Popadić, Daliborka

Link to this page

Authority KeyName Variants
2e92ccbe-2d7f-45b7-9bc5-6d01378a7a9d
  • Popadić, Daliborka (4)

Author's Bibliography

Acetamiprid's degradation products and mechanism: Part II – Inert atmosphere and charge storage

Popadić, Daliborka; Krstić, Jugoslav; Janošević-Ležaić, Aleksandra; Popović, Maja; Milojević-Rakić, Maja; Ignjatović, Ljubiša; Bajuk-Bogdanović, Danica; Gavrilov, Nemanja

(Elsevier B.V., 2024)

TY  - JOUR
AU  - Popadić, Daliborka
AU  - Krstić, Jugoslav
AU  - Janošević-Ležaić, Aleksandra
AU  - Popović, Maja
AU  - Milojević-Rakić, Maja
AU  - Ignjatović, Ljubiša
AU  - Bajuk-Bogdanović, Danica
AU  - Gavrilov, Nemanja
PY  - 2024
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/5405
AB  - Reuse and/or recycling of spent adsorbents is taking a central role in modern thinking and catalyzed carbonization is the way forward. Herein we explore the carbonization of adsorbed acetamiprid, in an inert atmosphere, as a way of recycling and producing nitrogen-rich carbon material for potential use in supercapacitors. Added value material and the reuse of the adsorbent were achieved by carbonization at 700 °C under argon. The formation of a nitrogen-doped carbon layer as an active material on the adsorbent, bonded through a C-Si linkage, has been conclusively verified through elemental composition quantification using XPS and EDX measurements. Two-stage catalytic decomposition and condensation of the adsorbed pesticide is followed by TGA and TPD-MS. Attained carbon-based materials give stable Faradaic capacitance with a slight dependency on the number of adsorbing cycles. Capacitance calculated with respect to the adlayer carbon material reaches values as high as 610 F g−1. Galvanostatic Charge/Discharge measurement confirmed the stability of explored materials with a slight increase in capacitance over 1000 cycles. The presented results envisage electroactive materials preparation from environmental pollutants, adding value to spent adsorbents.
PB  - Elsevier B.V.
T2  - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
T1  - Acetamiprid's degradation products and mechanism: Part II – Inert atmosphere and charge storage
VL  - 308
DO  - 10.1016/j.saa.2023.123772
ER  - 
@article{
author = "Popadić, Daliborka and Krstić, Jugoslav and Janošević-Ležaić, Aleksandra and Popović, Maja and Milojević-Rakić, Maja and Ignjatović, Ljubiša and Bajuk-Bogdanović, Danica and Gavrilov, Nemanja",
year = "2024",
abstract = "Reuse and/or recycling of spent adsorbents is taking a central role in modern thinking and catalyzed carbonization is the way forward. Herein we explore the carbonization of adsorbed acetamiprid, in an inert atmosphere, as a way of recycling and producing nitrogen-rich carbon material for potential use in supercapacitors. Added value material and the reuse of the adsorbent were achieved by carbonization at 700 °C under argon. The formation of a nitrogen-doped carbon layer as an active material on the adsorbent, bonded through a C-Si linkage, has been conclusively verified through elemental composition quantification using XPS and EDX measurements. Two-stage catalytic decomposition and condensation of the adsorbed pesticide is followed by TGA and TPD-MS. Attained carbon-based materials give stable Faradaic capacitance with a slight dependency on the number of adsorbing cycles. Capacitance calculated with respect to the adlayer carbon material reaches values as high as 610 F g−1. Galvanostatic Charge/Discharge measurement confirmed the stability of explored materials with a slight increase in capacitance over 1000 cycles. The presented results envisage electroactive materials preparation from environmental pollutants, adding value to spent adsorbents.",
publisher = "Elsevier B.V.",
journal = "Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy",
title = "Acetamiprid's degradation products and mechanism: Part II – Inert atmosphere and charge storage",
volume = "308",
doi = "10.1016/j.saa.2023.123772"
}
Popadić, D., Krstić, J., Janošević-Ležaić, A., Popović, M., Milojević-Rakić, M., Ignjatović, L., Bajuk-Bogdanović, D.,& Gavrilov, N.. (2024). Acetamiprid's degradation products and mechanism: Part II – Inert atmosphere and charge storage. in Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
Elsevier B.V.., 308.
https://doi.org/10.1016/j.saa.2023.123772
Popadić D, Krstić J, Janošević-Ležaić A, Popović M, Milojević-Rakić M, Ignjatović L, Bajuk-Bogdanović D, Gavrilov N. Acetamiprid's degradation products and mechanism: Part II – Inert atmosphere and charge storage. in Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 2024;308.
doi:10.1016/j.saa.2023.123772 .
Popadić, Daliborka, Krstić, Jugoslav, Janošević-Ležaić, Aleksandra, Popović, Maja, Milojević-Rakić, Maja, Ignjatović, Ljubiša, Bajuk-Bogdanović, Danica, Gavrilov, Nemanja, "Acetamiprid's degradation products and mechanism: Part II – Inert atmosphere and charge storage" in Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 308 (2024),
https://doi.org/10.1016/j.saa.2023.123772 . .

