Nunić, Jana

Link to this page

Authority KeyName Variants
1a9b90cf-7ffe-4919-a47b-2b102ca065de
  • Nunić, Jana (1)
Projects

Author's Bibliography

Multifunctional PLGA particles containing poly(L-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity

Stevanović, Magdalena; Bracko, Ines; Milenković, Marina; Filipović, Nenad; Nunić, Jana; Filipić, Metka; Uskoković, Dragan P.

(Elsevier Sci Ltd, Oxford, 2014)

TY  - JOUR
AU  - Stevanović, Magdalena
AU  - Bracko, Ines
AU  - Milenković, Marina
AU  - Filipović, Nenad
AU  - Nunić, Jana
AU  - Filipić, Metka
AU  - Uskoković, Dragan P.
PY  - 2014
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/2184
AB  - A water-soluble antioxidant (ascorbic acid, vitamin C) was encapsulated together with poly(L-glutamic acid)-capped silver nanoparticles (AgNpPGA) within a poly(lactide-co-glycolide) (PLGA) polymeric matrix and their synergistic effects were studied. The PLGA/AgNpPGA/ascorbic acid particles synthesized by a physicochemical method with solvent/non-solvent systems are spherical, have a mean diameter of 775 nm and a narrow size distribution with a polydispersity index of 0.158. The encapsulation efficiency of AgNpPGA/ascorbic acid within PLGA was determined to be >90%. The entire amount of encapsulated ascorbic acid was released in 68 days, and the entire amount of AgNpPGAs was released in 87 days of degradation. The influence of PLGA/AgNpPGA/ascorbic acid on cell viability, generation of reactive oxygen species (ROS) in HepG2 cells, as well as antimicrobial activity against seven different pathogens was investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of these PLGA/AgNpPGA/ascorbic acid particles. We measured the kinetics of ROS formation in HepG2 cells by a DCFH-DA assay, and found that PLGA/AgNpPGA/ascorbic acid caused a significant decrease in DCF fluorescence intensity, which was 2-fold lower than that in control cells after a 5 h exposure. This indicates that the PLGA/AgNpPGA/ascorbic acid microspheres either act as scavengers of intracellular ROS and/or reduce their formation. Also, the results of antimicrobial activity of PLGA/AgNpPGA/ascorbic acid obtained by the broth microdilution method showed superior and extended activity of these particles. The samples were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, zeta potential and particle size analysis. This paper presents a new approach to the treatment of infection that at the same time offers a very pronounced antioxidant effect.
PB  - Elsevier Sci Ltd, Oxford
T2  - Acta Biomaterialia
T1  - Multifunctional PLGA particles containing poly(L-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity
VL  - 10
IS  - 1
SP  - 151
EP  - 162
DO  - 10.1016/j.actbio.2013.08.030
ER  - 
@article{
author = "Stevanović, Magdalena and Bracko, Ines and Milenković, Marina and Filipović, Nenad and Nunić, Jana and Filipić, Metka and Uskoković, Dragan P.",
year = "2014",
abstract = "A water-soluble antioxidant (ascorbic acid, vitamin C) was encapsulated together with poly(L-glutamic acid)-capped silver nanoparticles (AgNpPGA) within a poly(lactide-co-glycolide) (PLGA) polymeric matrix and their synergistic effects were studied. The PLGA/AgNpPGA/ascorbic acid particles synthesized by a physicochemical method with solvent/non-solvent systems are spherical, have a mean diameter of 775 nm and a narrow size distribution with a polydispersity index of 0.158. The encapsulation efficiency of AgNpPGA/ascorbic acid within PLGA was determined to be >90%. The entire amount of encapsulated ascorbic acid was released in 68 days, and the entire amount of AgNpPGAs was released in 87 days of degradation. The influence of PLGA/AgNpPGA/ascorbic acid on cell viability, generation of reactive oxygen species (ROS) in HepG2 cells, as well as antimicrobial activity against seven different pathogens was investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of these PLGA/AgNpPGA/ascorbic acid particles. We measured the kinetics of ROS formation in HepG2 cells by a DCFH-DA assay, and found that PLGA/AgNpPGA/ascorbic acid caused a significant decrease in DCF fluorescence intensity, which was 2-fold lower than that in control cells after a 5 h exposure. This indicates that the PLGA/AgNpPGA/ascorbic acid microspheres either act as scavengers of intracellular ROS and/or reduce their formation. Also, the results of antimicrobial activity of PLGA/AgNpPGA/ascorbic acid obtained by the broth microdilution method showed superior and extended activity of these particles. The samples were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, zeta potential and particle size analysis. This paper presents a new approach to the treatment of infection that at the same time offers a very pronounced antioxidant effect.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Acta Biomaterialia",
title = "Multifunctional PLGA particles containing poly(L-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity",
volume = "10",
number = "1",
pages = "151-162",
doi = "10.1016/j.actbio.2013.08.030"
}
Stevanović, M., Bracko, I., Milenković, M., Filipović, N., Nunić, J., Filipić, M.,& Uskoković, D. P.. (2014). Multifunctional PLGA particles containing poly(L-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity. in Acta Biomaterialia
Elsevier Sci Ltd, Oxford., 10(1), 151-162.
https://doi.org/10.1016/j.actbio.2013.08.030
Stevanović M, Bracko I, Milenković M, Filipović N, Nunić J, Filipić M, Uskoković DP. Multifunctional PLGA particles containing poly(L-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity. in Acta Biomaterialia. 2014;10(1):151-162.
doi:10.1016/j.actbio.2013.08.030 .
Stevanović, Magdalena, Bracko, Ines, Milenković, Marina, Filipović, Nenad, Nunić, Jana, Filipić, Metka, Uskoković, Dragan P., "Multifunctional PLGA particles containing poly(L-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity" in Acta Biomaterialia, 10, no. 1 (2014):151-162,
https://doi.org/10.1016/j.actbio.2013.08.030 . .
77
61
74