Barudžija, Tanja

Link to this page

Authority KeyName Variants
orcid::0000-0002-9240-9609
  • Barudžija, Tanja (4)
Projects

Author's Bibliography

Evaluation of chitosan/xanthan gum polyelectrolyte complexes potential for pH-dependent oral delivery of escin

Ćirić, Ana; Milinković Budinčić, Jelena; Dobričić, Vladimir; Rmandić, Milena; Barudžija, Tanja; Malenović, Anđelija; Petrović, Lidija; Đekić, Ljiljana

(Elsevier B.V., 2022)

TY  - JOUR
AU  - Ćirić, Ana
AU  - Milinković Budinčić, Jelena
AU  - Dobričić, Vladimir
AU  - Rmandić, Milena
AU  - Barudžija, Tanja
AU  - Malenović, Anđelija
AU  - Petrović, Lidija
AU  - Đekić, Ljiljana
PY  - 2022
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4272
AB  - Escin is an amphiphilic and weakly acidic drug that oral administration may lead to the irritation of gastric mucosa. The entrapment of escin into chitosan (CH)/xanthan gum (XG)-based polyelectrolyte complexes (PECs) can facilitate controlled drug release which may be beneficial for the reduction of its side effects. This study aimed to investigate the influence of escin content and drying method on the formation, physicochemical, and controlled, pH-dependent drug release properties of CH/XG-based PECs. Measurements of transmittance, con- ductivity, and rheological characterization confirmed the formation of CH/XG-based PECs with escin entrapped at escin-to-polymers mass ratios 1:1, 1:2, and 1:4. Ambient-dried PECs had higher yield, entrapment efficiency, and escin content in comparison with spray-dried ones. FT-IR spectra confirmed the interactions between CH, XG, and escin, which were stronger in ambient-dried PECs. PXRD and DSC analyses showed the amorphous escin character in all dry PECs, regardless of the drying method. The most promising controlled and pH-dependent in vitro escin release was from the ambient-dried PEC at the escin-to-polymers mass ratio of 1:1. For that reason and due to the highest yield and entrapment efficiency, this carrier has the potential to prevent the irritation of gastric mucosa after oral administration of escin.
PB  - Elsevier B.V.
T2  - International Journal of Biological Macromolecules
T1  - Evaluation of chitosan/xanthan gum polyelectrolyte complexes potential for pH-dependent oral delivery of escin
VL  - 221
SP  - 48
EP  - 60
DO  - 10.1016/j.ijbiomac.2022.08.190
ER  - 
@article{
author = "Ćirić, Ana and Milinković Budinčić, Jelena and Dobričić, Vladimir and Rmandić, Milena and Barudžija, Tanja and Malenović, Anđelija and Petrović, Lidija and Đekić, Ljiljana",
year = "2022",
abstract = "Escin is an amphiphilic and weakly acidic drug that oral administration may lead to the irritation of gastric mucosa. The entrapment of escin into chitosan (CH)/xanthan gum (XG)-based polyelectrolyte complexes (PECs) can facilitate controlled drug release which may be beneficial for the reduction of its side effects. This study aimed to investigate the influence of escin content and drying method on the formation, physicochemical, and controlled, pH-dependent drug release properties of CH/XG-based PECs. Measurements of transmittance, con- ductivity, and rheological characterization confirmed the formation of CH/XG-based PECs with escin entrapped at escin-to-polymers mass ratios 1:1, 1:2, and 1:4. Ambient-dried PECs had higher yield, entrapment efficiency, and escin content in comparison with spray-dried ones. FT-IR spectra confirmed the interactions between CH, XG, and escin, which were stronger in ambient-dried PECs. PXRD and DSC analyses showed the amorphous escin character in all dry PECs, regardless of the drying method. The most promising controlled and pH-dependent in vitro escin release was from the ambient-dried PEC at the escin-to-polymers mass ratio of 1:1. For that reason and due to the highest yield and entrapment efficiency, this carrier has the potential to prevent the irritation of gastric mucosa after oral administration of escin.",
publisher = "Elsevier B.V.",
journal = "International Journal of Biological Macromolecules",
title = "Evaluation of chitosan/xanthan gum polyelectrolyte complexes potential for pH-dependent oral delivery of escin",
volume = "221",
pages = "48-60",
doi = "10.1016/j.ijbiomac.2022.08.190"
}
Ćirić, A., Milinković Budinčić, J., Dobričić, V., Rmandić, M., Barudžija, T., Malenović, A., Petrović, L.,& Đekić, L.. (2022). Evaluation of chitosan/xanthan gum polyelectrolyte complexes potential for pH-dependent oral delivery of escin. in International Journal of Biological Macromolecules
Elsevier B.V.., 221, 48-60.
https://doi.org/10.1016/j.ijbiomac.2022.08.190
Ćirić A, Milinković Budinčić J, Dobričić V, Rmandić M, Barudžija T, Malenović A, Petrović L, Đekić L. Evaluation of chitosan/xanthan gum polyelectrolyte complexes potential for pH-dependent oral delivery of escin. in International Journal of Biological Macromolecules. 2022;221:48-60.
doi:10.1016/j.ijbiomac.2022.08.190 .
Ćirić, Ana, Milinković Budinčić, Jelena, Dobričić, Vladimir, Rmandić, Milena, Barudžija, Tanja, Malenović, Anđelija, Petrović, Lidija, Đekić, Ljiljana, "Evaluation of chitosan/xanthan gum polyelectrolyte complexes potential for pH-dependent oral delivery of escin" in International Journal of Biological Macromolecules, 221 (2022):48-60,
https://doi.org/10.1016/j.ijbiomac.2022.08.190 . .
5
4

