Janićijević, Dejana

Link to this page

Authority KeyName Variants
ba1d4b6a-b96c-4912-bc7f-b14c993b4553
  • Janićijević, Dejana (3)
Projects

Author's Bibliography

Comparative assessment of pesticide adsorption capacity and antioxidant activity of Silver Dodecatungstophosphate/HΒEA zeolite composites

Janićijević, Dejana; Jevremović, Anka; Janošević-Ležaić, Aleksandra; Nedić-Vasiljević, Bojana; Uskoković-Marković, Snežana; Bajuk-Bogdanović, Danica; Milojević-Rakić, Maja

(Elsevier Ltd, 2021)

TY  - JOUR
AU  - Janićijević, Dejana
AU  - Jevremović, Anka
AU  - Janošević-Ležaić, Aleksandra
AU  - Nedić-Vasiljević, Bojana
AU  - Uskoković-Marković, Snežana
AU  - Bajuk-Bogdanović, Danica
AU  - Milojević-Rakić, Maja
PY  - 2021
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3970
AB  - Composite materials consisting of the silver salt of dodecatungstophosphoric acid and HBEA zeolite are developed in order to give materials of superior adsorption properties for aqueous pesticide removal. Two-step impregnation and an ion-exchange method with variable constituent mass ratios were employed as synthesis procedures. One of the study goals was to optimize the composite preparation for efficient elimination of glyphosate pesticide and to investigate the modulation of antioxidant activity in the presence of pesticide. Based on comprehensive results, we propose mechanisms for simultaneous glyphosate removal and antioxidant activity. Spectroscopic analysis shows that the applied two-step impregnation method results in advanced composite materials with evenly distributed active sites for glyphosate adsorption and radical-scavenging activity. The original Krishnamurti isotherm is successfully used to fit pesticide adsorption data, pointing to co-operative adsorption of glyphosate on partly saturated adsorbents sites. The amount of glyphosate adsorbed from water suspension was 378 mg per gram of composite material, the highest value reported for glyphosate removal to date.
PB  - Elsevier Ltd
T2  - Journal of Environmental Chemical Engineering
T1  - Comparative assessment of pesticide adsorption capacity and antioxidant activity of Silver Dodecatungstophosphate/HΒEA zeolite composites
VL  - 9
IS  - 6
DO  - 10.1016/j.jece.2021.106341
ER  - 
@article{
author = "Janićijević, Dejana and Jevremović, Anka and Janošević-Ležaić, Aleksandra and Nedić-Vasiljević, Bojana and Uskoković-Marković, Snežana and Bajuk-Bogdanović, Danica and Milojević-Rakić, Maja",
year = "2021",
abstract = "Composite materials consisting of the silver salt of dodecatungstophosphoric acid and HBEA zeolite are developed in order to give materials of superior adsorption properties for aqueous pesticide removal. Two-step impregnation and an ion-exchange method with variable constituent mass ratios were employed as synthesis procedures. One of the study goals was to optimize the composite preparation for efficient elimination of glyphosate pesticide and to investigate the modulation of antioxidant activity in the presence of pesticide. Based on comprehensive results, we propose mechanisms for simultaneous glyphosate removal and antioxidant activity. Spectroscopic analysis shows that the applied two-step impregnation method results in advanced composite materials with evenly distributed active sites for glyphosate adsorption and radical-scavenging activity. The original Krishnamurti isotherm is successfully used to fit pesticide adsorption data, pointing to co-operative adsorption of glyphosate on partly saturated adsorbents sites. The amount of glyphosate adsorbed from water suspension was 378 mg per gram of composite material, the highest value reported for glyphosate removal to date.",
publisher = "Elsevier Ltd",
journal = "Journal of Environmental Chemical Engineering",
title = "Comparative assessment of pesticide adsorption capacity and antioxidant activity of Silver Dodecatungstophosphate/HΒEA zeolite composites",
volume = "9",
number = "6",
doi = "10.1016/j.jece.2021.106341"
}
Janićijević, D., Jevremović, A., Janošević-Ležaić, A., Nedić-Vasiljević, B., Uskoković-Marković, S., Bajuk-Bogdanović, D.,& Milojević-Rakić, M.. (2021). Comparative assessment of pesticide adsorption capacity and antioxidant activity of Silver Dodecatungstophosphate/HΒEA zeolite composites. in Journal of Environmental Chemical Engineering
Elsevier Ltd., 9(6).
https://doi.org/10.1016/j.jece.2021.106341
Janićijević D, Jevremović A, Janošević-Ležaić A, Nedić-Vasiljević B, Uskoković-Marković S, Bajuk-Bogdanović D, Milojević-Rakić M. Comparative assessment of pesticide adsorption capacity and antioxidant activity of Silver Dodecatungstophosphate/HΒEA zeolite composites. in Journal of Environmental Chemical Engineering. 2021;9(6).
doi:10.1016/j.jece.2021.106341 .
Janićijević, Dejana, Jevremović, Anka, Janošević-Ležaić, Aleksandra, Nedić-Vasiljević, Bojana, Uskoković-Marković, Snežana, Bajuk-Bogdanović, Danica, Milojević-Rakić, Maja, "Comparative assessment of pesticide adsorption capacity and antioxidant activity of Silver Dodecatungstophosphate/HΒEA zeolite composites" in Journal of Environmental Chemical Engineering, 9, no. 6 (2021),
https://doi.org/10.1016/j.jece.2021.106341 . .
12
10

