Ivanović, Marija

Link to this page

Authority KeyName Variants
869a9dbb-0c37-42a5-a844-f640c56d666f
  • Ivanović, Marija (2)
Projects

Author's Bibliography

Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders

Ćirin-Varađan, Slobodanka; Đuriš, Jelena; Mirković, Miljana; Ivanović, Marija; Parojčić, Jelena; Aleksić, Ivana

(Elsevier B.V., 2022)

TY  - JOUR
AU  - Ćirin-Varađan, Slobodanka
AU  - Đuriš, Jelena
AU  - Mirković, Miljana
AU  - Ivanović, Marija
AU  - Parojčić, Jelena
AU  - Aleksić, Ivana
PY  - 2022
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4001
AB  - The introduction of the high-speed tableting machines and the lack of excipients with good flow and compaction properties required for direct compression process have increased research interest in the development of coprocessed excipients. Melt granulation, as an environmentally friendly and cost-effective method, has recently been recognized as a promising co-processing technique. The aim of the present study was to prepare lipid-based co-processed excipients by in situ fluidized bed melt granulation and to investigated their suitability for direct compression process. Lactose monohydrate was co-processed with glyceryl dibehenate (Compritol® 888 ATO) or glyceryl palmitostearate (Precirol® ATO 5), as lipophilic meltable binders. Besides the flowability testing, dynamic compaction analysis was applied for thorough investigation into the tableting properties of developed coprocessed excipients. Solid state characterization, performed by means of XRPD and DRIFT, confirmed the absence of chemical changes of the single components of co-processed excipients. Co-processed excipients showed improved flowability in comparison with single ingredients and corresponding physical mixtures. Novel co-processed excipients were found to have better tabletability profiles than physical mixtures of the ingredients, and were able to retain acceptable tensile strength values at high content of paracetamol in tableting mixture. Tablets with high tensile strength could be obtained with less work of compression needed in comparison with the commercial lactose-based excipients. Furthermore, novel lipid-based co-processed excipients were found to be highly superior regarding the antiadhesive and lubricating properties, with no additional lubricants required.
PB  - Elsevier B.V.
T2  - Journal of Drug Delivery Science and Technology
T1  - Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders
VL  - 67
DO  - 10.1016/j.jddst.2021.102981
ER  - 
@article{
author = "Ćirin-Varađan, Slobodanka and Đuriš, Jelena and Mirković, Miljana and Ivanović, Marija and Parojčić, Jelena and Aleksić, Ivana",
year = "2022",
abstract = "The introduction of the high-speed tableting machines and the lack of excipients with good flow and compaction properties required for direct compression process have increased research interest in the development of coprocessed excipients. Melt granulation, as an environmentally friendly and cost-effective method, has recently been recognized as a promising co-processing technique. The aim of the present study was to prepare lipid-based co-processed excipients by in situ fluidized bed melt granulation and to investigated their suitability for direct compression process. Lactose monohydrate was co-processed with glyceryl dibehenate (Compritol® 888 ATO) or glyceryl palmitostearate (Precirol® ATO 5), as lipophilic meltable binders. Besides the flowability testing, dynamic compaction analysis was applied for thorough investigation into the tableting properties of developed coprocessed excipients. Solid state characterization, performed by means of XRPD and DRIFT, confirmed the absence of chemical changes of the single components of co-processed excipients. Co-processed excipients showed improved flowability in comparison with single ingredients and corresponding physical mixtures. Novel co-processed excipients were found to have better tabletability profiles than physical mixtures of the ingredients, and were able to retain acceptable tensile strength values at high content of paracetamol in tableting mixture. Tablets with high tensile strength could be obtained with less work of compression needed in comparison with the commercial lactose-based excipients. Furthermore, novel lipid-based co-processed excipients were found to be highly superior regarding the antiadhesive and lubricating properties, with no additional lubricants required.",
publisher = "Elsevier B.V.",
journal = "Journal of Drug Delivery Science and Technology",
title = "Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders",
volume = "67",
doi = "10.1016/j.jddst.2021.102981"
}
Ćirin-Varađan, S., Đuriš, J., Mirković, M., Ivanović, M., Parojčić, J.,& Aleksić, I.. (2022). Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders. in Journal of Drug Delivery Science and Technology
Elsevier B.V.., 67.
https://doi.org/10.1016/j.jddst.2021.102981
Ćirin-Varađan S, Đuriš J, Mirković M, Ivanović M, Parojčić J, Aleksić I. Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders. in Journal of Drug Delivery Science and Technology. 2022;67.
doi:10.1016/j.jddst.2021.102981 .
Ćirin-Varađan, Slobodanka, Đuriš, Jelena, Mirković, Miljana, Ivanović, Marija, Parojčić, Jelena, Aleksić, Ivana, "Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders" in Journal of Drug Delivery Science and Technology, 67 (2022),
https://doi.org/10.1016/j.jddst.2021.102981 . .
3
3