Influence of spray-drying process on properties of chitosan/xanthan gum polyelectrolyte complexes as carriers for oral delivery of ibuprofen

Ćirić, Ana; Milinković Budinčić, Jelena; Medarević, Đorđe; Dobričić, Vladimir; Rmandić, Milena; Barudžija, Tanja; Malenović, Anđelija; Petrović, Lidija; Đekić, Ljiljana

(Savez farmaceutskih udruženja Srbije, 2022)

TY  - JOUR
AU  - Ćirić, Ana
AU  - Milinković Budinčić, Jelena
AU  - Medarević, Đorđe
AU  - Dobričić, Vladimir
AU  - Rmandić, Milena
AU  - Barudžija, Tanja
AU  - Malenović, Anđelija
AU  - Petrović, Lidija
AU  - Đekić, Ljiljana
PY  - 2022
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4179
AB  - Polyelectrolyte complexes (PECs) are attractive carriers with recognized potential to
enhance oral delivery of poorly soluble high-dosed low-molecular-weight drugs. The formulation
of solid oral dosage forms requires the drying of PECs, which may affect their physicochemical
and biopharmaceutical properties. The aim of this study was to investigate the effect of spray-
drying on the properties of ibuprofen-loaded chitosan/xanthan gum PECs and to assess the drug
release kinetics from such PECs filled into hard capsules in comparison with corresponding PECs
which are dried under ambient conditions. The yield, ibuprofen content, entrapment efficiency,
and residual moisture content of spray-dried PECs were lower than those of ambient-dried PECs.
Better flowability of spray-dried PECs was attributed to the almost spherical particle shape,
shown by scanning electron microscopy. DSC and PXRD analysis confirmed the amorphization
of ibuprofen during spray-drying. All the investigated PECs, obtained by drying under ambient
conditions as well as by spray-drying, had high rehydration capacity both in 0.1 M hydrochloric
acid (pH 1.2) and phosphate buffer pH 7.4. In vitro ibuprofen release from dried PECs was
controlled during 12 h with the release of approximately 30% of entrapped ibuprofen. Spray-dried
PECs provided better control of ibuprofen diffusion from the carrier compared to the ambient-
dried ones.
AB  - Polielektrolitni kompleksi (PEK) su atraktivni nosači sa potencijalom poboljšanja peroralne isporuke slabo rastvorljivih visokodoziranih lekovitih supstanci niske molekulske mase. Formulisanje čvrstih oralnih farmaceutskih oblika na bazi PEK zahteva njihovo sušenje, što može uticati na fizičko-hemijska i biofarmaceutska svojstva kompleksa. Cilj ove studije bio je da se ispita efekat sušenja raspršivanjem na svojstva PEK hitozana i ksantan gume u koje je inkorporiran ibuprofen i da se proceni kinetika oslobađanja lekovite supstance iz takvih PEK napunjenih u tvrde kapsule u poređenju sa odgovarajućim PEK koji su sušeni pod ambijentalnim uslovima. Prinos, sadržaj ibuprofena, efikasnost inkorporiranja i sadržaj vlage PEK sušenih raspršivanjem bili su niži nego kod PEK sušenih pod ambijentalnim uslovima. Bolja protočnost PEK