Studholme, David

Link to this page

Authority KeyName Variants
7370b654-41a3-43e9-bcc0-db7a3cbb05f0
  • Studholme, David (2)
  • Studholme, David John (1)
Projects

Author's Bibliography

The large plasmidome of Lactococcus lactis subsp. lactis bv. diacetylactis S50 confers its biotechnological properties

Malešević, Milka; Stanisavljević, Nemanja; Miljković, Marija; Jovčić, Branko; Filipić, Brankica; Studholme, David; Kojić, Milan

(Elsevier B.V., 2021)

TY  - JOUR
AU  - Malešević, Milka
AU  - Stanisavljević, Nemanja
AU  - Miljković, Marija
AU  - Jovčić, Branko
AU  - Filipić, Brankica
AU  - Studholme, David
AU  - Kojić, Milan
PY  - 2021
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3729
AB  - Plasmids are autonomous episomally replicating genetic elements, which carry backbone genes important for the replication and maintenance within their host, and accessory genes that might confer an advantage to their host under specific selective pressure in its ecological niche. The genome of dairy isolate L. lactis subsp. lactis bv. diacetylactis S50 was sequenced using the PacBio SMRT Cell Seq-RSII platform and revealed to possess one of the largest plasmidomes among L. lactis strains studied so far, harboring six plasmids: pS6 (5553 bp), pS7a (7308 bp), pS7b (7266 bp), pS19 (19,027 bp), pS74 (74,256 bp) and pS127 (127,002 bp) in total representing 8.9% of genome size (240,412 bp). Based on predicted plasmid replication proteins and origins it appears that all six plasmids replicate via the theta-type mechanism. The two the largest plasmids (pS74 and pS127), carry a number of genes known to be important for growth and survival in the dairy environment. These genes encode technological functions such as bacteriocin production, protein degradation, magnesium and cobalt/nickel transporters, selenium binding, exopolysaccharides (EPS) production, bacteriophage and stress resistance. Beside genes for replication, the small plasmids (pS6, pS7a, pS7a, and pS19) also carry genes important for mobilization and host survival such as type I restriction-modification (R-M) system, metal transporters, enzymes and transcriptional regulators. All plasmids in S50 strain are mobilizable, containing an oriT sequences, while pS127 is self-conjugative and allows for mobilization of the other plasmids. Small plasmids are prone to structural and segregational instability, while pS127 appeared to be segregationally stable thanks to the possession of two partition systems. The main characteristic of plasmid pS74 is EPS production, while plasmid pS127 is characterized by proteinase and multiple bacteriocins, tra locus, phage abortive systems and metal transporters. In addition to LcnA and LcnB, plasmid pS127 encodes several bacteriocin-pheromone molecules and a new bacteriocin named LcnS50, with narrow spectrum of action limited to lactococci, that has been successfully cloned and heterologously expressed.
PB  - Elsevier B.V.
T2  - International Journal of Food Microbiology
T1  - The large plasmidome of Lactococcus lactis subsp. lactis bv. diacetylactis S50 confers its biotechnological properties
VL  - 337
DO  - 10.1016/j.ijfoodmicro.2020.108935
ER  - 
@article{
author = "Malešević, Milka and Stanisavljević, Nemanja and Miljković, Marija and Jovčić, Branko and Filipić, Brankica and Studholme, David and Kojić, Milan",
year = "2021",