The Applications of New Inorganic Polymer for Adsorption Cadmium from Waste Water

Mladenović, Nataša; Kljajević, Ljiljana; Nenadović, Snežana; Ivanović, Marija; Čalija, Bojan; Gulicovski, Jelena; Trivunac, Katarina

(Springer Nature, 2020)

TY  - JOUR
AU  - Mladenović, Nataša
AU  - Kljajević,  Ljiljana
AU  - Nenadović, Snežana
AU  - Ivanović, Marija
AU  - Čalija, Bojan
AU  - Gulicovski, Jelena
AU  - Trivunac, Katarina
PY  - 2020
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3276
AB  - Fundamental research of inorganic polymers prepared from available aluminosilicate precursors represent an innovative class of materials characterized by low energy consumption for production. This is just one of the reasons why their use is focused in protecting the environment for removing of heavy metals from aqueous solutions. The concentration of hydroxide as activator solution plays an important role in the geopolymerization process. The present study examined the use of geopolymer materials, obtained in reaction of geopolymerizations of metakaolin as precursor activated with NaOH concentration 2.0, 4.0, 6.0 and 8.0 mol/dm3 for removal of cadmium ions from aqueous solutions. The structure and properties of the obtained geopolymer samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflection infrared spectroscopy (DRIFTS). To investigate the surface charge of geopolymers the zeta potential measurements were performed. Batch adsorption experiments conducted at room temperature (23 ± 1 °C) showed that the adsorption pattern followed the Freundlich isotherm model. The maximum removal of cadmium obtained from batch studies was 84.1% for GP6M at pH ≈ 6.7. The results generally showed that geopolymer samples could be considered as a potential adsorbent for cadmium removal from aqueous solutions.
PB  - Springer Nature
T2  - Journal of Inorganic and Organometallic Polymers and Materials
T1  - The Applications of New Inorganic Polymer for Adsorption Cadmium from Waste Water
VL  - 30
IS  - 2
SP  - 554
EP  - 563
DO  - 10.1007/s10904-019-01215-y
ER  - 
@article{
author = "Mladenović, Nataša and Kljajević,  Ljiljana and Nenadović, Snežana and Ivanović, Marija and Čalija, Bojan and Gulicovski, Jelena and Trivunac, Katarina",
year = "2020",
abstract = "Fundamental research of inorganic polymers prepared from available aluminosilicate precursors represent an innovative class of materials characterized by low energy consumption for production. This is just one of the reasons why their use is focused in protecting the environment for removing of heavy metals from aqueous solutions. The concentration of hydroxide as activator solution plays an important role in the geopolymerization process. The present study examined the use of geopolymer materials, obtained in reaction of geopolymerizations of metakaolin as precursor activated with NaOH concentration 2.0, 4.0, 6.0 and 8.0 mol/dm3 for removal of cadmium ions from aqueous solutions. The structure and properties of the obtained geopolymer samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflection infrared spectroscopy (DRIFTS). To investigate the surface charge of geopolymers the zeta potential measurements were performed. Batch adsorption experiments conducted at room temperature (23 ± 1 °C) showed that the adsorption pattern followed the Freundlich isotherm model. The maximum removal of cadmium obtained from batch studies was 84.1% for GP6M at pH ≈ 6.7. The results generally showed that geopolymer samples could be considered as a potential adsorbent for cadmium removal from aqueous solutions.",
publisher = "Springer Nature",
journal = "Journal of Inorganic and Organometallic Polymers and Materials",
title = "The Applications of New Inorganic Polymer for Adsorption Cadmium from Waste Water",
volume = "30",
number = "2",
pages = "554-563",
doi = "10.1007/s10904-019-01215-y"
}
Mladenović, N., Kljajević, L., Nenadović, S., Ivanović, M., Čalija, B., Gulicovski, J.,& Trivunac, K.. (2020). The Applications of New Inorganic Polymer for Adsorption Cadmium from Waste Water. in Journal of Inorganic and Organometallic Polymers and Materials
Springer Nature., 30(2), 554-563.
https://doi.org/10.1007/s10904-019-01215-y
Mladenović N, Kljajević L, Nenadović S, Ivanović M, Čalija B, Gulicovski J, Trivunac K. The Applications of New Inorganic Polymer for Adsorption Cadmium from Waste Water. in Journal of Inorganic and Organometallic Polymers and Materials. 2020;30(2):554-563.
doi:10.1007/s10904-019-01215-y .
Mladenović, Nataša, Kljajević,  Ljiljana, Nenadović, Snežana, Ivanović, Marija, Čalija, Bojan, Gulicovski, Jelena, Trivunac, Katarina, "The Applications of New Inorganic Polymer for Adsorption Cadmium from Waste Water" in Journal of Inorganic and Organometallic Polymers and Materials, 30, no. 2 (2020):554-563,
https://doi.org/10.1007/s10904-019-01215-y . .
17
7
19