osušenih raspršivanjem je posledica skoro sfernog oblika čestica, što je pokazano skenirajućom elektronskom mikroskopijom. Rezultati DSC i PXRD analiza su potvrdili amorfizaciju ibuprofena tokom sušenja raspršivanjem. Ispitivani PEK osušeni pod različitim uslovima imali su visoku sposobnost rehidratacije u 0,1 M hlorovodoničnoj kiselini (pH 1,2) i fosfatnom puferu pH 7,4. In vitro oslobađanje ibuprofena iz osušenih PEK bilo je kontrolisano tokom 12 h uz oslobađanje približno 30% inkorporiranog ibuprofena. PEK sušeni raspršivanjem obezbedili su bolju kontrolu difuzije ibuprofena iz nosača u poređenju sa onima sušenim pod ambijentalnim uslovima.
PB  - Savez farmaceutskih udruženja Srbije
T2  - Arhiv za farmaciju
T1  - Influence of spray-drying process on properties of chitosan/xanthan gum polyelectrolyte complexes as carriers for oral delivery of ibuprofen
T1  - Uticaj postupka sušenja raspršivanjem na svojstva polielektrolitnih kompleksa hitozana i ksantan gume kao nosača za peroralnu isporuku ibuprofena
VL  - 72
IS  - 1
SP  - 36
EP  - 60
DO  - 10.5937/arhfarm72-35133
ER  - 
@article{
author = "Ćirić, Ana and Milinković Budinčić, Jelena and Medarević, Đorđe and Dobričić, Vladimir and Rmandić, Milena and Barudžija, Tanja and Malenović, Anđelija and Petrović, Lidija and Đekić, Ljiljana",
year = "2022",
abstract = "Polyelectrolyte complexes (PECs) are attractive carriers with recognized potential to
enhance oral delivery of poorly soluble high-dosed low-molecular-weight drugs. The formulation
of solid oral dosage forms requires the drying of PECs, which may affect their physicochemical
and biopharmaceutical properties. The aim of this study was to investigate the effect of spray-
drying on the properties of ibuprofen-loaded chitosan/xanthan gum PECs and to assess the drug
release kinetics from such PECs filled into hard capsules in comparison with corresponding PECs
which are dried under ambient conditions. The yield, ibuprofen content, entrapment efficiency,
and residual moisture content of spray-dried PECs were lower than those of ambient-dried PECs.
Better flowability of spray-dried PECs was attributed to the almost spherical particle shape,
shown by scanning electron microscopy. DSC and PXRD analysis confirmed the amorphization
of ibuprofen during spray-drying. All the investigated PECs, obtained by drying under ambient
conditions as well as by spray-drying, had high rehydration capacity both in 0.1 M hydrochloric
acid (pH 1.2) and phosphate buffer pH 7.4. In vitro ibuprofen release from dried PECs was
controlled during 12 h with the release of approximately 30% of entrapped ibuprofen. Spray-dried
PECs provided better control of ibuprofen diffusion from the carrier compared to the ambient-
