Tiruveedhula, Phani Babu V V N

Link to this page

Authority KeyName Variants
02f2d89c-52a3-4565-bee4-b9a103ea506d
  • Tiruveedhula, Phani Babu V V N (1)
  • Tiruveedhula, Phani Babu V. V. N. (1)

Author's Bibliography

Vascular effects of midazolam, flumazenil, and a novel imidazobenzodiazepine MP-III-058 on isolated rat aorta

Gajić Bojić, Milica; Treven, Marco; Pandey, Kamal P; Tiruveedhula, Phani Babu V V N; Santrač, Anja; Đukanović, Đorđe; Vojinović, Nataša; Amidžić, Ljiljana; Škrbić, Ranko; Scholze, Petra; Ernst, Margot; Cook, James M; Savić, Miroslav

(Canadian Science Publishing, 2024)

TY  - JOUR
AU  - Gajić Bojić, Milica
AU  - Treven, Marco
AU  - Pandey, Kamal P
AU  - Tiruveedhula, Phani Babu V V N
AU  - Santrač, Anja
AU  - Đukanović, Đorđe
AU  - Vojinović, Nataša
AU  - Amidžić, Ljiljana
AU  - Škrbić, Ranko
AU  - Scholze, Petra
AU  - Ernst, Margot
AU  - Cook, James M
AU  - Savić, Miroslav
PY  - 2024
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/5619
AB  - Hypotensive influences of benzodiazepines and other GABAA receptor ligands, recognized in clinical practice, seem to stem from the existence of “vascular” GABAA receptors in peripheral blood vessels, besides any mechanisms in the central and peripheral nervous systems. We aimed to further elucidate the vasodilatatory effects of ligands acting through GABAA receptors. Using immunohistochemistry, the rat aortic smooth muscle layer was found to express GABAA γ 2 and α1-5 subunit proteins. To confirm the role of “vascular” GABAA receptors, we investigated the vascular effects of standard benzodiazepines, mida-zolam, and flumazenil, as well as the novel compound MP-III-058. Using two-electrode voltage clamp electrophysiology and radioligand binding assays, MP-III-058 was found to have modest binding but substantial functional selectivity for α5β3γ 2 over other αxβ3γ 2 GABAA receptors. Tissue bath assays revealed comparable vasodilatory effects of MP-III-058 and midazo-lam, both of which at 100 μmol/L concentrations had efficacy similar to prazosin. Flumazenil exhibited weak vasoactivity per se, but significantly prevented the relaxant effects of midazolam and MP-III-058. These studies indicate the existence of functional GABAA receptors in the rat aorta, where ligands exert vasodilatory effects by positive modulation of the benzodiazepine binding site, suggesting the potential for further quest for leads with optimized pharmacokinetic properties as prospective adjuvant vasodilators.
PB  - Canadian Science Publishing
T2  - Canadian  Journal of Physiology and  Pharmacology
T1  - Vascular effects of midazolam, flumazenil, and a novel imidazobenzodiazepine MP-III-058 on isolated rat aorta
VL  - 102
IS  - 3
SP  - 206
EP  - 217
DO  - 10.1139/cjpp-2023-0285
ER  - 
@article{
author = "Gajić Bojić, Milica and Treven, Marco and Pandey, Kamal P and Tiruveedhula, Phani Babu V V N and Santrač, Anja and Đukanović, Đorđe and Vojinović, Nataša and Amidžić, Ljiljana and Škrbić, Ranko and Scholze, Petra and Ernst, Margot and Cook, James M and Savić, Miroslav",
year = "2024",