abstract = "Plasmids are autonomous episomally replicating genetic elements, which carry backbone genes important for the replication and maintenance within their host, and accessory genes that might confer an advantage to their host under specific selective pressure in its ecological niche. The genome of dairy isolate L. lactis subsp. lactis bv. diacetylactis S50 was sequenced using the PacBio SMRT Cell Seq-RSII platform and revealed to possess one of the largest plasmidomes among L. lactis strains studied so far, harboring six plasmids: pS6 (5553 bp), pS7a (7308 bp), pS7b (7266 bp), pS19 (19,027 bp), pS74 (74,256 bp) and pS127 (127,002 bp) in total representing 8.9% of genome size (240,412 bp). Based on predicted plasmid replication proteins and origins it appears that all six plasmids replicate via the theta-type mechanism. The two the largest plasmids (pS74 and pS127), carry a number of genes known to be important for growth and survival in the dairy environment. These genes encode technological functions such as bacteriocin production, protein degradation, magnesium and cobalt/nickel transporters, selenium binding, exopolysaccharides (EPS) production, bacteriophage and stress resistance. Beside genes for replication, the small plasmids (pS6, pS7a, pS7a, and pS19) also carry genes important for mobilization and host survival such as type I restriction-modification (R-M) system, metal transporters, enzymes and transcriptional regulators. All plasmids in S50 strain are mobilizable, containing an oriT sequences, while pS127 is self-conjugative and allows for mobilization of the other plasmids. Small plasmids are prone to structural and segregational instability, while pS127 appeared to be segregationally stable thanks to the possession of two partition systems. The main characteristic of plasmid pS74 is EPS production, while plasmid pS127 is characterized by proteinase and multiple bacteriocins, tra locus, phage abortive systems and metal transporters. In addition to LcnA and LcnB, plasmid pS127 encodes several bacteriocin-pheromone molecules and a new bacteriocin named LcnS50, with narrow spectrum of action limited to lactococci, that has been successfully cloned and heterologously expressed.",
publisher = "Elsevier B.V.",
journal = "International Journal of Food Microbiology",
title = "The large plasmidome of Lactococcus lactis subsp. lactis bv. diacetylactis S50 confers its biotechnological properties",
volume = "337",
doi = "10.1016/j.ijfoodmicro.2020.108935"
}
Malešević, M., Stanisavljević, N., Miljković, M., Jovčić, B., Filipić, B., Studholme, D.,& Kojić, M.. (2021). The large plasmidome of Lactococcus lactis subsp. lactis bv. diacetylactis S50 confers its biotechnological properties. in International Journal of Food Microbiology
Elsevier B.V.., 337.
https://doi.org/10.1016/j.ijfoodmicro.2020.108935
Malešević M, Stanisavljević N, Miljković M, Jovčić B, Filipić B, Studholme D, Kojić M. The large plasmidome of Lactococcus lactis subsp. lactis bv. diacetylactis S50 confers its biotechnological properties. in International Journal of Food Microbiology. 2021;337.
doi:10.1016/j.ijfoodmicro.2020.108935 .
Malešević, Milka, Stanisavljević, Nemanja, Miljković, Marija, Jovčić, Branko, Filipić, Brankica, Studholme, David, Kojić, Milan, "The large plasmidome of Lactococcus lactis subsp. lactis bv. diacetylactis S50 confers its biotechnological properties" in International Journal of Food Microbiology, 337 (2021),
https://doi.org/10.1016/j.ijfoodmicro.2020.108935 . .
12
5
11

