Vukašinović, Mila

Link to this page

Authority KeyName Variants
e6537bcc-d073-40ba-8a28-df6acb32ef0d
  • Vukašinović, Mila (2)
Projects

Author's Bibliography

Efficient Development of Green Emulsifier/Emollient-Based Emulsion Vehicles: From RSM Optimal Experimental Design to Abridged In Vivo Assessment

Vukašinović, Mila; Savić, Sanela; Cekić, Nebojša; Ilić, Tanja; Pantelić, Ivana; Savić, Snežana

(MDPI, 2023)

TY  - JOUR
AU  - Vukašinović, Mila
AU  - Savić, Sanela
AU  - Cekić, Nebojša
AU  - Ilić, Tanja
AU  - Pantelić, Ivana
AU  - Savić, Snežana
PY  - 2023
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4517
AB  - Since natural-origin, sustainable ingredients are preferred by modern consumers, novel emulsifiers and emollients keep entering the market. This study hypothesizes that a combination of in silico, instrumental tools and simplified sensory studies could be used to efficiently characterize emulsions in a shorter timeframe. A total of 22 rather simple o/w emulsions were prepared by a time/energy-saving emulsification process. A natural mixed emulsifier (Lauryl Glucoside/Myristyl Glucoside/Polyglyceryl-6 Laurate) and two emollients (both with INCI name C15–19 Alkane) were used. The performed D-optimal experimental design within the response surface method (RSM) significantly narrowed down the number of samples about to enter the stage of texture, friction and sensory studies to the samples comprising 30% of a respective Emogreen emollient and 2% or 3% of the emulsifier. The sample comprising 2% emulsifier/30% Emogreen® L15 showed significantly higher firmness (42.12 mN) when compared to the one with 2% emulsifier/30% Emogreen® L19 (33.62 mN), which was somewhat unexpected considering the emollients’ inherent viscosity values (4.5 mPa·s for L15 and 9 mPa·s for L19). The sample with 2% emulsifier/30% Emogreen® L19 managed to maintain the lowest friction, while the one with 3% emulsifier/30% Emogreen® L19 released its full lubricating potential in the second part of the measurement (30–60 s). The obtained results revealed the strengths and weaknesses of each formulation, narrowing down their possible applications in the early development stage.
PB  - MDPI
T2  - Pharmaceutics
T1  - Efficient Development of Green Emulsifier/Emollient-Based Emulsion Vehicles: From RSM Optimal Experimental Design to Abridged In Vivo Assessment
VL  - 15
IS  - 2
DO  - 10.3390/pharmaceutics15020486
ER  - 
@article{
author = "Vukašinović, Mila and Savić, Sanela and Cekić, Nebojša and Ilić, Tanja and Pantelić, Ivana and Savić, Snežana",
year = "2023",
abstract = "Since natural-origin, sustainable ingredients are preferred by modern consumers, novel emulsifiers and emollients keep entering the market. This study hypothesizes that a combination of in silico, instrumental tools and simplified sensory studies could be used to efficiently characterize emulsions in a shorter timeframe. A total of 22 rather simple o/w emulsions were prepared by a time/energy-saving emulsification process. A natural mixed emulsifier (Lauryl Glucoside/Myristyl Glucoside/Polyglyceryl-6 Laurate) and two emollients (both with INCI name C15–19 Alkane) were used. The performed D-optimal experimental design within the response surface method (RSM) significantly narrowed down the number of samples about to enter the stage of texture, friction and sensory studies to the samples comprising 30% of a respective Emogreen emollient and 2% or 3% of the emulsifier. The sample comprising 2% emulsifier/30% Emogreen® L15 showed significantly higher firmness (42.12 mN) when compared to the one with 2% emulsifier/30% Emogreen® L19 (33.62 mN), which was somewhat unexpected considering the emollients’ inherent viscosity values (4.5 mPa·s for L15 and 9 mPa·s for L19). The sample with 2% emulsifier/30% Emogreen® L19 managed to maintain the lowest friction, while the one with 3% emulsifier/30% Emogreen® L19 released its full lubricating potential in the second part of the measurement (30–60 s). The obtained results revealed the strengths and weaknesses of each formulation, narrowing down their possible applications in the early development stage.",
publisher = "MDPI",
journal = "Pharmaceutics",
title = "Efficient Development of Green Emulsifier/Emollient-Based Emulsion Vehicles: From RSM Optimal Experimental Design to Abridged In Vivo Assessment",
volume = "15",
number = "2",
doi = "10.3390/pharmaceutics15020486"
}
Vukašinović, M., Savić, S., Cekić, N., Ilić, T., Pantelić, I.,& Savić, S.. (2023). Efficient Development of Green Emulsifier/Emollient-Based Emulsion Vehicles: From RSM Optimal Experimental Design to Abridged In Vivo Assessment. in Pharmaceutics
MDPI., 15(2).
https://doi.org/10.3390/pharmaceutics15020486
Vukašinović M, Savić S, Cekić N, Ilić T, Pantelić I, Savić S. Efficient Development of Green Emulsifier/Emollient-Based Emulsion Vehicles: From RSM Optimal Experimental Design to Abridged In Vivo Assessment. in Pharmaceutics. 2023;15(2).
doi:10.3390/pharmaceutics15020486 .
Vukašinović, Mila, Savić, Sanela, Cekić, Nebojša, Ilić, Tanja, Pantelić, Ivana, Savić, Snežana, "Efficient Development of Green Emulsifier/Emollient-Based Emulsion Vehicles: From RSM Optimal Experimental Design to Abridged In Vivo Assessment" in Pharmaceutics, 15, no. 2 (2023),
https://doi.org/10.3390/pharmaceutics15020486 . .
3
3