abstract = "Hypotensive influences of benzodiazepines and other GABAA receptor ligands, recognized in clinical practice, seem to stem from the existence of “vascular” GABAA receptors in peripheral blood vessels, besides any mechanisms in the central and peripheral nervous systems. We aimed to further elucidate the vasodilatatory effects of ligands acting through GABAA receptors. Using immunohistochemistry, the rat aortic smooth muscle layer was found to express GABAA γ 2 and α1-5 subunit proteins. To confirm the role of “vascular” GABAA receptors, we investigated the vascular effects of standard benzodiazepines, mida-zolam, and flumazenil, as well as the novel compound MP-III-058. Using two-electrode voltage clamp electrophysiology and radioligand binding assays, MP-III-058 was found to have modest binding but substantial functional selectivity for α5β3γ 2 over other αxβ3γ 2 GABAA receptors. Tissue bath assays revealed comparable vasodilatory effects of MP-III-058 and midazo-lam, both of which at 100 μmol/L concentrations had efficacy similar to prazosin. Flumazenil exhibited weak vasoactivity per se, but significantly prevented the relaxant effects of midazolam and MP-III-058. These studies indicate the existence of functional GABAA receptors in the rat aorta, where ligands exert vasodilatory effects by positive modulation of the benzodiazepine binding site, suggesting the potential for further quest for leads with optimized pharmacokinetic properties as prospective adjuvant vasodilators.",
publisher = "Canadian Science Publishing",
journal = "Canadian  Journal of Physiology and  Pharmacology",
title = "Vascular effects of midazolam, flumazenil, and a novel imidazobenzodiazepine MP-III-058 on isolated rat aorta",
volume = "102",
number = "3",
pages = "206-217",
doi = "10.1139/cjpp-2023-0285"
}
Gajić Bojić, M., Treven, M., Pandey, K. P., Tiruveedhula, P. B. V. V. N., Santrač, A., Đukanović, Đ., Vojinović, N., Amidžić, L., Škrbić, R., Scholze, P., Ernst, M., Cook, J. M.,& Savić, M.. (2024). Vascular effects of midazolam, flumazenil, and a novel imidazobenzodiazepine MP-III-058 on isolated rat aorta. in Canadian  Journal of Physiology and  Pharmacology
Canadian Science Publishing., 102(3), 206-217.
https://doi.org/10.1139/cjpp-2023-0285
Gajić Bojić M, Treven M, Pandey KP, Tiruveedhula PBVVN, Santrač A, Đukanović Đ, Vojinović N, Amidžić L, Škrbić R, Scholze P, Ernst M, Cook JM, Savić M. Vascular effects of midazolam, flumazenil, and a novel imidazobenzodiazepine MP-III-058 on isolated rat aorta. in Canadian  Journal of Physiology and  Pharmacology. 2024;102(3):206-217.
doi:10.1139/cjpp-2023-0285 .
Gajić Bojić, Milica, Treven, Marco, Pandey, Kamal P, Tiruveedhula, Phani Babu V V N, Santrač, Anja, Đukanović, Đorđe, Vojinović, Nataša, Amidžić, Ljiljana, Škrbić, Ranko, Scholze, Petra, Ernst, Margot, Cook, James M, Savić, Miroslav, "Vascular effects of midazolam, flumazenil, and a novel imidazobenzodiazepine MP-III-058 on isolated rat aorta" in Canadian  Journal of Physiology and  Pharmacology, 102, no. 3 (2024):206-217,
https://doi.org/10.1139/cjpp-2023-0285 . .

