Cadez, Neza

Link to this page

Authority KeyName Variants
9405f5ac-10cf-4283-8c77-15c74f7c17c2
  • Cadez, Neza (1)
Projects

Author's Bibliography

Probiotic Properties of Lactic Acid Bacteria Isolated from Croatian Fresh Soft Cheese and Serbian White Pickled Cheese

Uroić, Ksenija; Nikolić, Milica; Kos, Blazenka; Lebos-Pavunc, Andreja; Beganović, Jasna; Lukić, Jovanka; Jovčić, Branko; Filipić, Brankica; Miljković, Marija; Golić, Nataša; Topisirović, Ljubiša; Cadez, Neza; Raspor, Peter; Susković, Jagoda

(Faculty Food Technology Biotechnology, Zagreb, 2014)

TY  - JOUR
AU  - Uroić, Ksenija
AU  - Nikolić, Milica
AU  - Kos, Blazenka
AU  - Lebos-Pavunc, Andreja
AU  - Beganović, Jasna
AU  - Lukić, Jovanka
AU  - Jovčić, Branko
AU  - Filipić, Brankica
AU  - Miljković, Marija
AU  - Golić, Nataša
AU  - Topisirović, Ljubiša
AU  - Cadez, Neza
AU  - Raspor, Peter
AU  - Susković, Jagoda
PY  - 2014
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/2197
AB  - The aim of this study is to gain insight into the probiotic potential of autochthonous lactic acid bacteria (LAB) isolated from artisanal fresh soft and white pickled cheeses. Eleven out of 86 LAB isolates from traditionally produced artisanal fresh soft and white pickled cheeses which survived the most rigorous simulated gastrointestinal tract conditions and did not show resistance to antibiotics were subjected to further evaluation for functional probiotic properties. The ability of the examined strains to assimilate cholesterol in the presence of bile salts was strain dependent, with the highest percentage of cholesterol assimilated by strain Lactobacillus brevis BGGO7-28 possessing S-layer proteins on its cell surface. The growth of strains with mannitol or lactulose as the only carbon source was better than with fructooligosaccharides (FOS) and inulin as prebiotic substrates, which should be considered in the production of synbiotics. Moreover, the results demonstrated that the strains were highly adhesive to human enterocyte-like Caco-2 cells and to a lesser extent to HT29-MTX cells, with the exception of strain Lb. brevis BGGO7-28, which showed similar percentage of adhesion to both cell lines. This strain was the only one with the acidic cell surface, while other examined strains have the cell surfaces with electron donor and basic properties. In addition, all selected strains decreased the proliferation of gut-associated lymphoid tissue (GALT) cells, suggesting possible immunomodulatory potential of the isolates. Finally, the number of viable cells in dry active preparations after lyophilisation depended on the lyoprotectant used (inulin, FOS or skimmed milk), as well as on the strain subjected to lyophilisation. In conclusion, the results obtained in this study demonstrate that particular dairy LAB isolates exhibit strain-specific probiotic properties. Thus, they could be further examined as part of mixed autochthonous starter cultures for traditional cheese production under controlled conditions.
PB  - Faculty Food Technology Biotechnology, Zagreb
T2  - Food Technology and Biotechnology
T1  - Probiotic Properties of Lactic Acid Bacteria Isolated from Croatian Fresh Soft Cheese and Serbian White Pickled Cheese
VL  - 52
IS  - 2
SP  - 232
EP  - 241
UR  - https://hdl.handle.net/21.15107/rcub_farfar_2197
ER  - 
@article{
author = "Uroić, Ksenija and Nikolić, Milica and Kos, Blazenka and Lebos-Pavunc, Andreja and Beganović, Jasna and Lukić, Jovanka and Jovčić, Branko and Filipić, Brankica and Miljković, Marija and Golić, Nataša and Topisirović, Ljubiša and Cadez, Neza and Raspor, Peter and Susković, Jagoda",
year = "2014",
