Mondal, Prithu

Link to this page

Authority KeyName Variants
e19e7ddf-09e5-4112-95aa-c1397ff8b830
  • Mondal, Prithu (2)

Author's Bibliography

New Imidazodiazepine Analogue, 5-(8-Bromo-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole, Provides a Simplified Synthetic Scheme, High Oral Plasma and Brain Exposures, and Produces Antiseizure Efficacy in Mice, and Antiepileptogenic Activity in Neural Networks in Brain Slices from a Patient with Mesial Temporal Lobe Epilepsy

Sharmin, Dishary; Divović, Branka; Ping, Xingjie; Cerne, Rok; Smith, Jodi L.; Rezvanian, Sepideh; Mondal, Prithu; Michelle, Meyer Jean; Kiley, Molly E.; Arnold, Leggy A.; Mian, Md Yeunus; Pandey, Kamal P.; Jin, Xiaoming; Mitrović, Jelena; Đorović, Đorđe; Lippa, Arnold; Cook, James M.; Golani, Lalit K.; Scholze, Petra; Savić, Miroslav; Witkin, Jeffrey M.

(American Chemical Society, 2024)

TY  - JOUR
AU  - Sharmin, Dishary
AU  - Divović, Branka
AU  - Ping, Xingjie
AU  - Cerne, Rok
AU  - Smith, Jodi L.
AU  - Rezvanian, Sepideh
AU  - Mondal, Prithu
AU  - Michelle, Meyer Jean
AU  - Kiley, Molly E.
AU  - Arnold, Leggy A.
AU  - Mian, Md Yeunus
AU  - Pandey, Kamal P.
AU  - Jin, Xiaoming
AU  - Mitrović, Jelena
AU  - Đorović, Đorđe
AU  - Lippa, Arnold
AU  - Cook, James M.
AU  - Golani, Lalit K.
AU  - Scholze, Petra
AU  - Savić, Miroslav
AU  - Witkin, Jeffrey M.
PY  - 2024
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/5505
AB  - KRM-II-81 (1) is an imidazodiazepine GABAA receptor (GABAAR) potentiator with broad antiseizure efficacy and a low sedative burden. A brominated analogue, DS-II-73 (5), was synthesized and pharmacologically characterized as a potential backup compound as KRM-II-81 moves forward into development. The synthesis from 2-amino-5-bromophenyl)(pyridin-2yl)methanone (6) was processed in five steps with an overall yield of 38% and without the need for a palladium catalyst. GABAAR binding occurred with a Ki of 150 nM, and only 3 of 41 screened binding sites produced inhibition ≥50% at 10 μM, and the potency to induce cytotoxicity was ≥240 mM. DS-II-73 was selective for α2/3/5- over that of α1-containing GABAARs. Oral exposure of plasma and brain of rats was more than sufficient to functionally impact GABAARs. Tonic convulsions in mice and lethality induced by pentylenetetrazol were suppressed by DS-II-73 after oral administration and latencies to clonic and tonic seizures were prolonged. Cortical slice preparations from a patient with pharmacoresistant epilepsy (mesial temporal lobe) showed decreases in the frequency of local field potentials by DS-II-73. As with KRM-II-81, the motor-impairing effects of DS-II-73 were low compared to diazepam. Molecular docking studies of DS-II-73 with the α1β3γ2L-configured GABAAR showed low interaction with α1His102 that is suggested as a potential molecular mechanism for its low sedative side effects. These findings support the viability of DS-II-73 as a backup molecule for its ethynyl analogue, KRM-II-81, with the human tissue data providing translational credibility.
PB  - American Chemical Society
T2  - ACS Chemical Neuroscience
T1  - New Imidazodiazepine Analogue, 5-(8-Bromo-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole, Provides a Simplified Synthetic Scheme, High Oral Plasma and Brain Exposures, and Produces Antiseizure Efficacy in Mice, and Antiepileptogenic Activity in Neural Networks in Brain Slices from a Patient with Mesial Temporal Lobe Epilepsy
VL  - 15
IS  - 3
SP  - 517
EP  - 526
DO  - 10.1021/acschemneuro.3c00555
ER  - 
@article{
author = "Sharmin, Dishary and Divović, Branka and Ping, Xingjie and Cerne, Rok and Smith, Jodi L. and Rezvanian, Sepideh and Mondal, Prithu and Michelle, Meyer Jean and Kiley, Molly E. and Arnold, Leggy A. and Mian, Md Yeunus and Pandey, Kamal P. and Jin, Xiaoming and Mitrović, Jelena and Đorović, Đorđe and Lippa, Arnold and Cook, James M. and Golani, Lalit K. and Scholze, Petra and Savić, Miroslav and Witkin, Jeffrey M.",
year = "2024",