Development of a “Green” Emulsion with a Milk Protein Hydrolysate: An Evaluation of Rheology, Texture, In Vitro Bioactivity, and Safety

Vukašinović, Mila; Pantelić, Ivana; Savić, Sanela; Cekić, Nebojša; Vukašinović Sekulić, Maja; Antić-Stanković, Jelena; Božić, Dragana; Tošić, Anđela; Tamburić, Slobodanka; Savić, Snežana

(MDPI, 2023)

TY  - JOUR
AU  - Vukašinović, Mila
AU  - Pantelić, Ivana
AU  - Savić, Sanela
AU  - Cekić, Nebojša
AU  - Vukašinović Sekulić, Maja
AU  - Antić-Stanković, Jelena
AU  - Božić, Dragana
AU  - Tošić, Anđela
AU  - Tamburić, Slobodanka
AU  - Savić, Snežana
PY  - 2023
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/5311
AB  - Bioactive peptides are promising cosmetic active ingredients that can improve skin health
and appearance. They exhibit a broad spectrum of activity, including anti-aging, antioxidant, an-
timicrobial, and anti-inflammatory effects. The aim of this study was to develop a safe, stable, and
efficacious environmentally friendly (“green”) emulsion using a milk protein hydrolysate as a model
active ingredient. Potential emulsions were formulated with biodegradable emollients, stabilized
with naturally derived mixed emulsifier, and prepared by cold process. They were evaluated for
rheological behavior (continuous rotation and oscillation tests), physical stability (dynamic me-
chanical thermal analysis—DMTA test), and texture profiles, as well as cytotoxic, antioxidant, and
antimicrobial effects. Rheological characterization revealed shear-thinning flow behavior with yield
point from continuous rotation tests and predominantly elastic character from oscillation (amplitude
and frequency sweep) tests, with small structural change detected in the DMTA test. These results
implied satisfactory rheological properties and good stability. Texture analysis revealed acceptable
spreadability and substantivity of the emulsions. The protein hydrolysate showed antioxidant activity.
The developed emulsions showed low antibacterial activity against selected microorganisms, but
this was due to the action of preservatives, not peptides. All potential emulsions showed a desirable
safety profile. The results obtained provide the basis for the next stage of formulation development,
i.e., in vivo efficacy tests.
PB  - MDPI
T2  - Cosmetics
T1  - Development of a “Green” Emulsion with a Milk Protein Hydrolysate: An Evaluation of Rheology, Texture, In Vitro Bioactivity, and Safety
VL  - 10
IS  - 6
DO  - 10.3390/cosmetics10060162
ER  - 
@article{
author = "Vukašinović, Mila and Pantelić, Ivana and Savić, Sanela and Cekić, Nebojša and Vukašinović Sekulić, Maja and Antić-Stanković, Jelena and Božić, Dragana and Tošić, Anđela and Tamburić, Slobodanka and Savić, Snežana",
year = "2023",
abstract = "Bioactive peptides are promising cosmetic active ingredients that can improve skin health