dried ones., Polielektrolitni kompleksi (PEK) su atraktivni nosači sa potencijalom poboljšanja peroralne isporuke slabo rastvorljivih visokodoziranih lekovitih supstanci niske molekulske mase. Formulisanje čvrstih oralnih farmaceutskih oblika na bazi PEK zahteva njihovo sušenje, što može uticati na fizičko-hemijska i biofarmaceutska svojstva kompleksa. Cilj ove studije bio je da se ispita efekat sušenja raspršivanjem na svojstva PEK hitozana i ksantan gume u koje je inkorporiran ibuprofen i da se proceni kinetika oslobađanja lekovite supstance iz takvih PEK napunjenih u tvrde kapsule u poređenju sa odgovarajućim PEK koji su sušeni pod ambijentalnim uslovima. Prinos, sadržaj ibuprofena, efikasnost inkorporiranja i sadržaj vlage PEK sušenih raspršivanjem bili su niži nego kod PEK sušenih pod ambijentalnim uslovima. Bolja protočnost PEK osušenih raspršivanjem je posledica skoro sfernog oblika čestica, što je pokazano skenirajućom elektronskom mikroskopijom. Rezultati DSC i PXRD analiza su potvrdili amorfizaciju ibuprofena tokom sušenja raspršivanjem. Ispitivani PEK osušeni pod različitim uslovima imali su visoku sposobnost rehidratacije u 0,1 M hlorovodoničnoj kiselini (pH 1,2) i fosfatnom puferu pH 7,4. In vitro oslobađanje ibuprofena iz osušenih PEK bilo je kontrolisano tokom 12 h uz oslobađanje približno 30% inkorporiranog ibuprofena. PEK sušeni raspršivanjem obezbedili su bolju kontrolu difuzije ibuprofena iz nosača u poređenju sa onima sušenim pod ambijentalnim uslovima.",
publisher = "Savez farmaceutskih udruženja Srbije",
journal = "Arhiv za farmaciju",
title = "Influence of spray-drying process on properties of chitosan/xanthan gum polyelectrolyte complexes as carriers for oral delivery of ibuprofen, Uticaj postupka sušenja raspršivanjem na svojstva polielektrolitnih kompleksa hitozana i ksantan gume kao nosača za peroralnu isporuku ibuprofena",
volume = "72",
number = "1",
pages = "36-60",
doi = "10.5937/arhfarm72-35133"
}
Ćirić, A., Milinković Budinčić, J., Medarević, Đ., Dobričić, V., Rmandić, M., Barudžija, T., Malenović, A., Petrović, L.,& Đekić, L.. (2022). Influence of spray-drying process on properties of chitosan/xanthan gum polyelectrolyte complexes as carriers for oral delivery of ibuprofen. in Arhiv za farmaciju
Savez farmaceutskih udruženja Srbije., 72(1), 36-60.
https://doi.org/10.5937/arhfarm72-35133
Ćirić A, Milinković Budinčić J, Medarević Đ, Dobričić V, Rmandić M, Barudžija T, Malenović A, Petrović L, Đekić L. Influence of spray-drying process on properties of chitosan/xanthan gum polyelectrolyte complexes as carriers for oral delivery of ibuprofen. in Arhiv za farmaciju. 2022;72(1):36-60.
doi:10.5937/arhfarm72-35133 .
Ćirić, Ana, Milinković Budinčić, Jelena, Medarević, Đorđe, Dobričić, Vladimir, Rmandić, Milena, Barudžija, Tanja, Malenović, Anđelija, Petrović, Lidija, Đekić, Ljiljana, "Influence of spray-drying process on properties of chitosan/xanthan gum polyelectrolyte complexes as carriers for oral delivery of ibuprofen" in Arhiv za farmaciju, 72, no. 1 (2022):36-60,
https://doi.org/10.5937/arhfarm72-35133 . .
3
3

