Pašti, Igor

Link to this page

Authority KeyName Variants
f77b50a4-e2aa-44e4-8bc9-e2a7c9dc2006
  • Pašti, Igor (2)
Projects

Author's Bibliography

Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity

Savić, Marjetka; Janošević-Ležaić, Aleksandra; Gavrilov, Nemanja; Pašti, Igor; Nedić Vasiljević, Bojana; Krstić, Jugoslav; Ćirić-Marjanović, Gordana

(MDPI, 2023)

TY  - JOUR
AU  - Savić, Marjetka
AU  - Janošević-Ležaić, Aleksandra
AU  - Gavrilov, Nemanja
AU  - Pašti, Igor
AU  - Nedić Vasiljević, Bojana
AU  - Krstić, Jugoslav
AU  - Ćirić-Marjanović, Gordana
PY  - 2023
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4431
AB  - Composites of carbons with metal oxides and metal sulfides have attracted a lot of interest as materials for energy conversion and storage applications. Herein, we report on novel N,O-doped carbon/ZnO/ZnS and N,O-doped carbon/ZnO composites (generally named C-(MOF-5/PANI)), synthesized by the carbonization of metal–organic framework MOF-5/polyaniline (PANI) composites. The produced C-(MOF-5/PANI)s are comprehensively characterized in terms of composition, molecular and crystalline structure, morphology, electrical conductivity, surface area, and electrochemical behavior. The composition and properties of C-(MOF-5/PANI) composites are dictated by the composition of MOF-5/PANI precursors and the form of PANI (conducting emeraldine salt (ES) or nonconducting emeraldine base). The ZnS phase is formed only with the PANI-ES form due to S-containing counter-ions. XRPD revealed that ZnO and ZnS existed as pure wurtzite crystalline phases. PANI and MOF-5 acted synergistically to produce C-(MOF-5/PANI)s with high SBET (up to 609 m2 g−1), electrical conductivity (up to 0.24 S cm−1), and specific capacitance, Cspec, (up to 238.2 F g−1 at 10 mV s−1). Values of Cspec commensurated with N content in C-(MOF-5/PANI) composites (1–10 wt.%) and overcame Cspec of carbonized individual components PANI and MOF-5. By acid etching treatment of C-(MOF-5/PANI), SBET and Cspec increased to 1148 m2 g−1 and 341 F g−1, respectively. The developed composites represent promising electrode materials for supercapacitors.
PB  - MDPI
T2  - Materials
T1  - Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity
VL  - 16
IS  - 3
DO  - 10.3390/ma16031018
ER  - 
@article{
author = "Savić, Marjetka and Janošević-Ležaić, Aleksandra and Gavrilov, Nemanja and Pašti, Igor and Nedić Vasiljević, Bojana and Krstić, Jugoslav and Ćirić-Marjanović, Gordana",
year = "2023",
abstract = "Composites of carbons with metal oxides and metal sulfides have attracted a lot of interest as materials for energy conversion and storage applications. Herein, we report on novel N,O-doped carbon/ZnO/ZnS and N,O-doped carbon/ZnO composites (generally named C-(MOF-5/PANI)), synthesized by the carbonization of metal–organic framework MOF-5/polyaniline (PANI) composites. The produced C-(MOF-5/PANI)s are comprehensively characterized in terms of composition, molecular and crystalline structure, morphology, electrical conductivity, surface area, and electrochemical behavior. The composition and properties of C-(MOF-5/PANI) composites are dictated by the composition of MOF-5/PANI precursors and the form of PANI (conducting emeraldine salt (ES) or nonconducting emeraldine base). The ZnS phase is formed only with the PANI-ES form due to S-containing counter-ions. XRPD revealed that ZnO and ZnS existed as pure wurtzite crystalline phases. PANI and MOF-5 acted synergistically to produce C-(MOF-5/PANI)s with high SBET (up to 609 m2 g−1), electrical conductivity (up to 0.24 S cm−1), and specific capacitance, Cspec, (up to 238.2 F g−1 at 10 mV s−1). Values of Cspec commensurated with N content in C-(MOF-5/PANI) composites (1–10 wt.%) and overcame Cspec of carbonized individual components PANI and MOF-5. By acid etching treatment of C-(MOF-5/PANI), SBET and Cspec increased to 1148 m2 g−1 and 341 F g−1, respectively. The developed composites represent promising electrode materials for supercapacitors.",
publisher = "MDPI",
journal = "Materials",
title = "Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity",
volume = "16",
number = "3",
doi = "10.3390/ma16031018"
}
Savić, M., Janošević-Ležaić, A., Gavrilov, N., Pašti, I., Nedić Vasiljević, B., Krstić, J.,& Ćirić-Marjanović, G.. (2023). Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity. in Materials
MDPI., 16(3).
https://doi.org/10.3390/ma16031018
Savić M, Janošević-Ležaić A, Gavrilov N, Pašti I, Nedić Vasiljević B, Krstić J, Ćirić-Marjanović G. Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity. in Materials. 2023;16(3).
doi:10.3390/ma16031018 .
Savić, Marjetka, Janošević-Ležaić, Aleksandra, Gavrilov, Nemanja, Pašti, Igor, Nedić Vasiljević, Bojana, Krstić, Jugoslav, Ćirić-Marjanović, Gordana, "Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity" in Materials, 16, no. 3 (2023),
https://doi.org/10.3390/ma16031018 . .
5
6