and appearance. They exhibit a broad spectrum of activity, including anti-aging, antioxidant, an-
timicrobial, and anti-inflammatory effects. The aim of this study was to develop a safe, stable, and
efficacious environmentally friendly (“green”) emulsion using a milk protein hydrolysate as a model
active ingredient. Potential emulsions were formulated with biodegradable emollients, stabilized
with naturally derived mixed emulsifier, and prepared by cold process. They were evaluated for
rheological behavior (continuous rotation and oscillation tests), physical stability (dynamic me-
chanical thermal analysis—DMTA test), and texture profiles, as well as cytotoxic, antioxidant, and
antimicrobial effects. Rheological characterization revealed shear-thinning flow behavior with yield
point from continuous rotation tests and predominantly elastic character from oscillation (amplitude
and frequency sweep) tests, with small structural change detected in the DMTA test. These results
implied satisfactory rheological properties and good stability. Texture analysis revealed acceptable
spreadability and substantivity of the emulsions. The protein hydrolysate showed antioxidant activity.
The developed emulsions showed low antibacterial activity against selected microorganisms, but
this was due to the action of preservatives, not peptides. All potential emulsions showed a desirable
safety profile. The results obtained provide the basis for the next stage of formulation development,
i.e., in vivo efficacy tests.",
publisher = "MDPI",
journal = "Cosmetics",
title = "Development of a “Green” Emulsion with a Milk Protein Hydrolysate: An Evaluation of Rheology, Texture, In Vitro Bioactivity, and Safety",
volume = "10",
number = "6",
doi = "10.3390/cosmetics10060162"
}
Vukašinović, M., Pantelić, I., Savić, S., Cekić, N., Vukašinović Sekulić, M., Antić-Stanković, J., Božić, D., Tošić, A., Tamburić, S.,& Savić, S.. (2023). Development of a “Green” Emulsion with a Milk Protein Hydrolysate: An Evaluation of Rheology, Texture, In Vitro Bioactivity, and Safety. in Cosmetics
MDPI., 10(6).
https://doi.org/10.3390/cosmetics10060162
Vukašinović M, Pantelić I, Savić S, Cekić N, Vukašinović Sekulić M, Antić-Stanković J, Božić D, Tošić A, Tamburić S, Savić S. Development of a “Green” Emulsion with a Milk Protein Hydrolysate: An Evaluation of Rheology, Texture, In Vitro Bioactivity, and Safety. in Cosmetics. 2023;10(6).
doi:10.3390/cosmetics10060162 .
Vukašinović, Mila, Pantelić, Ivana, Savić, Sanela, Cekić, Nebojša, Vukašinović Sekulić, Maja, Antić-Stanković, Jelena, Božić, Dragana, Tošić, Anđela, Tamburić, Slobodanka, Savić, Snežana, "Development of a “Green” Emulsion with a Milk Protein Hydrolysate: An Evaluation of Rheology, Texture, In Vitro Bioactivity, and Safety" in Cosmetics, 10, no. 6 (2023),
https://doi.org/10.3390/cosmetics10060162 . .
1