The impact of preparation route on the performance of silver dodecatungstophosphate/β zeolite catalysts in the ethylene production

Janićijević, Dejana; Uskoković-Marković, Snežana; Popa, Alexandru; Nedić-Vasiljević, Bojana; Jevremović, Anka; Milojević-Rakić, Maja; Bajuk-Bogdanović, Danica

(Springer Science and Business Media Deutschland GmbH, 2021)

TY  - JOUR
AU  - Janićijević, Dejana
AU  - Uskoković-Marković, Snežana
AU  - Popa, Alexandru
AU  - Nedić-Vasiljević, Bojana
AU  - Jevremović, Anka
AU  - Milojević-Rakić, Maja
AU  - Bajuk-Bogdanović, Danica
PY  - 2021
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3792
AB  - Heteropolyacids and their salts comprise catalytic centers for the production of ethylene, one of the most important constituents in the chemical industry. The paper emphasizes different synthesis routes of hybrid materials consisting of dodecatungstophosphoric acid silver salt (AgPW) and β zeolite—stepwise wet impregnation, silver-exchange in β zeolite, and dry mixing of precursors. Composite preparation procedures induced minor effects on the weak acid sites, while strong acid sites were increased significantly. β/AgPW composites prepared by two-steps wet impregnation and ion-exchange procedures have strong acid sites content and total acidity higher in comparison to the pure AgPW salt and β zeolite. This is a result of precursors synergetic effect—cumulative strong acidic sites are generated in the presence of well-dispersed Keggin ions on the zeolite network. Composite samples with a higher content of strong acid centers exhibit higher conversion in the ethanol dehydration reaction, i.e., the ion-exchanged βAgPW sample has attained a conversion over 81%, while the wet-impregnated sample has a significant 86%. The distribution and presence of AgPW active phase are found to be crucial for both stable conversion and high selectivity results in ethylene production from ethanol, which is regarded as one of the most significant processes in environmental and sustainable industrial chemistry. Graphic abstract: [Figure not available: see fulltext.]
PB  - Springer Science and Business Media Deutschland GmbH
T2  - Chemical Papers
T1  - The impact of preparation route on the performance of silver dodecatungstophosphate/β zeolite catalysts in the ethylene production
VL  - 75
SP  - 3169
EP  - 3180
DO  - 10.1007/s11696-021-01557-3
ER  - 
@article{
author = "Janićijević, Dejana and Uskoković-Marković, Snežana and Popa, Alexandru and Nedić-Vasiljević, Bojana and Jevremović, Anka and Milojević-Rakić, Maja and Bajuk-Bogdanović, Danica",
year = "2021",