abstract = "The aim of this study is to gain insight into the probiotic potential of autochthonous lactic acid bacteria (LAB) isolated from artisanal fresh soft and white pickled cheeses. Eleven out of 86 LAB isolates from traditionally produced artisanal fresh soft and white pickled cheeses which survived the most rigorous simulated gastrointestinal tract conditions and did not show resistance to antibiotics were subjected to further evaluation for functional probiotic properties. The ability of the examined strains to assimilate cholesterol in the presence of bile salts was strain dependent, with the highest percentage of cholesterol assimilated by strain Lactobacillus brevis BGGO7-28 possessing S-layer proteins on its cell surface. The growth of strains with mannitol or lactulose as the only carbon source was better than with fructooligosaccharides (FOS) and inulin as prebiotic substrates, which should be considered in the production of synbiotics. Moreover, the results demonstrated that the strains were highly adhesive to human enterocyte-like Caco-2 cells and to a lesser extent to HT29-MTX cells, with the exception of strain Lb. brevis BGGO7-28, which showed similar percentage of adhesion to both cell lines. This strain was the only one with the acidic cell surface, while other examined strains have the cell surfaces with electron donor and basic properties. In addition, all selected strains decreased the proliferation of gut-associated lymphoid tissue (GALT) cells, suggesting possible immunomodulatory potential of the isolates. Finally, the number of viable cells in dry active preparations after lyophilisation depended on the lyoprotectant used (inulin, FOS or skimmed milk), as well as on the strain subjected to lyophilisation. In conclusion, the results obtained in this study demonstrate that particular dairy LAB isolates exhibit strain-specific probiotic properties. Thus, they could be further examined as part of mixed autochthonous starter cultures for traditional cheese production under controlled conditions.",
publisher = "Faculty Food Technology Biotechnology, Zagreb",
journal = "Food Technology and Biotechnology",
title = "Probiotic Properties of Lactic Acid Bacteria Isolated from Croatian Fresh Soft Cheese and Serbian White Pickled Cheese",
volume = "52",
number = "2",
pages = "232-241",
url = "https://hdl.handle.net/21.15107/rcub_farfar_2197"
}
Uroić, K., Nikolić, M., Kos, B., Lebos-Pavunc, A., Beganović, J., Lukić, J., Jovčić, B., Filipić, B., Miljković, M., Golić, N., Topisirović, L., Cadez, N., Raspor, P.,& Susković, J.. (2014). Probiotic Properties of Lactic Acid Bacteria Isolated from Croatian Fresh Soft Cheese and Serbian White Pickled Cheese. in Food Technology and Biotechnology
Faculty Food Technology Biotechnology, Zagreb., 52(2), 232-241.
https://hdl.handle.net/21.15107/rcub_farfar_2197
Uroić K, Nikolić M, Kos B, Lebos-Pavunc A, Beganović J, Lukić J, Jovčić B, Filipić B, Miljković M, Golić N, Topisirović L, Cadez N, Raspor P, Susković J. Probiotic Properties of Lactic Acid Bacteria Isolated from Croatian Fresh Soft Cheese and Serbian White Pickled Cheese. in Food Technology and Biotechnology. 2014;52(2):232-241.
https://hdl.handle.net/21.15107/rcub_farfar_2197 .
Uroić, Ksenija, Nikolić, Milica, Kos, Blazenka, Lebos-Pavunc, Andreja, Beganović, Jasna, Lukić, Jovanka, Jovčić, Branko, Filipić, Brankica, Miljković, Marija, Golić, Nataša, Topisirović, Ljubiša, Cadez, Neza, Raspor, Peter, Susković, Jagoda, "Probiotic Properties of Lactic Acid Bacteria Isolated from Croatian Fresh Soft Cheese and Serbian White Pickled Cheese" in Food Technology and Biotechnology, 52, no. 2 (2014):232-241,
https://hdl.handle.net/21.15107/rcub_farfar_2197 .
19
27