Effect of ibuprofen entrapment procedure on physicochemical and controlled drug release performances of chitosan/xanthan gum polyelectrolyte complexes

Ćirić, Ana; Medarević, Đorđe; Čalija, Bojan; Dobričić, Vladimir; Rmandić, Milena; Barudžija, Tanja; Malenović, Anđelija; Đekić, Ljiljana

(Elsevier B.V., 2021)

TY  - JOUR
AU  - Ćirić, Ana
AU  - Medarević, Đorđe
AU  - Čalija, Bojan
AU  - Dobričić, Vladimir
AU  - Rmandić, Milena
AU  - Barudžija, Tanja
AU  - Malenović, Anđelija
AU  - Đekić, Ljiljana
PY  - 2021
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3759
AB  - The effect of the entrapment procedure of a poorly water soluble drug (ibuprofen) on physicochemical and drug release performances of chitosan/xanthan polyelectrolyte complexes (PECs) was investigated to achieve controlled drug release as the ultimate goal. The formation of PECs for two drug entrapment procedures (before or after the mixing of polymers) at pH 4.6 and 5.6 and three chitosan-to-xanthan mass ratios (1:1, 1:2 and 1:3) was observed by continuous decrease in conductivity during the PECs formation and increased apparent viscosity and hysteresis values. The most extensive crosslinking was observed with ibuprofen added before the PECs formation at pH 4.6 and chitosan-to-xanthan mass ratio 1:1. The PECs prepared at polymers' mass ratios 1:2 and 1:3 had higher yield and drug entrapment efficiency. DSC and FT-IR analysis confirmed ibuprofen entrapment in PECs and the partial disruption of its crystallinity. All ibuprofen release profiles were similar, with 60–70% of drug released after 12 h, mainly by diffusion, but erosion and polymer chain relaxation were also included. Potentially optimal can be considered the PEC prepared at pH 4.6, ibuprofen entrapped before the mixing of polymers at chitosan-to-xanthan mass ratio 1:2, which provided controlled drug release by zero-order kinetics, high yield, and drug entrapment efficiency.
PB  - Elsevier B.V.
T2  - International Journal of Biological Macromolecules
T1  - Effect of ibuprofen entrapment procedure on physicochemical and controlled drug release performances of chitosan/xanthan gum polyelectrolyte complexes
VL  - 167
SP  - 547
EP  - 558
DO  - 10.1016/j.ijbiomac.2020.11.201
ER  - 
@article{
author = "Ćirić, Ana and Medarević, Đorđe and Čalija, Bojan and Dobričić, Vladimir and Rmandić, Milena and Barudžija, Tanja and Malenović, Anđelija and Đekić, Ljiljana",
year = "2021",
abstract = "The effect of the entrapment procedure of a poorly water soluble drug (ibuprofen) on physicochemical and drug release performances of chitosan/xanthan polyelectrolyte complexes (PECs) was investigated to achieve controlled drug release as the ultimate goal. The formation of PECs for two drug entrapment procedures (before or after the mixing of polymers) at pH 4.6 and 5.6 and three chitosan-to-xanthan mass ratios (1:1, 1:2 and 1:3) was observed by continuous decrease in conductivity during the PECs formation and increased apparent viscosity and hysteresis values. The most extensive crosslinking was observed with ibuprofen added before the PECs formation at pH 4.6 and chitosan-to-xanthan mass ratio 1:1. The PECs prepared at polymers' mass ratios 1:2 and 1:3 had higher yield and drug entrapment efficiency. DSC and FT-IR analysis confirmed ibuprofen entrapment in PECs and the partial disruption of its crystallinity. All ibuprofen release profiles were similar, with 60–70% of drug released after 12 h, mainly by diffusion, but erosion and polymer chain relaxation were also included. Potentially optimal can be considered the PEC prepared at pH 4.6, ibuprofen entrapped before the mixing of polymers at chitosan-to-xanthan mass ratio 1:2, which provided controlled drug release by zero-order kinetics, high yield, and drug entrapment efficiency.",
publisher = "Elsevier B.V.",
journal = "International Journal of Biological Macromolecules",
title = "Effect of ibuprofen entrapment procedure on physicochemical and controlled drug release performances of chitosan/xanthan gum polyelectrolyte complexes",
volume = "167",
pages = "547-558",
doi = "10.1016/j.ijbiomac.2020.11.201"
}
Ćirić, A., Medarević, Đ., Čalija, B., Dobričić, V., Rmandić, M., Barudžija, T., Malenović, A.,& Đekić, L.. (2021). Effect of ibuprofen entrapment procedure on physicochemical and controlled drug release performances of chitosan/xanthan gum polyelectrolyte complexes. in International Journal of Biological Macromolecules
Elsevier B.V.., 167, 547-558.
https://doi.org/10.1016/j.ijbiomac.2020.11.201
Ćirić A, Medarević Đ, Čalija B, Dobričić V, Rmandić M, Barudžija T, Malenović A, Đekić L. Effect of ibuprofen entrapment procedure on physicochemical and controlled drug release performances of chitosan/xanthan gum polyelectrolyte complexes. in International Journal of Biological Macromolecules. 2021;167:547-558.
doi:10.1016/j.ijbiomac.2020.11.201 .
Ćirić, Ana, Medarević, Đorđe, Čalija, Bojan, Dobričić, Vladimir, Rmandić, Milena, Barudžija, Tanja, Malenović, Anđelija, Đekić, Ljiljana, "Effect of ibuprofen entrapment procedure on physicochemical and controlled drug release performances of chitosan/xanthan gum polyelectrolyte complexes" in International Journal of Biological Macromolecules, 167 (2021):547-558,
https://doi.org/10.1016/j.ijbiomac.2020.11.201 . .
21
3
22

