Perović, Vladimir

Link to this page

Authority KeyName Variants
orcid::0000-0002-3700-6452
  • Perović, Vladimir (2)
Projects

Author's Bibliography

Rilmenidine suppresses proliferation and promotes apoptosis via the mitochondrial pathway in human leukemic K562 cells

Srdić-Rajić, Tatjana; Nikolić, Katarina; Cavić, Milena; Đokić, Ivana; Gemović, Branislava; Perović, Vladimir; Veljković, Nevena

(Elsevier Science BV, Amsterdam, 2016)

TY  - JOUR
AU  - Srdić-Rajić, Tatjana
AU  - Nikolić, Katarina
AU  - Cavić, Milena
AU  - Đokić, Ivana
AU  - Gemović, Branislava
AU  - Perović, Vladimir
AU  - Veljković, Nevena
PY  - 2016
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/2578
AB  - Imidazoline I1 receptor signaling is associated with pathways that regulate cell viability leading to varied cell-type specific phenotypes. We demonstrated that the antihypertensive drug rilmenidine, a selective imidazoline I1 receptor agonist, modulates proliferation and stimulates the proapoptotic protein Bax thus inducing the perturbation of the mitochondrial pathway and apoptosis in human leukemic K562 cells. Rilmenidine acts through a mechanism which involves deactivation of Ras/MAP kinases ERK, p38 and JNK. Moreover, rilmenidine renders K562 cells, which are particularly resistant to chemotherapeutic agents, susceptible to the DNA damaging drug doxorubicin. The rilmenidine co-treatment with doxorubicin reverses G2/M arrest and triggers apoptotic response to DNA damage. Our data offer new insights into the pathways associated with imidazoline I1 receptor activation in K562 cells suggesting rilmenidine as a valuable tool to deepen our understanding of imidazoline I1 receptor signaling in hematologic malignancies and to search for medicinally active agents.
PB  - Elsevier Science BV, Amsterdam
T2  - European Journal of Pharmaceutical Sciences
T1  - Rilmenidine suppresses proliferation and promotes apoptosis via the mitochondrial pathway in human leukemic K562 cells
VL  - 81
SP  - 172
EP  - 180
DO  - 10.1016/j.ejps.2015.10.017
ER  - 
@article{
author = "Srdić-Rajić, Tatjana and Nikolić, Katarina and Cavić, Milena and Đokić, Ivana and Gemović, Branislava and Perović, Vladimir and Veljković, Nevena",
year = "2016",
abstract = "Imidazoline I1 receptor signaling is associated with pathways that regulate cell viability leading to varied cell-type specific phenotypes. We demonstrated that the antihypertensive drug rilmenidine, a selective imidazoline I1 receptor agonist, modulates proliferation and stimulates the proapoptotic protein Bax thus inducing the perturbation of the mitochondrial pathway and apoptosis in human leukemic K562 cells. Rilmenidine acts through a mechanism which involves deactivation of Ras/MAP kinases ERK, p38 and JNK. Moreover, rilmenidine renders K562 cells, which are particularly resistant to chemotherapeutic agents, susceptible to the DNA damaging drug doxorubicin. The rilmenidine co-treatment with doxorubicin reverses G2/M arrest and triggers apoptotic response to DNA damage. Our data offer new insights into the pathways associated with imidazoline I1 receptor activation in K562 cells suggesting rilmenidine as a valuable tool to deepen our understanding of imidazoline I1 receptor signaling in hematologic malignancies and to search for medicinally active agents.",
publisher = "Elsevier Science BV, Amsterdam",
journal = "European Journal of Pharmaceutical Sciences",
title = "Rilmenidine suppresses proliferation and promotes apoptosis via the mitochondrial pathway in human leukemic K562 cells",
volume = "81",
pages = "172-180",
doi = "10.1016/j.ejps.2015.10.017"
}
Srdić-Rajić, T., Nikolić, K., Cavić, M., Đokić, I., Gemović, B., Perović, V.,& Veljković, N.. (2016). Rilmenidine suppresses proliferation and promotes apoptosis via the mitochondrial pathway in human leukemic K562 cells. in European Journal of Pharmaceutical Sciences
Elsevier Science BV, Amsterdam., 81, 172-180.
https://doi.org/10.1016/j.ejps.2015.10.017
Srdić-Rajić T, Nikolić K, Cavić M, Đokić I, Gemović B, Perović V, Veljković N. Rilmenidine suppresses proliferation and promotes apoptosis via the mitochondrial pathway in human leukemic K562 cells. in European Journal of Pharmaceutical Sciences. 2016;81:172-180.
doi:10.1016/j.ejps.2015.10.017 .
Srdić-Rajić, Tatjana, Nikolić, Katarina, Cavić, Milena, Đokić, Ivana, Gemović, Branislava, Perović, Vladimir, Veljković, Nevena, "Rilmenidine suppresses proliferation and promotes apoptosis via the mitochondrial pathway in human leukemic K562 cells" in European Journal of Pharmaceutical Sciences, 81 (2016):172-180,
https://doi.org/10.1016/j.ejps.2015.10.017 . .
7
11
9
11