abstract = "Heteropolyacids and their salts comprise catalytic centers for the production of ethylene, one of the most important constituents in the chemical industry. The paper emphasizes different synthesis routes of hybrid materials consisting of dodecatungstophosphoric acid silver salt (AgPW) and β zeolite—stepwise wet impregnation, silver-exchange in β zeolite, and dry mixing of precursors. Composite preparation procedures induced minor effects on the weak acid sites, while strong acid sites were increased significantly. β/AgPW composites prepared by two-steps wet impregnation and ion-exchange procedures have strong acid sites content and total acidity higher in comparison to the pure AgPW salt and β zeolite. This is a result of precursors synergetic effect—cumulative strong acidic sites are generated in the presence of well-dispersed Keggin ions on the zeolite network. Composite samples with a higher content of strong acid centers exhibit higher conversion in the ethanol dehydration reaction, i.e., the ion-exchanged βAgPW sample has attained a conversion over 81%, while the wet-impregnated sample has a significant 86%. The distribution and presence of AgPW active phase are found to be crucial for both stable conversion and high selectivity results in ethylene production from ethanol, which is regarded as one of the most significant processes in environmental and sustainable industrial chemistry. Graphic abstract: [Figure not available: see fulltext.]",
publisher = "Springer Science and Business Media Deutschland GmbH",
journal = "Chemical Papers",
title = "The impact of preparation route on the performance of silver dodecatungstophosphate/β zeolite catalysts in the ethylene production",
volume = "75",
pages = "3169-3180",
doi = "10.1007/s11696-021-01557-3"
}
Janićijević, D., Uskoković-Marković, S., Popa, A., Nedić-Vasiljević, B., Jevremović, A., Milojević-Rakić, M.,& Bajuk-Bogdanović, D.. (2021). The impact of preparation route on the performance of silver dodecatungstophosphate/β zeolite catalysts in the ethylene production. in Chemical Papers
Springer Science and Business Media Deutschland GmbH., 75, 3169-3180.
https://doi.org/10.1007/s11696-021-01557-3
Janićijević D, Uskoković-Marković S, Popa A, Nedić-Vasiljević B, Jevremović A, Milojević-Rakić M, Bajuk-Bogdanović D. The impact of preparation route on the performance of silver dodecatungstophosphate/β zeolite catalysts in the ethylene production. in Chemical Papers. 2021;75:3169-3180.
doi:10.1007/s11696-021-01557-3 .
Janićijević, Dejana, Uskoković-Marković, Snežana, Popa, Alexandru, Nedić-Vasiljević, Bojana, Jevremović, Anka, Milojević-Rakić, Maja, Bajuk-Bogdanović, Danica, "The impact of preparation route on the performance of silver dodecatungstophosphate/β zeolite catalysts in the ethylene production" in Chemical Papers, 75 (2021):3169-3180,
https://doi.org/10.1007/s11696-021-01557-3 . .
2
1
2

Double active BEA zeolite/silver tungstophosphates – Antimicrobial effects and pesticide removal

Janićijević, Dejana; Uskoković-Marković, Snežana; Ranković, Dragan; Milenković, Marina; Jevremović, Anka; Nedić-Vasiljević, Bojana; Milojević-Rakić, Maja; Bajuk-Bogdanović, Danica

(Elsevier, 2020)