Evaluation of potential of amino acids for amorphization and dissolution improvement of carvedilol

Pešić, Nikola; Dapčević, Aleksandra; Ivković, Branka; Barudžija, Tanja; Krkobabić, Mirjana; Ibrić, Svetlana; Medarević, Đorđe

(International Association for Pharmaceutical Technology, Mainz, Germany, 2021)

TY  - CONF
AU  - Pešić, Nikola
AU  - Dapčević, Aleksandra
AU  - Ivković, Branka
AU  - Barudžija, Tanja
AU  - Krkobabić, Mirjana
AU  - Ibrić, Svetlana
AU  - Medarević, Đorđe
PY  - 2021
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/5327
AB  - INTRODUCTION
The development of formulations with amorphous form of drug is one of the most commonly used approaches for improving solubility and bioavailability of poorly soluble drugs. Solid dispersions with different hydrophilic polymers have been widely investigated during the last decades as an approach for development of stable formulations with amorphous drug. However, high weight percentage of polymer is usually required to ensure molecular mixing with drug and stability against drug recrystallization, making difficult formulation of final dosage form [1]. In the last years, formulations of co-amorphous systems, where amorphous drug is stabilized with low molecular weight components (drug or excipient) have been successfully used for improving solubility and bioavailability of poorly soluble drugs, with overcoming limitations of solid dispersions [2]. This study investigated effect of three amino acids (AAs) on amorphization of carvedilol (CRV) by dry milling process, with the overall aim to improve CRV dissolution.
EXPERIMENTAL METHODS
Materials
CRV (Hemofarm a.d., Serbia) was used as a model poorly soluble drug. L-tryptophan (TRY, Carl Roth, Germany), L-phenylalanine (PHE, Carl Roth, Germany) and L-lysine (LYS, Acros Organics, Belgium) were used as AAs.
Samples preparation and physicochemical characterization
Mixture of CRV and each of AAs in CRV:AAs molar ratios 1:0.5, 1:1 and 1:2 were placed in 125 ml stainless steel milling jar and subject to milling in high-energy planetary ball mill (PM 100, Retch, Germany) during 4 h, with 30 min break after 2 h. Milling was performed using 10 milling balls of 10 mm diameter with rotation speed of mill of 400 rpm.
Changes of CRV and AAs physical state due to milling were assessed by Powder X-ray Diffraction (PXRD, Philips PW1050, The Netherlands) and Differential Scanning Calorimetry (DSC, DSC 1, Mettler Toledo, Germany). In vitro dissolution testing was performed under non-sink conditions using rotating paddle apparatus (Erweka DT70, Erweka, Germany). Samples containing 100 mg of CRV were tested in 250 ml of phosphate buffer (pH=6.8) during
8 h, with paddle rotation speed of 50 rpm. Concentration of dissolved CRV was determined by HPLC (Dionex Ultimate 3000, Thermo scientific, USA). Area under dissolution curve (AUC) was calculated for each formulation and compared with AUC of CRV dissolution profile.
RESULTS AND DISCUSSION
Presence of diffraction peaks at 6.0, 15.0, 17.65, 18.55 and 24.5° 2θ and sharp melting endotherm at 116.6 °C confirmed that raw CRV was present in crystalline polymorph form II [3]. Significant reduction in crystallinity was observed for all samples prepared with TRY and PHE, while there were no peaks of CRV and AA on the PXRD pattern of CRV:TRY 1:2 sample. This was confirmed by the DSC analysis, where melting peaks of CRV and AAs were present on the thermograms of all samples except CRV:TRY 1:2 sample. This sample showed only exotherm at 102 °C due to recrystallization of TRY, followed by its melting at 266 °C, confirming CRV amorphization induced by milling. High crystallinity on PXRD patterns of all samples milled with LYS, together with the presence of melting peaks of both