Spectral evidence of acetamiprid's thermal degradation products and mechanism

Popadić, Daliborka; Gavrilov, Nemanja; Krstić, Jugoslav; Nedić Vasiljević, Bojana; Janošević-Ležaić, Aleksandra; Uskoković-Marković, Snežana; Milojević-Rakić, Maja; Bajuk-Bogdanović, Danica

(Elsevier B.V., 2023)

TY  - JOUR
AU  - Popadić, Daliborka
AU  - Gavrilov, Nemanja
AU  - Krstić, Jugoslav
AU  - Nedić Vasiljević, Bojana
AU  - Janošević-Ležaić, Aleksandra
AU  - Uskoković-Marković, Snežana
AU  - Milojević-Rakić, Maja
AU  - Bajuk-Bogdanović, Danica
PY  - 2023
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4882
AB  - Herein we unequivocally identify the mechanism of zeolite-catalysed thermal degradation of pesticide, employing Fourier-transform infrared spectroscopy (FTIR), Raman and mass spectrometry following temperature decomposition (TPDe/MS). We demonstrate that Y zeolite can effectively adsorb a significant amount of acetamiprid both in a single trial (168 mg/g) and in 10 cycles (1249 mg/g) with intermittent thermal regeneration at 300 °C. Sectional vibrational analysis of acetamiprid two-stage thermal degradation is performed for pristine and supported pesticide. The acetamiprid Raman spectral changes appear at 200 °C, while partial carbonization occurs at 250 °C. The gradual disappearance of the FTIR bands of acetamiprid is seen up to 270 °C when two Raman signature bands for carbonised material emerged. The TPDe/MS profiles reveal the evolution of mass fragments - in the first step, cleavage of the C[sbnd]C bond occurs between the aromatic core of the molecule and its tail-end, followed by cleavage of the C[sbnd]N bond. The mechanism of adsorbed acetamiprid degradation follows the same step, at significantly lower temperatures, as the process is catalysed by the interaction of acetamiprid nitrogens and zeolite support. Reduced temperature degradation allows for a quick recovery process that leaves 65% efficacy after 10 cycles. After numerous cycles of recovery, a subsequent one-time heat treatment at 700 °C completely restores initial efficacy. The efficient adsorption, novel details on degradation mechanism and ease of regeneration procedure place the Y zeolite at the forefront of future all-encompassing environmental solutions.
PB  - Elsevier B.V.
T2  - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
T1  - Spectral evidence of acetamiprid's thermal degradation products and mechanism
VL  - 301
IS  - 15
DO  - 10.1016/j.saa.2023.122987
ER  - 
@article{
author = "Popadić, Daliborka and Gavrilov, Nemanja and Krstić, Jugoslav and Nedić Vasiljević, Bojana and Janošević-Ležaić, Aleksandra and Uskoković-Marković, Snežana and Milojević-Rakić, Maja and Bajuk-Bogdanović, Danica",
year = "2023",