TY  - JOUR
AU  - Janićijević, Dejana
AU  - Uskoković-Marković, Snežana
AU  - Ranković, Dragan
AU  - Milenković, Marina
AU  - Jevremović, Anka
AU  - Nedić-Vasiljević, Bojana
AU  - Milojević-Rakić, Maja
AU  - Bajuk-Bogdanović, Danica
PY  - 2020
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3587
AB  - Novel composites of BEA zeolite and silver tungstophosphate were prepared by different procedures: two-step impregnation, ion-exchange, and as physical mixtures with varying component mass ratios. Composites were characterized using Atomic force microscopy, Infrared, Raman and Atomic absorption spectroscopy, and results were related to adsorption properties and antimicrobial efficiencies of the composites. Prepared samples were tested as antimicrobial agents for fungal and different bacterial strains, as well as for adsorbents for pesticide nicosulfuron in aqueous solutions by using High-performance liquid chromatography. Experimental conditions for batch adsorption testing were optimized in order to efficiently eliminate nicosulfuron from aqueous solutions, while enabling antimicrobial activity of these advanced materials. Antimicrobial efficiency of composites was verified, and indicated that silver ion persistence in the solid phase is of utmost significance for the antimicrobial activity. Spectroscopic investigation revealed interaction of the silver tungstophosphate active phase and the zeolite framework, giving evidence of uniform distribution of active sites in the synthesized materials that proved to be essential for adsorption application. The best obtained adsorption capacity, as well as highest antimicrobial efficiency, is found for composite samples prepared by two-step impregnation with (BEA: silver tungstophosphate) mass ratio 2:1. The amount of nicosulfuron removed from water suspension was 38.2 mg per gram of composite, and the minimum inhibitory concentration determined for all investigated gram-negative bacteria was 125 μg mL−1.
PB  - Elsevier
T2  - Science of the Total Environment
T1  - Double active BEA zeolite/silver tungstophosphates – Antimicrobial effects and pesticide removal
VL  - 735
DO  - 10.1016/j.scitotenv.2020.139530
ER  - 
@article{
author = "Janićijević, Dejana and Uskoković-Marković, Snežana and Ranković, Dragan and Milenković, Marina and Jevremović, Anka and Nedić-Vasiljević, Bojana and Milojević-Rakić, Maja and Bajuk-Bogdanović, Danica",
year = "2020",
abstract = "Novel composites of BEA zeolite and silver tungstophosphate were prepared by different procedures: two-step impregnation, ion-exchange, and as physical mixtures with varying component mass ratios. Composites were characterized using Atomic force microscopy, Infrared, Raman and Atomic absorption spectroscopy, and results were related to adsorption properties and antimicrobial efficiencies of the composites. Prepared samples were tested as antimicrobial agents for fungal and different bacterial strains, as well as for adsorbents for pesticide nicosulfuron in aqueous solutions by using High-performance liquid chromatography. Experimental conditions for batch adsorption testing were optimized in order to efficiently eliminate nicosulfuron from aqueous solutions, while enabling antimicrobial activity of these advanced materials. Antimicrobial efficiency of composites was verified, and indicated that silver ion persistence in the solid phase is of utmost significance for the antimicrobial activity. Spectroscopic investigation revealed interaction of the silver tungstophosphate active phase and the zeolite framework, giving evidence of uniform distribution of active sites in the synthesized materials that proved to be essential for adsorption application. The best obtained adsorption capacity, as well as highest antimicrobial efficiency, is found for composite samples prepared by two-step impregnation with (BEA: silver tungstophosphate) mass ratio 2:1. The amount of nicosulfuron removed from water suspension was 38.2 mg per gram of composite, and the minimum inhibitory concentration determined for all investigated gram-negative bacteria was 125 μg mL−1.",
publisher = "Elsevier",
journal = "Science of the Total Environment",
title = "Double active BEA zeolite/silver tungstophosphates – Antimicrobial effects and pesticide removal",
volume = "735",
doi = "10.1016/j.scitotenv.2020.139530"
}
Janićijević, D., Uskoković-Marković, S., Ranković, D., Milenković, M., Jevremović, A., Nedić-Vasiljević, B., Milojević-Rakić, M.,& Bajuk-Bogdanović, D.. (2020). Double active BEA zeolite/silver tungstophosphates – Antimicrobial effects and pesticide removal. in Science of the Total Environment
Elsevier., 735.
https://doi.org/10.1016/j.scitotenv.2020.139530
Janićijević D, Uskoković-Marković S, Ranković D, Milenković M, Jevremović A, Nedić-Vasiljević B, Milojević-Rakić M, Bajuk-Bogdanović D. Double active BEA zeolite/silver tungstophosphates – Antimicrobial effects and pesticide removal. in Science of the Total Environment. 2020;735.
doi:10.1016/j.scitotenv.2020.139530 .
Janićijević, Dejana, Uskoković-Marković, Snežana, Ranković, Dragan, Milenković, Marina, Jevremović, Anka, Nedić-Vasiljević, Bojana, Milojević-Rakić, Maja, Bajuk-Bogdanović, Danica, "Double active BEA zeolite/silver tungstophosphates – Antimicrobial effects and pesticide removal" in Science of the Total Environment, 735 (2020),
https://doi.org/10.1016/j.scitotenv.2020.139530 . .
23
11
23