A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin

Vučićević, Jelica; Srdić-Rajić, Tatjana; Pieroni, Marco; Laurila, Jonne M. M.; Perović, Vladimir; Tassini, Sabrina; Azzali, Elisa; Costantino, Gabriele; Glisić, Sanja; Agbaba, Danica; Scheinin, Mika; Nikolić, Katarina; Radi, Marco; Veljković, Nevena

(Pergamon-Elsevier Science Ltd, Oxford, 2016)

TY  - JOUR
AU  - Vučićević, Jelica
AU  - Srdić-Rajić, Tatjana
AU  - Pieroni, Marco
AU  - Laurila, Jonne M. M.
AU  - Perović, Vladimir
AU  - Tassini, Sabrina
AU  - Azzali, Elisa
AU  - Costantino, Gabriele
AU  - Glisić, Sanja
AU  - Agbaba, Danica
AU  - Scheinin, Mika
AU  - Nikolić, Katarina
AU  - Radi, Marco
AU  - Veljković, Nevena
PY  - 2016
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/2526
AB  - The clonidine-like central antihypertensive agent rilmenidine, which has high affinity for I-1-type imidazoline receptors (I-1-IR) was recently found to have cytotoxic effects on cultured cancer cell lines. However, due to its pharmacological effects resulting also from alpha(2)-adrenoceptor activation, rilmenidine cannot be considered a suitable anticancer drug candidate. Here, we report the identification of novel rilmenidine- derived compounds with anticancer potential and devoid of alpha(2)-adrenoceptor effects by means of ligand-and structure-based drug design approaches. Starting from a large virtual library, eleven compounds were selected, synthesized and submitted to biological evaluation. The most active compound 5 exhibited a cytotoxic profile similar to that of rilmenidine, but without appreciable affinity to alpha(2)-adrenoceptors. In addition, compound 5 significantly enhanced the apoptotic response to doxorubicin, and may thus represent an important tool for the development of better adjuvant chemotherapeutic strategies for doxorubicin-insensitive cancers.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Bioorganic & Medicinal Chemistry
T1  - A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin
VL  - 24
IS  - 14
SP  - 3174
EP  - 3183
DO  - 10.1016/j.bmc.2016.05.043
ER  - 
@article{
author = "Vučićević, Jelica and Srdić-Rajić, Tatjana and Pieroni, Marco and Laurila, Jonne M. M. and Perović, Vladimir and Tassini, Sabrina and Azzali, Elisa and Costantino, Gabriele and Glisić, Sanja and Agbaba, Danica and Scheinin, Mika and Nikolić, Katarina and Radi, Marco and Veljković, Nevena",
year = "2016",
abstract = "The clonidine-like central antihypertensive agent rilmenidine, which has high affinity for I-1-type imidazoline receptors (I-1-IR) was recently found to have cytotoxic effects on cultured cancer cell lines. However, due to its pharmacological effects resulting also from alpha(2)-adrenoceptor activation, rilmenidine cannot be considered a suitable anticancer drug candidate. Here, we report the identification of novel rilmenidine- derived compounds with anticancer potential and devoid of alpha(2)-adrenoceptor effects by means of ligand-and structure-based drug design approaches. Starting from a large virtual library, eleven compounds were selected, synthesized and submitted to biological evaluation. The most active compound 5 exhibited a cytotoxic profile similar to that of rilmenidine, but without appreciable affinity to alpha(2)-adrenoceptors. In addition, compound 5 significantly enhanced the apoptotic response to doxorubicin, and may thus represent an important tool for the development of better adjuvant chemotherapeutic strategies for doxorubicin-insensitive cancers.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Bioorganic & Medicinal Chemistry",
title = "A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin",
volume = "24",
number = "14",
pages = "3174-3183",
doi = "10.1016/j.bmc.2016.05.043"
}
Vučićević, J., Srdić-Rajić, T., Pieroni, M., Laurila, J. M. M., Perović, V., Tassini, S., Azzali, E., Costantino, G., Glisić, S., Agbaba, D., Scheinin, M., Nikolić, K., Radi, M.,& Veljković, N.. (2016). A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin. in Bioorganic & Medicinal Chemistry
Pergamon-Elsevier Science Ltd, Oxford., 24(14), 3174-3183.
https://doi.org/10.1016/j.bmc.2016.05.043
Vučićević J, Srdić-Rajić T, Pieroni M, Laurila JMM, Perović V, Tassini S, Azzali E, Costantino G, Glisić S, Agbaba D, Scheinin M, Nikolić K, Radi M, Veljković N. A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin. in Bioorganic & Medicinal Chemistry. 2016;24(14):3174-3183.
doi:10.1016/j.bmc.2016.05.043 .
Vučićević, Jelica, Srdić-Rajić, Tatjana, Pieroni, Marco, Laurila, Jonne M. M., Perović, Vladimir, Tassini, Sabrina, Azzali, Elisa, Costantino, Gabriele, Glisić, Sanja, Agbaba, Danica, Scheinin, Mika, Nikolić, Katarina, Radi, Marco, Veljković, Nevena, "A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin" in Bioorganic & Medicinal Chemistry, 24, no. 14 (2016):3174-3183,
https://doi.org/10.1016/j.bmc.2016.05.043 . .
2
15
10
11