abstract = "Herein we unequivocally identify the mechanism of zeolite-catalysed thermal degradation of pesticide, employing Fourier-transform infrared spectroscopy (FTIR), Raman and mass spectrometry following temperature decomposition (TPDe/MS). We demonstrate that Y zeolite can effectively adsorb a significant amount of acetamiprid both in a single trial (168 mg/g) and in 10 cycles (1249 mg/g) with intermittent thermal regeneration at 300 °C. Sectional vibrational analysis of acetamiprid two-stage thermal degradation is performed for pristine and supported pesticide. The acetamiprid Raman spectral changes appear at 200 °C, while partial carbonization occurs at 250 °C. The gradual disappearance of the FTIR bands of acetamiprid is seen up to 270 °C when two Raman signature bands for carbonised material emerged. The TPDe/MS profiles reveal the evolution of mass fragments - in the first step, cleavage of the C[sbnd]C bond occurs between the aromatic core of the molecule and its tail-end, followed by cleavage of the C[sbnd]N bond. The mechanism of adsorbed acetamiprid degradation follows the same step, at significantly lower temperatures, as the process is catalysed by the interaction of acetamiprid nitrogens and zeolite support. Reduced temperature degradation allows for a quick recovery process that leaves 65% efficacy after 10 cycles. After numerous cycles of recovery, a subsequent one-time heat treatment at 700 °C completely restores initial efficacy. The efficient adsorption, novel details on degradation mechanism and ease of regeneration procedure place the Y zeolite at the forefront of future all-encompassing environmental solutions.",
publisher = "Elsevier B.V.",
journal = "Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy",
title = "Spectral evidence of acetamiprid's thermal degradation products and mechanism",
volume = "301",
number = "15",
doi = "10.1016/j.saa.2023.122987"
}
Popadić, D., Gavrilov, N., Krstić, J., Nedić Vasiljević, B., Janošević-Ležaić, A., Uskoković-Marković, S., Milojević-Rakić, M.,& Bajuk-Bogdanović, D.. (2023). Spectral evidence of acetamiprid's thermal degradation products and mechanism. in Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
Elsevier B.V.., 301(15).
https://doi.org/10.1016/j.saa.2023.122987
Popadić D, Gavrilov N, Krstić J, Nedić Vasiljević B, Janošević-Ležaić A, Uskoković-Marković S, Milojević-Rakić M, Bajuk-Bogdanović D. Spectral evidence of acetamiprid's thermal degradation products and mechanism. in Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 2023;301(15).
doi:10.1016/j.saa.2023.122987 .
Popadić, Daliborka, Gavrilov, Nemanja, Krstić, Jugoslav, Nedić Vasiljević, Bojana, Janošević-Ležaić, Aleksandra, Uskoković-Marković, Snežana, Milojević-Rakić, Maja, Bajuk-Bogdanović, Danica, "Spectral evidence of acetamiprid's thermal degradation products and mechanism" in Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 301, no. 15 (2023),
https://doi.org/10.1016/j.saa.2023.122987 . .
3
3

