Glisić, Sanja

Link to this page

Authority KeyName Variants
orcid::0000-0001-5691-1055
  • Glisić, Sanja (2)
Projects

Author's Bibliography

Synthesis, In Silico, and In Vitro Evaluation of Anti-Leishmanial Activity of Oxadiazoles and Indolizine Containing Compounds Flagged against Anti-Targets

Stevanović, Strahinja; Sencanski, Milan; Danel, Mathieu; Menendez, Christophe; Belguedj, Roumaissa; Bouraiou, Abdelmalek; Nikolić, Katarina; Cojean, Sandrine; Loiseau, Philippe M.; Glisić, Sanja; Baltas, Michel; Garcia-Sosa, Alfonso T.

(MDPI, Basel, 2019)

TY  - JOUR
AU  - Stevanović, Strahinja
AU  - Sencanski, Milan
AU  - Danel, Mathieu
AU  - Menendez, Christophe
AU  - Belguedj, Roumaissa
AU  - Bouraiou, Abdelmalek
AU  - Nikolić, Katarina
AU  - Cojean, Sandrine
AU  - Loiseau, Philippe M.
AU  - Glisić, Sanja
AU  - Baltas, Michel
AU  - Garcia-Sosa, Alfonso T.
PY  - 2019
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3375
AB  - Due to the lack of approved vaccines against human leishmaniasis and the limitations of the current chemotherapy inducing side effects and drug resistance, development of new, effective chemotherapeutic agents is essential. This study describes the synthesis of a series of novel oxadiazoles and indolizine-containing compounds. The compounds were screened in silico using an EIIP/AQVN filter followed by ligand-based virtual screening and molecular docking to parasite arginase. Top hits were further screened versus human arginase and finally against an anti-target battery to tag their possible interactions with proteins essential for the metabolism and clearance of many substances. Eight candidate compounds were selected for further experimental testing. The results show measurable in vitro anti-leishmanial activity for three compounds. One compound with an IC50 value of 2.18 mu M on Leishmania donovani intramacrophage amastigotes is clearly better positioned than the others as an interesting molecular template for further development of new anti-leishmanial agents.
PB  - MDPI, Basel
T2  - Molecules
T1  - Synthesis, In Silico, and In Vitro Evaluation of Anti-Leishmanial Activity of Oxadiazoles and Indolizine Containing Compounds Flagged against Anti-Targets
VL  - 24
IS  - 7
DO  - 10.3390/molecules24071282
ER  - 
@article{
author = "Stevanović, Strahinja and Sencanski, Milan and Danel, Mathieu and Menendez, Christophe and Belguedj, Roumaissa and Bouraiou, Abdelmalek and Nikolić, Katarina and Cojean, Sandrine and Loiseau, Philippe M. and Glisić, Sanja and Baltas, Michel and Garcia-Sosa, Alfonso T.",
year = "2019",
abstract = "Due to the lack of approved vaccines against human leishmaniasis and the limitations of the current chemotherapy inducing side effects and drug resistance, development of new, effective chemotherapeutic agents is essential. This study describes the synthesis of a series of novel oxadiazoles and indolizine-containing compounds. The compounds were screened in silico using an EIIP/AQVN filter followed by ligand-based virtual screening and molecular docking to parasite arginase. Top hits were further screened versus human arginase and finally against an anti-target battery to tag their possible interactions with proteins essential for the metabolism and clearance of many substances. Eight candidate compounds were selected for further experimental testing. The results show measurable in vitro anti-leishmanial activity for three compounds. One compound with an IC50 value of 2.18 mu M on Leishmania donovani intramacrophage amastigotes is clearly better positioned than the others as an interesting molecular template for further development of new anti-leishmanial agents.",
publisher = "MDPI, Basel",
journal = "Molecules",
title = "Synthesis, In Silico, and In Vitro Evaluation of Anti-Leishmanial Activity of Oxadiazoles and Indolizine Containing Compounds Flagged against Anti-Targets",
volume = "24",
number = "7",
doi = "10.3390/molecules24071282"
}
Stevanović, S., Sencanski, M., Danel, M., Menendez, C., Belguedj, R., Bouraiou, A., Nikolić, K., Cojean, S., Loiseau, P. M., Glisić, S., Baltas, M.,& Garcia-Sosa, A. T.. (2019). Synthesis, In Silico, and In Vitro Evaluation of Anti-Leishmanial Activity of Oxadiazoles and Indolizine Containing Compounds Flagged against Anti-Targets. in Molecules
MDPI, Basel., 24(7).
https://doi.org/10.3390/molecules24071282
Stevanović S, Sencanski M, Danel M, Menendez C, Belguedj R, Bouraiou A, Nikolić K, Cojean S, Loiseau PM, Glisić S, Baltas M, Garcia-Sosa AT. Synthesis, In Silico, and In Vitro Evaluation of Anti-Leishmanial Activity of Oxadiazoles and Indolizine Containing Compounds Flagged against Anti-Targets. in Molecules. 2019;24(7).
doi:10.3390/molecules24071282 .
Stevanović, Strahinja, Sencanski, Milan, Danel, Mathieu, Menendez, Christophe, Belguedj, Roumaissa, Bouraiou, Abdelmalek, Nikolić, Katarina, Cojean, Sandrine, Loiseau, Philippe M., Glisić, Sanja, Baltas, Michel, Garcia-Sosa, Alfonso T., "Synthesis, In Silico, and In Vitro Evaluation of Anti-Leishmanial Activity of Oxadiazoles and Indolizine Containing Compounds Flagged against Anti-Targets" in Molecules, 24, no. 7 (2019),
https://doi.org/10.3390/molecules24071282 . .
3
16
8
15

