite was achieved at pH 7. The results confirmed that CP ions at both zeolitic surfaces are responsible for ZEN adsorption and that organophillipsites are as effective in ZEN adsorption as organoclinoptilolites.
PB  - Elsevier Science BV, Amsterdam
T2  - Colloids and Surfaces B: Biointerfaces
T1  - Adsorption of the mycotoxin zearalenone by clinoptilolite and phillipsite zeolites treated with cetylpyridinium surfactant
VL  - 151
SP  - 324
EP  - 332
DO  - 10.1016/j.colsurfb.2016.12.033
ER  - 
@article{
author = "Marković, Marija and Daković, Aleksandra and Rottinghaus, George E. and Kragović, Milan and Petković, Andela and Krajišnik, Danina and Milić, Jela and Mercurio, Mariano and de Gennaro, Bruno",
year = "2017",
abstract = "In this study, organozeolites were prepared by treatment of the natural zeolites (clinoptilolite and phillipsite) with cetylpyridinium chloride (CP) equivalent to 50 and 100% of their external cation exchange capacities (ECEC). Organoclinoptilolites (ZCPs) and organophillipsites (PCPs) were characterized by FTIR spectroscopy, thermal analysis, determination of the point of zero charge and zeta potential. Adsorption of zearalenone (ZEN) by ZCPs and PCPs at pH 3 and 7 was investigated. Results showed that adsorption of ZEN increases with increasing amounts of CP at the zeolitic surfaces for both ZCPs and PCPs but the adsorption mechanism was different. Adsorption of ZEN by ZCPs followed a linear type of isotherm at pH 3 and 7 while ZEN adsorption by PCPs showed non linear (Langmuir and Freundlich) type of isotherm at both pH values. Different interactions between the ZEN molecule (or ion) and ZCPs and PCPs occurred: partition (linear isotherms) and adsorption in addition to partition (non linear isotherms), respectively. For the highest level of organic phase at the zeolitic surfaces, the maximum adsorbed amount of ZEN was 5.73 mg/g for organoclinoptilolite and 6.86 mg/g for organophillipsite at pH 3. Slightly higher adsorption: 6.98 mg/g for organoclinoptilolite and 7.54 mg/g for organophillipsite was achieved at pH 7. The results confirmed that CP ions at both zeolitic surfaces are responsible for ZEN adsorption and that organophillipsites are as effective in ZEN adsorption as organoclinoptilolites.",
publisher = "Elsevier Science BV, Amsterdam",
journal = "Colloids and Surfaces B: Biointerfaces",
title = "Adsorption of the mycotoxin zearalenone by clinoptilolite and phillipsite zeolites treated with cetylpyridinium surfactant",
volume = "151",
pages = "324-332",
doi = "10.1016/j.colsurfb.2016.12.033"
}
Marković, M., Daković, A., Rottinghaus, G. E., Kragović, M., Petković, A., Krajišnik, D., Milić, J., Mercurio, M.,& de Gennaro, B.. (2017). Adsorption of the mycotoxin zearalenone by clinoptilolite and phillipsite zeolites treated with cetylpyridinium surfactant. in Colloids and Surfaces B: Biointerfaces
Elsevier Science BV, Amsterdam., 151, 324-332.
https://doi.org/10.1016/j.colsurfb.2016.12.033
Marković M, Daković A, Rottinghaus GE, Kragović M, Petković A, Krajišnik D, Milić J, Mercurio M, de Gennaro B. Adsorption of the mycotoxin zearalenone by clinoptilolite and phillipsite zeolites treated with cetylpyridinium surfactant. in Colloids and Surfaces B: Biointerfaces. 2017;151:324-332.
doi:10.1016/j.colsurfb.2016.12.033 .
Marković, Marija, Daković, Aleksandra, Rottinghaus, George E., Kragović, Milan, Petković, Andela, Krajišnik, Danina, Milić, Jela, Mercurio, Mariano, de Gennaro, Bruno, "Adsorption of the mycotoxin zearalenone by clinoptilolite and phillipsite zeolites treated with cetylpyridinium surfactant" in Colloids and Surfaces B: Biointerfaces, 151 (2017):324-332,
https://doi.org/10.1016/j.colsurfb.2016.12.033 . .
54
31
56

Evaluation of the surfactant/phillipsite composites as carriers for diclofenac sodium

Marković, Marija; Daković, Aleksandra; Krajišnik, Danina; Kragović, Milan; Milić, Jela; Langella, Alessio; de Gennaro, Bruno; Cappelletti, Piergiulio; Mercurio, Mariano