MFI, BEA and FAU zeolite scavenging role in neonicotinoids and radical species elimination

Milojević-Rakić, Maja; Popadić, Daliborka; Janošević-Ležaić, Aleksandra; Jevremović, Anka; Nedić-Vasiljević, Bojana; Uskoković-Marković, Snežana; Bajuk-Bogdanović, Danica

(The Royal Society of Chemistry, 2022)

TY  - JOUR
AU  - Milojević-Rakić, Maja
AU  - Popadić, Daliborka
AU  - Janošević-Ležaić, Aleksandra
AU  - Jevremović, Anka
AU  - Nedić-Vasiljević, Bojana
AU  - Uskoković-Marković, Snežana
AU  - Bajuk-Bogdanović, Danica
PY  - 2022
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4062
AB  - Ecotoxicity caused by neonicotinoid pesticides is largely due to oxidative stress on non-target species. Due to the fact that reactive radical species reach the environment, materials intended for pesticide removal should be applicable for the simultaneous removal of reactive radicals, as well. This work uses the spectroscopic, adsorptive and antioxidant responses from MFI, FAU and BEA zeolites as descriptors of their potential environmental importance. Different network structures and Si/Al ratios were correlated with excellent zeolite adsorption properties, as over 200 mg g1 of investigated neonicotinoids, acetamiprid and imidacloprid, was achieved in one cycle. Additionally, after two regeneration steps, over 450 mg g1 adsorbed pesticides were retained, in three adsorption cycles. Overall the best results were detected for the FAU zeotype in both tested applications, insecticide adsorption and radical-scavenging performance, with and without insecticides present. The proposed mechanism for adsorption relies on kinetic investigation, isotherm modelling and spectroscopic post-adsorption analysis and targets zeolite hydroxyl/siloxane groups as active sites for insecticide adsorption via hydrogen bonding. Neat, welldefined zeolite structures enable their prospective application in ecotoxic species removal.
PB  - The Royal Society of Chemistry
T2  - Environmental science. Processes & impacts
T1  - MFI, BEA and FAU zeolite scavenging role in neonicotinoids and radical species elimination
VL  - 24
IS  - 2
SP  - 265
EP  - 276
DO  - 10.1039/d1em00437a
ER  - 
@article{
author = "Milojević-Rakić, Maja and Popadić, Daliborka and Janošević-Ležaić, Aleksandra and Jevremović, Anka and Nedić-Vasiljević, Bojana and Uskoković-Marković, Snežana and Bajuk-Bogdanović, Danica",
year = "2022",
abstract = "Ecotoxicity caused by neonicotinoid pesticides is largely due to oxidative stress on non-target species. Due to the fact that reactive radical species reach the environment, materials intended for pesticide removal should be applicable for the simultaneous removal of reactive radicals, as well. This work uses the spectroscopic, adsorptive and antioxidant responses from MFI, FAU and BEA zeolites as descriptors of their potential environmental importance. Different network structures and Si/Al ratios were correlated with excellent zeolite adsorption properties, as over 200 mg g1 of investigated neonicotinoids, acetamiprid and imidacloprid, was achieved in one cycle. Additionally, after two regeneration steps, over 450 mg g1 adsorbed pesticides were retained, in three adsorption cycles. Overall the best results were detected for the FAU zeotype in both tested applications, insecticide adsorption and radical-scavenging performance, with and without insecticides present. The proposed mechanism for adsorption relies on kinetic investigation, isotherm modelling and spectroscopic post-adsorption analysis and targets zeolite hydroxyl/siloxane groups as active sites for insecticide adsorption via hydrogen bonding. Neat, welldefined zeolite structures enable their prospective application in ecotoxic species removal.",
publisher = "The Royal Society of Chemistry",
journal = "Environmental science. Processes & impacts",
title = "MFI, BEA and FAU zeolite scavenging role in neonicotinoids and radical species elimination",
volume = "24",
number = "2",
pages = "265-276",
doi = "10.1039/d1em00437a"
}
Milojević-Rakić, M., Popadić, D., Janošević-Ležaić, A., Jevremović, A., Nedić-Vasiljević, B., Uskoković-Marković, S.,& Bajuk-Bogdanović, D.. (2022). MFI, BEA and FAU zeolite scavenging role in neonicotinoids and radical species elimination. in Environmental science. Processes & impacts
The Royal Society of Chemistry., 24(2), 265-276.
https://doi.org/10.1039/d1em00437a
Milojević-Rakić M, Popadić D, Janošević-Ležaić A, Jevremović A, Nedić-Vasiljević B, Uskoković-Marković S, Bajuk-Bogdanović D. MFI, BEA and FAU zeolite scavenging role in neonicotinoids and radical species elimination. in Environmental science. Processes & impacts. 2022;24(2):265-276.
doi:10.1039/d1em00437a .
Milojević-Rakić, Maja, Popadić, Daliborka, Janošević-Ležaić, Aleksandra, Jevremović, Anka, Nedić-Vasiljević, Bojana, Uskoković-Marković, Snežana, Bajuk-Bogdanović, Danica, "MFI, BEA and FAU zeolite scavenging role in neonicotinoids and radical species elimination" in Environmental science. Processes & impacts, 24, no. 2 (2022):265-276,
https://doi.org/10.1039/d1em00437a . .
11
11

How to Obtain Maximum Environmental Applicability from Natural Silicates

Popadić, Daliborka; Gavrilov, Nemanja; Ignjatović, Ljubiša; Krajišnik, Danina; Mentus, Slavko; Milojević-Rakić, Maja; Bajuk-Bogdanović, Danica

(MDPI, 2022)