abstract = "KRM-II-81 (1) is an imidazodiazepine GABAA receptor (GABAAR) potentiator with broad antiseizure efficacy and a low sedative burden. A brominated analogue, DS-II-73 (5), was synthesized and pharmacologically characterized as a potential backup compound as KRM-II-81 moves forward into development. The synthesis from 2-amino-5-bromophenyl)(pyridin-2yl)methanone (6) was processed in five steps with an overall yield of 38% and without the need for a palladium catalyst. GABAAR binding occurred with a Ki of 150 nM, and only 3 of 41 screened binding sites produced inhibition ≥50% at 10 μM, and the potency to induce cytotoxicity was ≥240 mM. DS-II-73 was selective for α2/3/5- over that of α1-containing GABAARs. Oral exposure of plasma and brain of rats was more than sufficient to functionally impact GABAARs. Tonic convulsions in mice and lethality induced by pentylenetetrazol were suppressed by DS-II-73 after oral administration and latencies to clonic and tonic seizures were prolonged. Cortical slice preparations from a patient with pharmacoresistant epilepsy (mesial temporal lobe) showed decreases in the frequency of local field potentials by DS-II-73. As with KRM-II-81, the motor-impairing effects of DS-II-73 were low compared to diazepam. Molecular docking studies of DS-II-73 with the α1β3γ2L-configured GABAAR showed low interaction with α1His102 that is suggested as a potential molecular mechanism for its low sedative side effects. These findings support the viability of DS-II-73 as a backup molecule for its ethynyl analogue, KRM-II-81, with the human tissue data providing translational credibility.",
publisher = "American Chemical Society",
journal = "ACS Chemical Neuroscience",
title = "New Imidazodiazepine Analogue, 5-(8-Bromo-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole, Provides a Simplified Synthetic Scheme, High Oral Plasma and Brain Exposures, and Produces Antiseizure Efficacy in Mice, and Antiepileptogenic Activity in Neural Networks in Brain Slices from a Patient with Mesial Temporal Lobe Epilepsy",
volume = "15",
number = "3",
pages = "517-526",
doi = "10.1021/acschemneuro.3c00555"
}
Sharmin, D., Divović, B., Ping, X., Cerne, R., Smith, J. L., Rezvanian, S., Mondal, P., Michelle, M. J., Kiley, M. E., Arnold, L. A., Mian, M. Y., Pandey, K. P., Jin, X., Mitrović, J., Đorović, Đ., Lippa, A., Cook, J. M., Golani, L. K., Scholze, P., Savić, M.,& Witkin, J. M.. (2024). New Imidazodiazepine Analogue, 5-(8-Bromo-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole, Provides a Simplified Synthetic Scheme, High Oral Plasma and Brain Exposures, and Produces Antiseizure Efficacy in Mice, and Antiepileptogenic Activity in Neural Networks in Brain Slices from a Patient with Mesial Temporal Lobe Epilepsy. in ACS Chemical Neuroscience
American Chemical Society., 15(3), 517-526.
https://doi.org/10.1021/acschemneuro.3c00555
Sharmin D, Divović B, Ping X, Cerne R, Smith JL, Rezvanian S, Mondal P, Michelle MJ, Kiley ME, Arnold LA, Mian MY, Pandey KP, Jin X, Mitrović J, Đorović Đ, Lippa A, Cook JM, Golani LK, Scholze P, Savić M, Witkin JM. New Imidazodiazepine Analogue, 5-(8-Bromo-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole, Provides a Simplified Synthetic Scheme, High Oral Plasma and Brain Exposures, and Produces Antiseizure Efficacy in Mice, and Antiepileptogenic Activity in Neural Networks in Brain Slices from a Patient with Mesial Temporal Lobe Epilepsy. in ACS Chemical Neuroscience. 2024;15(3):517-526.
doi:10.1021/acschemneuro.3c00555 .
Sharmin, Dishary, Divović, Branka, Ping, Xingjie, Cerne, Rok, Smith, Jodi L., Rezvanian, Sepideh, Mondal, Prithu, Michelle, Meyer Jean, Kiley, Molly E., Arnold, Leggy A., Mian, Md Yeunus, Pandey, Kamal P., Jin, Xiaoming, Mitrović, Jelena, Đorović, Đorđe, Lippa, Arnold, Cook, James M., Golani, Lalit K., Scholze, Petra, Savić, Miroslav, Witkin, Jeffrey M., "New Imidazodiazepine Analogue, 5-(8-Bromo-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole, Provides a Simplified Synthetic Scheme, High Oral Plasma and Brain Exposures, and Produces Antiseizure Efficacy in Mice, and Antiepileptogenic Activity in Neural Networks in Brain Slices from a Patient with Mesial Temporal Lobe Epilepsy" in ACS Chemical Neuroscience, 15, no. 3 (2024):517-526,
https://doi.org/10.1021/acschemneuro.3c00555 . .