CRV and AA on the DSC thermograms, showed that LYS was the least suitable AA for amorphization of CRV. Despite that TRY and PHE induced partial or complete amorphization of CRV, these AAs were less efficient in improving dissolution of CRV compared to LYS. The highest supersaturation of CRV was achieved from CRV:LYS 1:1 sample with almost 3 times higher AUC compared to pure CRV. It is evident that maximum CRV concentration from this sample was reached in the first 90 min and is maintained during the entire test. Although similar CRV concentration was achieved after 60 min for CRV:LYS 1:2 sample, it is evident that CRV concentration started to decrease after this time point.
CONCLUSION
Complete amorphization was achieved by milling of only CRV:TRY 1:2 mixture, while significant decrease in crystallinity was observed for other samples milled with TRY and PHE. Although milling of CRV with LYS resulted in samples with the highest crystallinity, samples prepared with this AA in 1:1 and 1:2 molar ratios were the most efficient in providing CRV supersaturation. CRV:LYS 1:1 molar ratio can be considered as optimal, as achieved supersaturation was maintained during 8 h.
PB  - International Association for Pharmaceutical Technology, Mainz, Germany
C3  - 12th World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, 11-14 May 2021, Vienna, Austria, Virtual meeting
T1  - Evaluation of potential of amino acids for amorphization and dissolution improvement of carvedilol
SP  - 1
EP  - 2
UR  - https://hdl.handle.net/21.15107/rcub_farfar_5327
ER  - 
@conference{
author = "Pešić, Nikola and Dapčević, Aleksandra and Ivković, Branka and Barudžija, Tanja and Krkobabić, Mirjana and Ibrić, Svetlana and Medarević, Đorđe",
year = "2021",
abstract = "INTRODUCTION
The development of formulations with amorphous form of drug is one of the most commonly used approaches for improving solubility and bioavailability of poorly soluble drugs. Solid dispersions with different hydrophilic polymers have been widely investigated during the last decades as an approach for development of stable formulations with amorphous drug. However, high weight percentage of polymer is usually required to ensure molecular mixing with drug and stability against drug recrystallization, making difficult formulation of final dosage form [1]. In the last years, formulations of co-amorphous systems, where amorphous drug is stabilized with low molecular weight components (drug or excipient) have been successfully used for improving solubility and bioavailability of poorly soluble drugs, with overcoming limitations of solid dispersions [2]. This study investigated effect of three amino acids (AAs) on amorphization of carvedilol (CRV) by dry milling process, with the overall aim to improve CRV dissolution.
EXPERIMENTAL METHODS
Materials
CRV (Hemofarm a.d., Serbia) was used as a model poorly soluble drug. L-tryptophan (TRY, Carl Roth, Germany), L-phenylalanine (PHE, Carl Roth, Germany) and L-lysine (LYS, Acros Organics, Belgium) were used as AAs.
Samples preparation and physicochemical characterization
Mixture of CRV and each of AAs in CRV:AAs molar ratios 1:0.5, 1:1 and 1:2 were placed in 125 ml stainless steel milling jar and subject to milling in high-energy planetary ball mill (PM 100, Retch, Germany) during 4 h, with 30 min break after 2 h. Milling was performed using 10 milling balls of 10 mm diameter with rotation speed of mill of 400 rpm.
Changes of CRV and AAs physical state due to milling were assessed by Powder X-ray Diffraction (PXRD, Philips PW1050, The Netherlands) and Differential Scanning Calorimetry (DSC, DSC 1, Mettler Toledo, Germany). In vitro dissolution testing was performed under non-sink conditions using rotating paddle apparatus (Erweka DT70, Erweka, Germany). Samples containing 100 mg of CRV were tested in 250 ml of phosphate buffer (pH=6.8) during