Shotgun metagenomics reveals differences in antibiotic resistance genes among bacterial communities in Western Balkans glacial lakes sediments

Filipić, Brankica; Novović, Katarina; Studholme, David; Malešević, Milka; Mirković, Nemanja; Kojić, Milan; Jovčić, Branko

(NLM (Medline), 2020)

TY  - JOUR
AU  - Filipić, Brankica
AU  - Novović, Katarina
AU  - Studholme, David
AU  - Malešević, Milka
AU  - Mirković, Nemanja
AU  - Kojić, Milan
AU  - Jovčić, Branko
PY  - 2020
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3631
AB  - Long-term overuse of antibiotics has driven the propagation and spreading of antibiotic resistance genes (ARGs) such as efflux pumps in the environment, which can be transferred to clinically relevant pathogens. This study explored the abundance and diversity of ARGs and mobile genetic elements within bacterial communities from sediments of three Western Balkans glacial lakes: Plav Lake (high impact of human population), Black Lake (medium impact of human population) and Donje Bare Lake (remote lake, minimal impact of human population) via shotgun metagenomics. Assembled metagenomic sequences revealed that Resistance-Nodulation-Division (RND) efflux pumps genes were most abundant in metagenome from the Plav Lake. The Integron Finder bioinformatics tool detected 38 clusters of attC sites lacking integron-integrases (CALIN) elements: 20 from Plav Lake, four from Black Lake and 14 from Donje Bare Lake. A complete integron sequence was recovered only from the assembled metagenome from Plav Lake. Plasmid contents within the metagenomes were similar, with proportions of contigs being plasmid-related: 1.73% for Plav Lake, 1.59% for Black Lake and 1.64% for Donje Bare Lake. The investigation showed that RNDs and mobile genetic elements content correlated with human population impact.
PB  - NLM (Medline)
T2  - Journal of water and health
T1  - Shotgun metagenomics reveals differences in antibiotic resistance genes among bacterial communities in Western Balkans glacial lakes sediments
VL  - 18
IS  - 3
SP  - 383
EP  - 397
DO  - 10.2166/wh.2020.227
ER  - 
@article{
author = "Filipić, Brankica and Novović, Katarina and Studholme, David and Malešević, Milka and Mirković, Nemanja and Kojić, Milan and Jovčić, Branko",
year = "2020",
abstract = "Long-term overuse of antibiotics has driven the propagation and spreading of antibiotic resistance genes (ARGs) such as efflux pumps in the environment, which can be transferred to clinically relevant pathogens. This study explored the abundance and diversity of ARGs and mobile genetic elements within bacterial communities from sediments of three Western Balkans glacial lakes: Plav Lake (high impact of human population), Black Lake (medium impact of human population) and Donje Bare Lake (remote lake, minimal impact of human population) via shotgun metagenomics. Assembled metagenomic sequences revealed that Resistance-Nodulation-Division (RND) efflux pumps genes were most abundant in metagenome from the Plav Lake. The Integron Finder bioinformatics tool detected 38 clusters of attC sites lacking integron-integrases (CALIN) elements: 20 from Plav Lake, four from Black Lake and 14 from Donje Bare Lake. A complete integron sequence was recovered only from the assembled metagenome from Plav Lake. Plasmid contents within the metagenomes were similar, with proportions of contigs being plasmid-related: 1.73% for Plav Lake, 1.59% for Black Lake and 1.64% for Donje Bare Lake. The investigation showed that RNDs and mobile genetic elements content correlated with human population impact.",
publisher = "NLM (Medline)",
journal = "Journal of water and health",
title = "Shotgun metagenomics reveals differences in antibiotic resistance genes among bacterial communities in Western Balkans glacial lakes sediments",
volume = "18",
number = "3",
pages = "383-397",
doi = "10.2166/wh.2020.227"
}
Filipić, B., Novović, K., Studholme, D., Malešević, M., Mirković, N., Kojić, M.,& Jovčić, B.. (2020). Shotgun metagenomics reveals differences in antibiotic resistance genes among bacterial communities in Western Balkans glacial lakes sediments. in Journal of water and health
NLM (Medline)., 18(3), 383-397.
https://doi.org/10.2166/wh.2020.227
Filipić B, Novović K, Studholme D, Malešević M, Mirković N, Kojić M, Jovčić B. Shotgun metagenomics reveals differences in antibiotic resistance genes among bacterial communities in Western Balkans glacial lakes sediments. in Journal of water and health. 2020;18(3):383-397.
doi:10.2166/wh.2020.227 .
Filipić, Brankica, Novović, Katarina, Studholme, David, Malešević, Milka, Mirković, Nemanja, Kojić, Milan, Jovčić, Branko, "Shotgun metagenomics reveals differences in antibiotic resistance genes among bacterial communities in Western Balkans glacial lakes sediments" in Journal of water and health, 18, no. 3 (2020):383-397,
https://doi.org/10.2166/wh.2020.227 . .
5
4
2
4

Brevibacillus laterosporus strains BGSP7, BGSP9 and BGSP11 isolated from silage produce broad spectrum multi-antimicrobials

Miljković, Marija; Jovanović, Sofija; O'Connor, Paula M.; Mirković, Nemanja; Jovčić, Branko; Filipić, Brankica; Dinić, Miroslav; Studholme, David John; Fira, Đorđe; Cotter, Paul D.; Kojić, Milan

(Public Library Science, San Francisco, 2019)