Comparative anticonvulsant activity of the GABAkine KRM-II-81 and a deuterated analog

Ping, Xingjie; Meyer, Michelle J.; Zahn, Nicolas M.; Golani, Lalit K.; Sharmin, Dishary; Pandey, Kamal P.; Revanian, Sepideh; Mondal, Prithu; Jin, Xiaoming; Arnold, Leggy A.; Cerne, Rok; Cook, James M.; Divović, Branka; Savić, Miroslav; Lippa, Arnold; Smith, Jodi L.; Witkin, Jeffrey M.

(John Wiley and Sons Inc, 2023)

TY  - JOUR
AU  - Ping, Xingjie
AU  - Meyer, Michelle J.
AU  - Zahn, Nicolas M.
AU  - Golani, Lalit K.
AU  - Sharmin, Dishary
AU  - Pandey, Kamal P.
AU  - Revanian, Sepideh
AU  - Mondal, Prithu
AU  - Jin, Xiaoming
AU  - Arnold, Leggy A.
AU  - Cerne, Rok
AU  - Cook, James M.
AU  - Divović, Branka
AU  - Savić, Miroslav
AU  - Lippa, Arnold
AU  - Smith, Jodi L.
AU  - Witkin, Jeffrey M.
PY  - 2023
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4427
AB  - A series of imidazodiazepines has been developed that possess reduced sedative liabilities but retain efficacy in anticonvulsant screening models. The latest of these compounds, (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole known as KRM-II-81) is currently awaiting advancement into the clinic. A deuterated structural analog (D5-KRM-II-81) was made as a potential backup compound and studied here in comparison to KRM-II-81. In the present study, both compounds significantly prevented seizures in mice induced by 6 Hz (44 mA) electrical stimulation without significantly altering motoric function on a rotarod after intraperitoneal administration. Both compounds also significantly prevented clonic seizures, tonic seizures, and lethality induced by pentylenetetrazol in mice when given orally. D5-KRM-II-81 had a slightly longer duration of action against clonic and tonic seizures than KRM-II-81. Oral administration of 100 mg/kg of either KRM-II-81 or D5-KRM-II-81 was significantly less disruptive of sensorimotor function in mice than diazepam (5 mg/kg, p.o.). The present report documents that D5-KRM-II-81 represents another in this series of imidazodiazepines with anticonvulsant activity at doses that do not impair sensorimotor function.
PB  - John Wiley and Sons Inc
T2  - Drug Development Research
T1  - Comparative anticonvulsant activity of the GABAkine KRM-II-81 and a deuterated analog
VL  - 84
IS  - 3
DO  - 10.1002/ddr.22042
ER  - 
@article{
author = "Ping, Xingjie and Meyer, Michelle J. and Zahn, Nicolas M. and Golani, Lalit K. and Sharmin, Dishary and Pandey, Kamal P. and Revanian, Sepideh and Mondal, Prithu and Jin, Xiaoming and Arnold, Leggy A. and Cerne, Rok and Cook, James M. and Divović, Branka and Savić, Miroslav and Lippa, Arnold and Smith, Jodi L. and Witkin, Jeffrey M.",
year = "2023",