Structural Analogs of the GABAkine KRM-II-81 Are Orally Bioavailable Anticonvulsants without Sedation

Pandey, Kamal P.; Divović, Branka; Rashid, Farjana; Golani, Lalit K.; Cerne, Rok; Zahn, Nicolas M.; Meyer, Michelle Jean; Arnold, Leggy A.; Sharmin, Dishary; Mian, Md Yeunus; Smith, Jodi L.; Ping, Xingjie; Jin, Xiaoming; Lippa, Arnold; Tiruveedhula, Phani Babu V. V. N.; Cook, James M.; Savić, Miroslav; Witkin, Jeffrey M.

(American Society for Pharmacology and Experimental Therapy (ASPET), 2023)

TY  - JOUR
AU  - Pandey, Kamal P.
AU  - Divović, Branka
AU  - Rashid, Farjana
AU  - Golani, Lalit K.
AU  - Cerne, Rok
AU  - Zahn, Nicolas M.
AU  - Meyer, Michelle Jean
AU  - Arnold, Leggy A.
AU  - Sharmin, Dishary
AU  - Mian, Md Yeunus
AU  - Smith, Jodi L.
AU  - Ping, Xingjie
AU  - Jin, Xiaoming
AU  - Lippa, Arnold
AU  - Tiruveedhula, Phani Babu V. V. N.
AU  - Cook, James M.
AU  - Savić, Miroslav
AU  - Witkin, Jeffrey M.
PY  - 2023
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/5605
AB  - To provide back-up compounds to support the development of the GABAA receptor (GABAAR) potentiator KRM-II-81, three novel analogs were designed: replacing the pyridinyl with 2'-Cl-phenyl (FR-II-60), changing the positions of the N and O atoms in the oxazole ring with addition of an ethyl group (KPPIII-34 and KPP-III-51), or substituting a Br atom for the ethynyl of KRM-II-81 (KPP-III-34). The compounds bound to brain GABAARs. Intraperitoneal administration of FR-II-60 and KPP-III-34 produced anticonvulsant activity in mice [maximal electroshock (MES)-induced seizures or 6 Hz-induced seizures], whereas KPPIII-51 did not. Although all compounds were orally bioavailable, structural changes reduced the plasma and brain (FR-II-60 and KPP-III-51) exposures relative to KRM-II-81. Oral administration of each compound produced dose-dependent increases in the latency for both clonic and tonic seizures and the lethality induced by pentylenetetrazol (PTZ) in mice. Since KPP-III-34 produced the highest brain area under the curve (AUC) exposures, it was selected for further profiling. Oral administration of KPP-III-34 suppressed seizures in corneal-kindled mice, hippocampal paroxysmal discharges in mesial temporal lobe epileptic mice, and PTZ-induced convulsions in rats. Only transient sensorimotor impairment was observed in mice, and doses of KPP-III-34 up to 500 mg/kg did not produce impairment in rats. Molecular docking studies demonstrated that all compounds displayed a reduced propensity for binding to a1His102 compared with the sedating compound alprazolam; the bromine-substituted KPP-III-34 achieved the least interaction. Overall, these findings document the oral bioavailability and anticonvulsant efficacy of three novel analogs of KRM-II-81 with reduced sedative effects. SIGNIFICANCE STATEMENT A new non-sedating compound, KRM-II-81, with reduced propensity for tolerance is moving into clinical development. Three new analogs were orally bioavailable, produced anticonvulsant effects in rodents, and displayed low sensorimotor impairment. KPP-III-34 demonstrated efficacy in models of pharmacoresistant epilepsy. Docking studies demonstrated a low propensity for compound binding to the a1His102 residue implicated in sedation. Thus, three additional structures have been added to the list of non-sedating imidazodiazepine anticonvulsants that could serve as backups in the clinical development of KRM-II-81. Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics.
PB  - American Society for Pharmacology and Experimental Therapy (ASPET)
T2  - Journal of Pharmacology and Experimental Therapeutics
T1  - Structural Analogs of the GABAkine KRM-II-81 Are Orally Bioavailable Anticonvulsants without Sedation
VL  - 385
IS  - 1
SP  - 50
EP  - 61
DO  - 10.1124/jpet.122.001362
ER  - 
@article{
author = "Pandey, Kamal P. and Divović, Branka and Rashid, Farjana and Golani, Lalit K. and Cerne, Rok and Zahn, Nicolas M. and Meyer, Michelle Jean and Arnold, Leggy A. and Sharmin, Dishary and Mian, Md Yeunus and Smith, Jodi L. and Ping, Xingjie and Jin, Xiaoming and Lippa, Arnold and Tiruveedhula, Phani Babu V. V. N. and Cook, James M. and Savić, Miroslav and Witkin, Jeffrey M.",
year = "2023",