TY  - JOUR
AU  - Miljković, Marija
AU  - Jovanović, Sofija
AU  - O'Connor, Paula M.
AU  - Mirković, Nemanja
AU  - Jovčić, Branko
AU  - Filipić, Brankica
AU  - Dinić, Miroslav
AU  - Studholme, David John
AU  - Fira, Đorđe
AU  - Cotter, Paul D.
AU  - Kojić, Milan
PY  - 2019
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3372
AB  - Bacteria active against multi-drug resistant pathogens, isolated by direct selection of colonies from clover silage samples, produce zones of inhibition against two Gram-negative (Klebsiella pneumoniae Ni9 and Pseudomonas aeruginosa MMA83) and two Gram-positive (Staphylococcus aureus ATCC25923 and Listeria monocytogenes ATCC19111) pathogens. Isolates BGSP7, BGSP9, BGSP11 and BGSP12 produced the largest zones of inhibition against all four pathogens when grown in LB broth with aeration at 37 degrees C. Isolates BGSP7, BGSP9, BGSP11 and BGSP12 were identified as Brevibacillus laterosporus and pulsed field gel electrophoresis and extracellular protein profiles showed that three different strains (BGSP7, BGSP9 and BGSP11) were isolated. A semi-native SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) gel overlay assay showed that BGSP7 and BGSP9 produce small antimicrobial molecules of about 1.5 kDa, while BGSP11 produces antimicrobial molecules of 1.5 and 6 kDa active against S. aureus ATCC25923. Amino acid analysis of two antimicrobial molecules (1583.73 Da; from BGSP7 and 1556.31 Da; from BGSP11) revealed that they have a similar composition and differ only by virtue of the presence of a methionine which is present only in BGSP11 molecule. Genome sequencing of the three isolates revealed the presence of gene clusters associated with the production of non-ribosomally synthesized peptides (brevibacillin, bogorol, gramicidin S, plipastatin and tyrocin) and bacteriocins (laterosporulin, a lactococcin 972-like bacteriocin, as well as putative linocin M18, sactipeptide, UviB and lantipeptide-like molecules). Ultimately, the purification of a number of antimicrobial molecules from each isolate suggests that they can be considered as potent biocontrol strains that produce an arsenal of antimicrobial molecules active against Gram-positive and Gram-negative multi-resistant pathogens, fungi and insects.
PB  - Public Library Science, San Francisco
T2  - PLoS One
T1  - Brevibacillus laterosporus strains BGSP7, BGSP9 and BGSP11 isolated from silage produce broad spectrum multi-antimicrobials
VL  - 14
IS  - 5
DO  - 10.1371/journal.pone.0216773
ER  - 
@article{
author = "Miljković, Marija and Jovanović, Sofija and O'Connor, Paula M. and Mirković, Nemanja and Jovčić, Branko and Filipić, Brankica and Dinić, Miroslav and Studholme, David John and Fira, Đorđe and Cotter, Paul D. and Kojić, Milan",
year = "2019",
abstract = "Bacteria active against multi-drug resistant pathogens, isolated by direct selection of colonies from clover silage samples, produce zones of inhibition against two Gram-negative (Klebsiella pneumoniae Ni9 and Pseudomonas aeruginosa MMA83) and two Gram-positive (Staphylococcus aureus ATCC25923 and Listeria monocytogenes ATCC19111) pathogens. Isolates BGSP7, BGSP9, BGSP11 and BGSP12 produced the largest zones of inhibition against all four pathogens when grown in LB broth with aeration at 37 degrees C. Isolates BGSP7, BGSP9, BGSP11 and BGSP12 were identified as Brevibacillus laterosporus and pulsed field gel electrophoresis and extracellular protein profiles showed that three different strains (BGSP7, BGSP9 and BGSP11) were isolated. A semi-native SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) gel overlay assay showed that BGSP7 and BGSP9 produce small antimicrobial molecules of about 1.5 kDa, while BGSP11 produces antimicrobial molecules of 1.5 and 6 kDa active against S. aureus ATCC25923. Amino acid analysis of two antimicrobial molecules (1583.73 Da; from BGSP7 and 1556.31 Da; from BGSP11) revealed that they have a similar composition and differ only by virtue of the presence of a methionine which is present only in BGSP11 molecule. Genome sequencing of the three isolates revealed the presence of gene clusters associated with the production of non-ribosomally synthesized peptides (brevibacillin, bogorol, gramicidin S, plipastatin and tyrocin) and bacteriocins (laterosporulin, a lactococcin 972-like bacteriocin, as well as putative linocin M18, sactipeptide, UviB and lantipeptide-like molecules). Ultimately, the purification of a number of antimicrobial molecules from each isolate suggests that they can be considered as potent biocontrol strains that produce an arsenal of antimicrobial molecules active against Gram-positive and Gram-negative multi-resistant pathogens, fungi and insects.",
publisher = "Public Library Science, San Francisco",
journal = "PLoS One",
title = "Brevibacillus laterosporus strains BGSP7, BGSP9 and BGSP11 isolated from silage produce broad spectrum multi-antimicrobials",
volume = "14",
number = "5",
doi = "10.1371/journal.pone.0216773"
}
Miljković, M., Jovanović, S., O'Connor, P. M., Mirković, N., Jovčić, B., Filipić, B., Dinić, M., Studholme, D. J., Fira, Đ., Cotter, P. D.,& Kojić, M.. (2019). Brevibacillus laterosporus strains BGSP7, BGSP9 and BGSP11 isolated from silage produce broad spectrum multi-antimicrobials. in PLoS One
Public Library Science, San Francisco., 14(5).
https://doi.org/10.1371/journal.pone.0216773
Miljković M, Jovanović S, O'Connor PM, Mirković N, Jovčić B, Filipić B, Dinić M, Studholme DJ, Fira Đ, Cotter PD, Kojić M. Brevibacillus laterosporus strains BGSP7, BGSP9 and BGSP11 isolated from silage produce broad spectrum multi-antimicrobials. in PLoS One. 2019;14(5).
doi:10.1371/journal.pone.0216773 .
Miljković, Marija, Jovanović, Sofija, O'Connor, Paula M., Mirković, Nemanja, Jovčić, Branko, Filipić, Brankica, Dinić, Miroslav, Studholme, David John, Fira, Đorđe, Cotter, Paul D., Kojić, Milan, "Brevibacillus laterosporus strains BGSP7, BGSP9 and BGSP11 isolated from silage produce broad spectrum multi-antimicrobials" in PLoS One, 14, no. 5 (2019),
https://doi.org/10.1371/journal.pone.0216773 . .
2
29
11
25