(Elsevier Science BV, Amsterdam, 2016)

TY  - JOUR
AU  - Marković, Marija
AU  - Daković, Aleksandra
AU  - Krajišnik, Danina
AU  - Kragović, Milan
AU  - Milić, Jela
AU  - Langella, Alessio
AU  - de Gennaro, Bruno
AU  - Cappelletti, Piergiulio
AU  - Mercurio, Mariano
PY  - 2016
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/2696
AB  - Incorporation of diclofenac sodium into phillipsite modified with cetylpyridinium chloride (CP-Cl) or hexadecyltrimethyl ammonium bromide (HDTMA-Br) was followed by batch equilibrium adsorption studies in buffer solution at pH = 7.4. Characteristics of the drug/surfactant/zeolite complexes were investigated by UV/VIS, FTIR spectroscopy, thermal (DTA/TG) analysis and-potential measurements. The obtained data confirmed that organic cations at phillipsite surface were responsible for incorporation of diclofenac sodium. Diclofenac sodium incorporated amounts increased with increasing the amount of each surfactant as well as with increasing the initial drug concentration. Langmuir model was the best model for fitting the experimental data of diclofenac adsorption on surfactant/phillipsite composites, suggesting complex adsorption mechanism. The physico-chemical properties of surfactant/phillipsite composites and enhanced incorporation of diclofenac sodium suggests that it might be possible to use these materials as drug carriers.
PB  - Elsevier Science BV, Amsterdam
T2  - Journal of Molecular Liquids
T1  - Evaluation of the surfactant/phillipsite composites as carriers for diclofenac sodium
VL  - 222
SP  - 711
EP  - 716
DO  - 10.1016/j.molliq.2016.07.127
ER  - 
@article{
author = "Marković, Marija and Daković, Aleksandra and Krajišnik, Danina and Kragović, Milan and Milić, Jela and Langella, Alessio and de Gennaro, Bruno and Cappelletti, Piergiulio and Mercurio, Mariano",
year = "2016",
abstract = "Incorporation of diclofenac sodium into phillipsite modified with cetylpyridinium chloride (CP-Cl) or hexadecyltrimethyl ammonium bromide (HDTMA-Br) was followed by batch equilibrium adsorption studies in buffer solution at pH = 7.4. Characteristics of the drug/surfactant/zeolite complexes were investigated by UV/VIS, FTIR spectroscopy, thermal (DTA/TG) analysis and-potential measurements. The obtained data confirmed that organic cations at phillipsite surface were responsible for incorporation of diclofenac sodium. Diclofenac sodium incorporated amounts increased with increasing the amount of each surfactant as well as with increasing the initial drug concentration. Langmuir model was the best model for fitting the experimental data of diclofenac adsorption on surfactant/phillipsite composites, suggesting complex adsorption mechanism. The physico-chemical properties of surfactant/phillipsite composites and enhanced incorporation of diclofenac sodium suggests that it might be possible to use these materials as drug carriers.",
publisher = "Elsevier Science BV, Amsterdam",
journal = "Journal of Molecular Liquids",
title = "Evaluation of the surfactant/phillipsite composites as carriers for diclofenac sodium",
volume = "222",
pages = "711-716",
doi = "10.1016/j.molliq.2016.07.127"
}
Marković, M., Daković, A., Krajišnik, D., Kragović, M., Milić, J., Langella, A., de Gennaro, B., Cappelletti, P.,& Mercurio, M.. (2016). Evaluation of the surfactant/phillipsite composites as carriers for diclofenac sodium. in Journal of Molecular Liquids
Elsevier Science BV, Amsterdam., 222, 711-716.
https://doi.org/10.1016/j.molliq.2016.07.127
Marković M, Daković A, Krajišnik D, Kragović M, Milić J, Langella A, de Gennaro B, Cappelletti P, Mercurio M. Evaluation of the surfactant/phillipsite composites as carriers for diclofenac sodium. in Journal of Molecular Liquids. 2016;222:711-716.
doi:10.1016/j.molliq.2016.07.127 .
Marković, Marija, Daković, Aleksandra, Krajišnik, Danina, Kragović, Milan, Milić, Jela, Langella, Alessio, de Gennaro, Bruno, Cappelletti, Piergiulio, Mercurio, Mariano, "Evaluation of the surfactant/phillipsite composites as carriers for diclofenac sodium" in Journal of Molecular Liquids, 222 (2016):711-716,
https://doi.org/10.1016/j.molliq.2016.07.127 . .
16
9
15