abstract = "To provide back-up compounds to support the development of the GABAA receptor (GABAAR) potentiator KRM-II-81, three novel analogs were designed: replacing the pyridinyl with 2'-Cl-phenyl (FR-II-60), changing the positions of the N and O atoms in the oxazole ring with addition of an ethyl group (KPPIII-34 and KPP-III-51), or substituting a Br atom for the ethynyl of KRM-II-81 (KPP-III-34). The compounds bound to brain GABAARs. Intraperitoneal administration of FR-II-60 and KPP-III-34 produced anticonvulsant activity in mice [maximal electroshock (MES)-induced seizures or 6 Hz-induced seizures], whereas KPPIII-51 did not. Although all compounds were orally bioavailable, structural changes reduced the plasma and brain (FR-II-60 and KPP-III-51) exposures relative to KRM-II-81. Oral administration of each compound produced dose-dependent increases in the latency for both clonic and tonic seizures and the lethality induced by pentylenetetrazol (PTZ) in mice. Since KPP-III-34 produced the highest brain area under the curve (AUC) exposures, it was selected for further profiling. Oral administration of KPP-III-34 suppressed seizures in corneal-kindled mice, hippocampal paroxysmal discharges in mesial temporal lobe epileptic mice, and PTZ-induced convulsions in rats. Only transient sensorimotor impairment was observed in mice, and doses of KPP-III-34 up to 500 mg/kg did not produce impairment in rats. Molecular docking studies demonstrated that all compounds displayed a reduced propensity for binding to a1His102 compared with the sedating compound alprazolam; the bromine-substituted KPP-III-34 achieved the least interaction. Overall, these findings document the oral bioavailability and anticonvulsant efficacy of three novel analogs of KRM-II-81 with reduced sedative effects. SIGNIFICANCE STATEMENT A new non-sedating compound, KRM-II-81, with reduced propensity for tolerance is moving into clinical development. Three new analogs were orally bioavailable, produced anticonvulsant effects in rodents, and displayed low sensorimotor impairment. KPP-III-34 demonstrated efficacy in models of pharmacoresistant epilepsy. Docking studies demonstrated a low propensity for compound binding to the a1His102 residue implicated in sedation. Thus, three additional structures have been added to the list of non-sedating imidazodiazepine anticonvulsants that could serve as backups in the clinical development of KRM-II-81. Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics.",
publisher = "American Society for Pharmacology and Experimental Therapy (ASPET)",
journal = "Journal of Pharmacology and Experimental Therapeutics",
title = "Structural Analogs of the GABAkine KRM-II-81 Are Orally Bioavailable Anticonvulsants without Sedation",
volume = "385",
number = "1",
pages = "50-61",
doi = "10.1124/jpet.122.001362"
}
Pandey, K. P., Divović, B., Rashid, F., Golani, L. K., Cerne, R., Zahn, N. M., Meyer, M. J., Arnold, L. A., Sharmin, D., Mian, M. Y., Smith, J. L., Ping, X., Jin, X., Lippa, A., Tiruveedhula, P. B. V. V. N., Cook, J. M., Savić, M.,& Witkin, J. M.. (2023). Structural Analogs of the GABAkine KRM-II-81 Are Orally Bioavailable Anticonvulsants without Sedation. in Journal of Pharmacology and Experimental Therapeutics
American Society for Pharmacology and Experimental Therapy (ASPET)., 385(1), 50-61.
https://doi.org/10.1124/jpet.122.001362
Pandey KP, Divović B, Rashid F, Golani LK, Cerne R, Zahn NM, Meyer MJ, Arnold LA, Sharmin D, Mian MY, Smith JL, Ping X, Jin X, Lippa A, Tiruveedhula PBVVN, Cook JM, Savić M, Witkin JM. Structural Analogs of the GABAkine KRM-II-81 Are Orally Bioavailable Anticonvulsants without Sedation. in Journal of Pharmacology and Experimental Therapeutics. 2023;385(1):50-61.
doi:10.1124/jpet.122.001362 .
Pandey, Kamal P., Divović, Branka, Rashid, Farjana, Golani, Lalit K., Cerne, Rok, Zahn, Nicolas M., Meyer, Michelle Jean, Arnold, Leggy A., Sharmin, Dishary, Mian, Md Yeunus, Smith, Jodi L., Ping, Xingjie, Jin, Xiaoming, Lippa, Arnold, Tiruveedhula, Phani Babu V. V. N., Cook, James M., Savić, Miroslav, Witkin, Jeffrey M., "Structural Analogs of the GABAkine KRM-II-81 Are Orally Bioavailable Anticonvulsants without Sedation" in Journal of Pharmacology and Experimental Therapeutics, 385, no. 1 (2023):50-61,
https://doi.org/10.1124/jpet.122.001362 . .