Galani, Eleni

Link to this page

Authority KeyName Variants
2d10c4b2-5d49-4234-bf95-5e8a355048c3
  • Galani, Eleni (1)
Projects

Author's Bibliography

Encapsulation of cannabidiol in oil-in-water nanoemulsions and nanoemulsion-filled hydrogels: A structure and biological assessment study

Demisli, Sotiria; Galani, Eleni; Goulielmaki, Maria; Kyrilis, Fotios; Ilić, Tanja; Hamdi, Farzad; Crevar, Milkica; Kastritis, Panagiotis; Pletsa, Vasiliki; Nallet, Frédéric; Savić, Snežana; Xenakis, Aristotelis; Papadimitriou, Vassiliki

(Academic Press Inc., 2023)

TY  - JOUR
AU  - Demisli, Sotiria
AU  - Galani, Eleni
AU  - Goulielmaki, Maria
AU  - Kyrilis, Fotios
AU  - Ilić, Tanja
AU  - Hamdi, Farzad
AU  - Crevar, Milkica
AU  - Kastritis, Panagiotis
AU  - Pletsa, Vasiliki
AU  - Nallet, Frédéric
AU  - Savić, Snežana
AU  - Xenakis, Aristotelis
AU  - Papadimitriou, Vassiliki
PY  - 2023
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4384
AB  - Hypothesis: Lipophilic cannabidiol can be solubilized in oil-in water nanoemulsions, which can then be impregnated into chitosan hydrogels forming another colloidal system that will facilitate cannabidiol's release. The delivery from both systems was compared, alongside structural and biological studies, to clarify the effect of the two carriers' structure on the release and toxicity of the systems. Experiments: Oil-in-water nanoemulsions (NEs) and the respective nanoemulsion-filled chitosan hydrogels (NE/HGs) were formulated as carriers of cannabidiol (CBD). Size, polydispersity and stability of the NEs were evaluated and then membrane dynamics, shape and structure of both systems were investigated with EPR spin probing, SAXS and microscopy. Biocompatibility of the colloidal delivery systems was evaluated through cytotoxicity tests over normal human skin fibroblasts. An ex vivo permeation protocol using porcine ear skin was implemented to assess the release of CBD and its penetration through the skin. Findings: Incorporation of the NEs in chitosan hydrogels does not significantly affect their structural properties as evidenced through SAXS, EPR and confocal microscopy. These findings indicate the successful development of a novel nanocarrier that preserves the NE structure with the CBD remaining encapsulated in the oil core while providing new rheological properties advantageous over NEs. Moreover, NE/HGs proved to be more efficient as a carrier for the release of CBD. Cell viability assessment revealed high biocompatibility of the proposed colloids.
PB  - Academic Press Inc.
T2  - Journal of Colloid and Interface Science
T1  - Encapsulation of cannabidiol in oil-in-water nanoemulsions and nanoemulsion-filled hydrogels: A structure and biological assessment study
VL  - 634
SP  - 300
EP  - 313
DO  - 10.1016/j.jcis.2022.12.036
ER  - 
@article{
author = "Demisli, Sotiria and Galani, Eleni and Goulielmaki, Maria and Kyrilis, Fotios and Ilić, Tanja and Hamdi, Farzad and Crevar, Milkica and Kastritis, Panagiotis and Pletsa, Vasiliki and Nallet, Frédéric and Savić, Snežana and Xenakis, Aristotelis and Papadimitriou, Vassiliki",
year = "2023",
abstract = "Hypothesis: Lipophilic cannabidiol can be solubilized in oil-in water nanoemulsions, which can then be impregnated into chitosan hydrogels forming another colloidal system that will facilitate cannabidiol's release. The delivery from both systems was compared, alongside structural and biological studies, to clarify the effect of the two carriers' structure on the release and toxicity of the systems. Experiments: Oil-in-water nanoemulsions (NEs) and the respective nanoemulsion-filled chitosan hydrogels (NE/HGs) were formulated as carriers of cannabidiol (CBD). Size, polydispersity and stability of the NEs were evaluated and then membrane dynamics, shape and structure of both systems were investigated with EPR spin probing, SAXS and microscopy. Biocompatibility of the colloidal delivery systems was evaluated through cytotoxicity tests over normal human skin fibroblasts. An ex vivo permeation protocol using porcine ear skin was implemented to assess the release of CBD and its penetration through the skin. Findings: Incorporation of the NEs in chitosan hydrogels does not significantly affect their structural properties as evidenced through SAXS, EPR and confocal microscopy. These findings indicate the successful development of a novel nanocarrier that preserves the NE structure with the CBD remaining encapsulated in the oil core while providing new rheological properties advantageous over NEs. Moreover, NE/HGs proved to be more efficient as a carrier for the release of CBD. Cell viability assessment revealed high biocompatibility of the proposed colloids.",
publisher = "Academic Press Inc.",
journal = "Journal of Colloid and Interface Science",
title = "Encapsulation of cannabidiol in oil-in-water nanoemulsions and nanoemulsion-filled hydrogels: A structure and biological assessment study",
volume = "634",
pages = "300-313",
doi = "10.1016/j.jcis.2022.12.036"
}
Demisli, S., Galani, E., Goulielmaki, M., Kyrilis, F., Ilić, T., Hamdi, F., Crevar, M., Kastritis, P., Pletsa, V., Nallet, F., Savić, S., Xenakis, A.,& Papadimitriou, V.. (2023). Encapsulation of cannabidiol in oil-in-water nanoemulsions and nanoemulsion-filled hydrogels: A structure and biological assessment study. in Journal of Colloid and Interface Science
Academic Press Inc.., 634, 300-313.
https://doi.org/10.1016/j.jcis.2022.12.036
Demisli S, Galani E, Goulielmaki M, Kyrilis F, Ilić T, Hamdi F, Crevar M, Kastritis P, Pletsa V, Nallet F, Savić S, Xenakis A, Papadimitriou V. Encapsulation of cannabidiol in oil-in-water nanoemulsions and nanoemulsion-filled hydrogels: A structure and biological assessment study. in Journal of Colloid and Interface Science. 2023;634:300-313.
doi:10.1016/j.jcis.2022.12.036 .
Demisli, Sotiria, Galani, Eleni, Goulielmaki, Maria, Kyrilis, Fotios, Ilić, Tanja, Hamdi, Farzad, Crevar, Milkica, Kastritis, Panagiotis, Pletsa, Vasiliki, Nallet, Frédéric, Savić, Snežana, Xenakis, Aristotelis, Papadimitriou, Vassiliki, "Encapsulation of cannabidiol in oil-in-water nanoemulsions and nanoemulsion-filled hydrogels: A structure and biological assessment study" in Journal of Colloid and Interface Science, 634 (2023):300-313,
https://doi.org/10.1016/j.jcis.2022.12.036 . .
9
8