TY  - JOUR
AU  - Popadić, Daliborka
AU  - Gavrilov, Nemanja
AU  - Ignjatović, Ljubiša
AU  - Krajišnik, Danina
AU  - Mentus, Slavko
AU  - Milojević-Rakić, Maja
AU  - Bajuk-Bogdanović, Danica
PY  - 2022
UR  - https://www.mdpi.com/2073-4344/12/5/519
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4099
AB  - Unmodified natural silicates (bentonite, kaolin, clinoptilolite and diatomites) were tested as adsorbents for the organic pollutants in water tables using Methylene Blue (MB) as the model adsorbate. Among the selected materials, bentonite adsorbed as much as 237 mg/g, confirming its excellent suitability for pollutant removal. Spectral evidence confirmed successful MB immobilization at the bentonite surface. Furthermore, the thermal treatment of MB-saturated adsorbent in an inert atmosphere at 700 °C produced a carbon/silicate composite. EDX confirmed the formation of the nitrogen-doped carbon overlay on the silica scaffold and the obtained composite material was probed as an electrode material for oxygen reduction in an alkaline solution. Reduction proceeded via a two-electron mechanism with the main product being HO2−, a known nucleophile, which was subsequently used to degrade/demethylate MB. The composite showed a considerable 70% MB removal rate after an hour of electrochemical treatment. The synergy between the processes of adsorption of MB and the surface-generated HO2− dictates the efficiency of the method and points to a possible route for spent adsorbent reuse in the form of a durable product for environmental protection.
PB  - MDPI
T2  - Catalysts
T1  - How to Obtain Maximum Environmental Applicability from Natural Silicates
VL  - 12
IS  - 5
DO  - 10.3390/catal12050519
ER  - 
@article{
author = "Popadić, Daliborka and Gavrilov, Nemanja and Ignjatović, Ljubiša and Krajišnik, Danina and Mentus, Slavko and Milojević-Rakić, Maja and Bajuk-Bogdanović, Danica",
year = "2022",
abstract = "Unmodified natural silicates (bentonite, kaolin, clinoptilolite and diatomites) were tested as adsorbents for the organic pollutants in water tables using Methylene Blue (MB) as the model adsorbate. Among the selected materials, bentonite adsorbed as much as 237 mg/g, confirming its excellent suitability for pollutant removal. Spectral evidence confirmed successful MB immobilization at the bentonite surface. Furthermore, the thermal treatment of MB-saturated adsorbent in an inert atmosphere at 700 °C produced a carbon/silicate composite. EDX confirmed the formation of the nitrogen-doped carbon overlay on the silica scaffold and the obtained composite material was probed as an electrode material for oxygen reduction in an alkaline solution. Reduction proceeded via a two-electron mechanism with the main product being HO2−, a known nucleophile, which was subsequently used to degrade/demethylate MB. The composite showed a considerable 70% MB removal rate after an hour of electrochemical treatment. The synergy between the processes of adsorption of MB and the surface-generated HO2− dictates the efficiency of the method and points to a possible route for spent adsorbent reuse in the form of a durable product for environmental protection.",
publisher = "MDPI",
journal = "Catalysts",
title = "How to Obtain Maximum Environmental Applicability from Natural Silicates",
volume = "12",
number = "5",
doi = "10.3390/catal12050519"
}
Popadić, D., Gavrilov, N., Ignjatović, L., Krajišnik, D., Mentus, S., Milojević-Rakić, M.,& Bajuk-Bogdanović, D.. (2022). How to Obtain Maximum Environmental Applicability from Natural Silicates. in Catalysts
MDPI., 12(5).
https://doi.org/10.3390/catal12050519
Popadić D, Gavrilov N, Ignjatović L, Krajišnik D, Mentus S, Milojević-Rakić M, Bajuk-Bogdanović D. How to Obtain Maximum Environmental Applicability from Natural Silicates. in Catalysts. 2022;12(5).
doi:10.3390/catal12050519 .
Popadić, Daliborka, Gavrilov, Nemanja, Ignjatović, Ljubiša, Krajišnik, Danina, Mentus, Slavko, Milojević-Rakić, Maja, Bajuk-Bogdanović, Danica, "How to Obtain Maximum Environmental Applicability from Natural Silicates" in Catalysts, 12, no. 5 (2022),
https://doi.org/10.3390/catal12050519 . .
8
2
8