Copolymerization of aniline and gallic acid: Novel electroactive materials with antioxidant and antimicrobial activities

Janošević-Ležaić, Aleksandra; Pašti, Igor; Gledović, Ana; Antić-Stanković, Jelena; Božić, Dragana; Uskoković-Marković, Snežana; Ćirić-Marjanović, Gordana

(Elsevier Ltd, 2022)

TY  - JOUR
AU  - Janošević-Ležaić, Aleksandra
AU  - Pašti, Igor
AU  - Gledović, Ana
AU  - Antić-Stanković, Jelena
AU  - Božić, Dragana
AU  - Uskoković-Marković, Snežana
AU  - Ćirić-Marjanović, Gordana
PY  - 2022
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4067
AB  - Novel electroactive PANI-GA micro/nanostructured functional copolymers/co-oligomers were synthesized by the oxidative copolymerization of aniline and gallic acid (GA) in an aqueous solution, using ammonium peroxydisulfate (APS) as an oxidant and different initial mole ratios of GA to aniline ([GA]/[aniline]=0.1, 0.25, 0.5 and 1.0). It was found that the yield, molecular structure, morphology, electrical conductivity, electrochemical behavior, antioxidant and antimicrobial properties of PANI-GA strongly depend on [GA]/[aniline] ratio. The highest conductivity (3.8 × 10–3 S cm􀀀 1) showed PANI-GA with dominant polyaniline (PANI) emeraldine salt segments and nanorod morphology, synthesized at [GA]/[aniline] = 0.1. FTIR spectroscopy confirmed the presence of covalently bonded GA and PANI-type structural segments in PANI-GA. The antioxidant activity of PANI-GA was explored by the spectrophotometric 2,2′ -azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay and electrochemical test for superoxide anion radical, •O2􀀀 . All protonated PANI-GA showed good scavenging activity toward ABTS•+ and •O2􀀀 radicals, whereby the highest activity exhibited PANI-GA produced at [GA]/[aniline] = 1. The radical scavenging activity of protonated PANI-GA samples toward ABTS•+ was much higher than that of PANI. The antimicrobial properties of the PANI-GA against bacteria S. aureus and E. coli, as well as against fungus C. albicans were evaluated. All synthesized protonated PANI-GA were more effective as S. aureus growth inhibitors than pristine GA and PANI. Highest effectiveness against E. coli and C. albicans, higher than that of pristine GA and PANI, showed conductive PANI-GA synthesized at [GA]/[aniline]= 0.1. Based on the obtained experimental results the mechanism of GA and aniline oxidative copolymerization is proposed.
PB  - Elsevier Ltd
T2  - Synthetic Metals
T1  - Copolymerization of aniline and gallic acid: Novel electroactive materials with antioxidant and antimicrobial activities
VL  - 286
DO  - 10.1016/j.synthmet.2022.117048
ER  - 
@article{
author = "Janošević-Ležaić, Aleksandra and Pašti, Igor and Gledović, Ana and Antić-Stanković, Jelena and Božić, Dragana and Uskoković-Marković, Snežana and Ćirić-Marjanović, Gordana",
year = "2022",