A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin

Vučićević, Jelica; Srdić-Rajić, Tatjana; Pieroni, Marco; Laurila, Jonne M. M.; Perović, Vladimir; Tassini, Sabrina; Azzali, Elisa; Costantino, Gabriele; Glisić, Sanja; Agbaba, Danica; Scheinin, Mika; Nikolić, Katarina; Radi, Marco; Veljković, Nevena

(Pergamon-Elsevier Science Ltd, Oxford, 2016)

TY  - JOUR
AU  - Vučićević, Jelica
AU  - Srdić-Rajić, Tatjana
AU  - Pieroni, Marco
AU  - Laurila, Jonne M. M.
AU  - Perović, Vladimir
AU  - Tassini, Sabrina
AU  - Azzali, Elisa
AU  - Costantino, Gabriele
AU  - Glisić, Sanja
AU  - Agbaba, Danica
AU  - Scheinin, Mika
AU  - Nikolić, Katarina
AU  - Radi, Marco
AU  - Veljković, Nevena
PY  - 2016
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/2526
AB  - The clonidine-like central antihypertensive agent rilmenidine, which has high affinity for I-1-type imidazoline receptors (I-1-IR) was recently found to have cytotoxic effects on cultured cancer cell lines. However, due to its pharmacological effects resulting also from alpha(2)-adrenoceptor activation, rilmenidine cannot be considered a suitable anticancer drug candidate. Here, we report the identification of novel rilmenidine- derived compounds with anticancer potential and devoid of alpha(2)-adrenoceptor effects by means of ligand-and structure-based drug design approaches. Starting from a large virtual library, eleven compounds were selected, synthesized and submitted to biological evaluation. The most active compound 5 exhibited a cytotoxic profile similar to that of rilmenidine, but without appreciable affinity to alpha(2)-adrenoceptors. In addition, compound 5 significantly enhanced the apoptotic response to doxorubicin, and may thus represent an important tool for the development of better adjuvant chemotherapeutic strategies for doxorubicin-insensitive cancers.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Bioorganic & Medicinal Chemistry
T1  - A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin
VL  - 24
IS  - 14
SP  - 3174
EP  - 3183
DO  - 10.1016/j.bmc.2016.05.043
ER  - 
@article{
author = "Vučićević, Jelica and Srdić-Rajić, Tatjana and Pieroni, Marco and Laurila, Jonne M. M. and Perović, Vladimir and Tassini, Sabrina and Azzali, Elisa and Costantino, Gabriele and Glisić, Sanja and Agbaba, Danica and Scheinin, Mika and Nikolić, Katarina and Radi, Marco and Veljković, Nevena",
year = "2016",
abstract = "The clonidine-like central antihypertensive agent rilmenidine, which has high affinity for I-1-type imidazoline receptors (I-1-IR) was recently found to have cytotoxic effects on cultured cancer cell lines. However, due to its pharmacological effects resulting also from alpha(2)-adrenoceptor activation, rilmenidine cannot be considered a suitable anticancer drug candidate. Here, we report the identification of novel rilmenidine- derived compounds with anticancer potential and devoid of alpha(2)-adrenoceptor effects by means of ligand-and structure-based drug design approaches. Starting from a large virtual library, eleven compounds were selected, synthesized and submitted to biological evaluation. The most active compound 5 exhibited a cytotoxic profile similar to that of rilmenidine, but without appreciable affinity to alpha(2)-adrenoceptors. In addition, compound 5 significantly enhanced the apoptotic response to doxorubicin, and may thus represent an important tool for the development of better adjuvant chemotherapeutic strategies for doxorubicin-insensitive cancers.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Bioorganic & Medicinal Chemistry",
title = "A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin",
volume = "24",
number = "14",
pages = "3174-3183",
doi = "10.1016/j.bmc.2016.05.043"
}
Vučićević, J., Srdić-Rajić, T., Pieroni, M., Laurila, J. M. M., Perović, V., Tassini, S., Azzali, E., Costantino, G., Glisić, S., Agbaba, D., Scheinin, M., Nikolić, K., Radi, M.,& Veljković, N.. (2016). A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin. in Bioorganic & Medicinal Chemistry
Pergamon-Elsevier Science Ltd, Oxford., 24(14), 3174-3183.
https://doi.org/10.1016/j.bmc.2016.05.043
Vučićević J, Srdić-Rajić T, Pieroni M, Laurila JMM, Perović V, Tassini S, Azzali E, Costantino G, Glisić S, Agbaba D, Scheinin M, Nikolić K, Radi M, Veljković N. A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin. in Bioorganic & Medicinal Chemistry. 2016;24(14):3174-3183.
doi:10.1016/j.bmc.2016.05.043 .
Vučićević, Jelica, Srdić-Rajić, Tatjana, Pieroni, Marco, Laurila, Jonne M. M., Perović, Vladimir, Tassini, Sabrina, Azzali, Elisa, Costantino, Gabriele, Glisić, Sanja, Agbaba, Danica, Scheinin, Mika, Nikolić, Katarina, Radi, Marco, Veljković, Nevena, "A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin" in Bioorganic & Medicinal Chemistry, 24, no. 14 (2016):3174-3183,
https://doi.org/10.1016/j.bmc.2016.05.043 . .
2
15
10
11