Walther, Rasmus

Link to this page

Authority KeyName Variants
orcid::0000-0001-6174-6760
  • Walther, Rasmus (1)
Projects

Author's Bibliography

Analytical Quality by Design: Achieving Robustness of an LC-CAD Method for the Analysis of Non-Volatile Fatty Acids

Walther, Rasmus; Krmar, Jovana; Leistner, Adrian; Svrkota, Bojana; Otašević, Biljana; Malenović, Anđelija; Holzgrabe, Ulrike; Protić, Ana

(MDPI, 2023)

TY  - JOUR
AU  - Walther, Rasmus
AU  - Krmar, Jovana
AU  - Leistner, Adrian
AU  - Svrkota, Bojana
AU  - Otašević, Biljana
AU  - Malenović, Anđelija
AU  - Holzgrabe, Ulrike
AU  - Protić, Ana
PY  - 2023
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4698
AB  - An alternative to the time-consuming and error-prone pharmacopoeial gas chromatography method for the analysis of fatty acids (FAs) is urgently needed. The objective was therefore to propose a robust liquid chromatography method with charged aerosol detection for the analysis of polysorbate 80 (PS80) and magnesium stearate. FAs with different numbers of carbon atoms in the chain necessitated the use of a gradient method with a Hypersil Gold C18 column and acetonitrile as organic modifier. The risk-based Analytical Quality by Design approach was applied to define the Method Operable Design Region (MODR). Formic acid concentration, initial and final percentages of acetonitrile, gradient elution time, column temperature, and mobile phase flow rate were identified as critical method parameters (CMPs). The initial and final percentages of acetonitrile were fixed while the remaining CMPs were fine-tuned using response surface methodology. Critical method attributes included the baseline separation of adjacent peaks (α-linolenic and myristic acid, and oleic and petroselinic acid) and the retention factor of the last compound eluted, stearic acid. The MODR was calculated by Monte Carlo simulations with a probability equal or greater than 90%. Finally, the column temperature was set at 33 °C, the flow rate was 0.575 mL/min, and acetonitrile linearly increased from 70 to 80% (v/v) within 14.2 min.
PB  - MDPI
T2  - Pharmaceuticals
T1  - Analytical Quality by Design: Achieving Robustness of an LC-CAD Method for the Analysis of Non-Volatile Fatty Acids
VL  - 16
IS  - 4
DO  - 10.3390/ph16040478
ER  - 
@article{
author = "Walther, Rasmus and Krmar, Jovana and Leistner, Adrian and Svrkota, Bojana and Otašević, Biljana and Malenović, Anđelija and Holzgrabe, Ulrike and Protić, Ana",
year = "2023",
abstract = "An alternative to the time-consuming and error-prone pharmacopoeial gas chromatography method for the analysis of fatty acids (FAs) is urgently needed. The objective was therefore to propose a robust liquid chromatography method with charged aerosol detection for the analysis of polysorbate 80 (PS80) and magnesium stearate. FAs with different numbers of carbon atoms in the chain necessitated the use of a gradient method with a Hypersil Gold C18 column and acetonitrile as organic modifier. The risk-based Analytical Quality by Design approach was applied to define the Method Operable Design Region (MODR). Formic acid concentration, initial and final percentages of acetonitrile, gradient elution time, column temperature, and mobile phase flow rate were identified as critical method parameters (CMPs). The initial and final percentages of acetonitrile were fixed while the remaining CMPs were fine-tuned using response surface methodology. Critical method attributes included the baseline separation of adjacent peaks (α-linolenic and myristic acid, and oleic and petroselinic acid) and the retention factor of the last compound eluted, stearic acid. The MODR was calculated by Monte Carlo simulations with a probability equal or greater than 90%. Finally, the column temperature was set at 33 °C, the flow rate was 0.575 mL/min, and acetonitrile linearly increased from 70 to 80% (v/v) within 14.2 min.",
publisher = "MDPI",
journal = "Pharmaceuticals",
title = "Analytical Quality by Design: Achieving Robustness of an LC-CAD Method for the Analysis of Non-Volatile Fatty Acids",
volume = "16",
number = "4",
doi = "10.3390/ph16040478"
}
Walther, R., Krmar, J., Leistner, A., Svrkota, B., Otašević, B., Malenović, A., Holzgrabe, U.,& Protić, A.. (2023). Analytical Quality by Design: Achieving Robustness of an LC-CAD Method for the Analysis of Non-Volatile Fatty Acids. in Pharmaceuticals
MDPI., 16(4).
https://doi.org/10.3390/ph16040478
Walther R, Krmar J, Leistner A, Svrkota B, Otašević B, Malenović A, Holzgrabe U, Protić A. Analytical Quality by Design: Achieving Robustness of an LC-CAD Method for the Analysis of Non-Volatile Fatty Acids. in Pharmaceuticals. 2023;16(4).
doi:10.3390/ph16040478 .
Walther, Rasmus, Krmar, Jovana, Leistner, Adrian, Svrkota, Bojana, Otašević, Biljana, Malenović, Anđelija, Holzgrabe, Ulrike, Protić, Ana, "Analytical Quality by Design: Achieving Robustness of an LC-CAD Method for the Analysis of Non-Volatile Fatty Acids" in Pharmaceuticals, 16, no. 4 (2023),
https://doi.org/10.3390/ph16040478 . .
1