abstract = "A series of imidazodiazepines has been developed that possess reduced sedative liabilities but retain efficacy in anticonvulsant screening models. The latest of these compounds, (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole known as KRM-II-81) is currently awaiting advancement into the clinic. A deuterated structural analog (D5-KRM-II-81) was made as a potential backup compound and studied here in comparison to KRM-II-81. In the present study, both compounds significantly prevented seizures in mice induced by 6 Hz (44 mA) electrical stimulation without significantly altering motoric function on a rotarod after intraperitoneal administration. Both compounds also significantly prevented clonic seizures, tonic seizures, and lethality induced by pentylenetetrazol in mice when given orally. D5-KRM-II-81 had a slightly longer duration of action against clonic and tonic seizures than KRM-II-81. Oral administration of 100 mg/kg of either KRM-II-81 or D5-KRM-II-81 was significantly less disruptive of sensorimotor function in mice than diazepam (5 mg/kg, p.o.). The present report documents that D5-KRM-II-81 represents another in this series of imidazodiazepines with anticonvulsant activity at doses that do not impair sensorimotor function.",
publisher = "John Wiley and Sons Inc",
journal = "Drug Development Research",
title = "Comparative anticonvulsant activity of the GABAkine KRM-II-81 and a deuterated analog",
volume = "84",
number = "3",
doi = "10.1002/ddr.22042"
}
Ping, X., Meyer, M. J., Zahn, N. M., Golani, L. K., Sharmin, D., Pandey, K. P., Revanian, S., Mondal, P., Jin, X., Arnold, L. A., Cerne, R., Cook, J. M., Divović, B., Savić, M., Lippa, A., Smith, J. L.,& Witkin, J. M.. (2023). Comparative anticonvulsant activity of the GABAkine KRM-II-81 and a deuterated analog. in Drug Development Research
John Wiley and Sons Inc., 84(3).
https://doi.org/10.1002/ddr.22042
Ping X, Meyer MJ, Zahn NM, Golani LK, Sharmin D, Pandey KP, Revanian S, Mondal P, Jin X, Arnold LA, Cerne R, Cook JM, Divović B, Savić M, Lippa A, Smith JL, Witkin JM. Comparative anticonvulsant activity of the GABAkine KRM-II-81 and a deuterated analog. in Drug Development Research. 2023;84(3).
doi:10.1002/ddr.22042 .
Ping, Xingjie, Meyer, Michelle J., Zahn, Nicolas M., Golani, Lalit K., Sharmin, Dishary, Pandey, Kamal P., Revanian, Sepideh, Mondal, Prithu, Jin, Xiaoming, Arnold, Leggy A., Cerne, Rok, Cook, James M., Divović, Branka, Savić, Miroslav, Lippa, Arnold, Smith, Jodi L., Witkin, Jeffrey M., "Comparative anticonvulsant activity of the GABAkine KRM-II-81 and a deuterated analog" in Drug Development Research, 84, no. 3 (2023),
https://doi.org/10.1002/ddr.22042 . .
204
1
1