abstract = "Novel electroactive PANI-GA micro/nanostructured functional copolymers/co-oligomers were synthesized by the oxidative copolymerization of aniline and gallic acid (GA) in an aqueous solution, using ammonium peroxydisulfate (APS) as an oxidant and different initial mole ratios of GA to aniline ([GA]/[aniline]=0.1, 0.25, 0.5 and 1.0). It was found that the yield, molecular structure, morphology, electrical conductivity, electrochemical behavior, antioxidant and antimicrobial properties of PANI-GA strongly depend on [GA]/[aniline] ratio. The highest conductivity (3.8 × 10–3 S cm􀀀 1) showed PANI-GA with dominant polyaniline (PANI) emeraldine salt segments and nanorod morphology, synthesized at [GA]/[aniline] = 0.1. FTIR spectroscopy confirmed the presence of covalently bonded GA and PANI-type structural segments in PANI-GA. The antioxidant activity of PANI-GA was explored by the spectrophotometric 2,2′ -azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay and electrochemical test for superoxide anion radical, •O2􀀀 . All protonated PANI-GA showed good scavenging activity toward ABTS•+ and •O2􀀀 radicals, whereby the highest activity exhibited PANI-GA produced at [GA]/[aniline] = 1. The radical scavenging activity of protonated PANI-GA samples toward ABTS•+ was much higher than that of PANI. The antimicrobial properties of the PANI-GA against bacteria S. aureus and E. coli, as well as against fungus C. albicans were evaluated. All synthesized protonated PANI-GA were more effective as S. aureus growth inhibitors than pristine GA and PANI. Highest effectiveness against E. coli and C. albicans, higher than that of pristine GA and PANI, showed conductive PANI-GA synthesized at [GA]/[aniline]= 0.1. Based on the obtained experimental results the mechanism of GA and aniline oxidative copolymerization is proposed.",
publisher = "Elsevier Ltd",
journal = "Synthetic Metals",
title = "Copolymerization of aniline and gallic acid: Novel electroactive materials with antioxidant and antimicrobial activities",
volume = "286",
doi = "10.1016/j.synthmet.2022.117048"
}
Janošević-Ležaić, A., Pašti, I., Gledović, A., Antić-Stanković, J., Božić, D., Uskoković-Marković, S.,& Ćirić-Marjanović, G.. (2022). Copolymerization of aniline and gallic acid: Novel electroactive materials with antioxidant and antimicrobial activities. in Synthetic Metals
Elsevier Ltd., 286.
https://doi.org/10.1016/j.synthmet.2022.117048
Janošević-Ležaić A, Pašti I, Gledović A, Antić-Stanković J, Božić D, Uskoković-Marković S, Ćirić-Marjanović G. Copolymerization of aniline and gallic acid: Novel electroactive materials with antioxidant and antimicrobial activities. in Synthetic Metals. 2022;286.
doi:10.1016/j.synthmet.2022.117048 .
Janošević-Ležaić, Aleksandra, Pašti, Igor, Gledović, Ana, Antić-Stanković, Jelena, Božić, Dragana, Uskoković-Marković, Snežana, Ćirić-Marjanović, Gordana, "Copolymerization of aniline and gallic acid: Novel electroactive materials with antioxidant and antimicrobial activities" in Synthetic Metals, 286 (2022),
https://doi.org/10.1016/j.synthmet.2022.117048 . .
4
1