8 h, with paddle rotation speed of 50 rpm. Concentration of dissolved CRV was determined by HPLC (Dionex Ultimate 3000, Thermo scientific, USA). Area under dissolution curve (AUC) was calculated for each formulation and compared with AUC of CRV dissolution profile.
RESULTS AND DISCUSSION
Presence of diffraction peaks at 6.0, 15.0, 17.65, 18.55 and 24.5° 2θ and sharp melting endotherm at 116.6 °C confirmed that raw CRV was present in crystalline polymorph form II [3]. Significant reduction in crystallinity was observed for all samples prepared with TRY and PHE, while there were no peaks of CRV and AA on the PXRD pattern of CRV:TRY 1:2 sample. This was confirmed by the DSC analysis, where melting peaks of CRV and AAs were present on the thermograms of all samples except CRV:TRY 1:2 sample. This sample showed only exotherm at 102 °C due to recrystallization of TRY, followed by its melting at 266 °C, confirming CRV amorphization induced by milling. High crystallinity on PXRD patterns of all samples milled with LYS, together with the presence of melting peaks of both CRV and AA on the DSC thermograms, showed that LYS was the least suitable AA for amorphization of CRV. Despite that TRY and PHE induced partial or complete amorphization of CRV, these AAs were less efficient in improving dissolution of CRV compared to LYS. The highest supersaturation of CRV was achieved from CRV:LYS 1:1 sample with almost 3 times higher AUC compared to pure CRV. It is evident that maximum CRV concentration from this sample was reached in the first 90 min and is maintained during the entire test. Although similar CRV concentration was achieved after 60 min for CRV:LYS 1:2 sample, it is evident that CRV concentration started to decrease after this time point.
CONCLUSION
Complete amorphization was achieved by milling of only CRV:TRY 1:2 mixture, while significant decrease in crystallinity was observed for other samples milled with TRY and PHE. Although milling of CRV with LYS resulted in samples with the highest crystallinity, samples prepared with this AA in 1:1 and 1:2 molar ratios were the most efficient in providing CRV supersaturation. CRV:LYS 1:1 molar ratio can be considered as optimal, as achieved supersaturation was maintained during 8 h.",
publisher = "International Association for Pharmaceutical Technology, Mainz, Germany",
journal = "12th World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, 11-14 May 2021, Vienna, Austria, Virtual meeting",
title = "Evaluation of potential of amino acids for amorphization and dissolution improvement of carvedilol",
pages = "1-2",
url = "https://hdl.handle.net/21.15107/rcub_farfar_5327"
}
Pešić, N., Dapčević, A., Ivković, B., Barudžija, T., Krkobabić, M., Ibrić, S.,& Medarević, Đ.. (2021). Evaluation of potential of amino acids for amorphization and dissolution improvement of carvedilol. in 12th World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, 11-14 May 2021, Vienna, Austria, Virtual meeting
International Association for Pharmaceutical Technology, Mainz, Germany., 1-2.
https://hdl.handle.net/21.15107/rcub_farfar_5327
Pešić N, Dapčević A, Ivković B, Barudžija T, Krkobabić M, Ibrić S, Medarević Đ. Evaluation of potential of amino acids for amorphization and dissolution improvement of carvedilol. in 12th World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, 11-14 May 2021, Vienna, Austria, Virtual meeting. 2021;:1-2.
https://hdl.handle.net/21.15107/rcub_farfar_5327 .
Pešić, Nikola, Dapčević, Aleksandra, Ivković, Branka, Barudžija, Tanja, Krkobabić, Mirjana, Ibrić, Svetlana, Medarević, Đorđe, "Evaluation of potential of amino acids for amorphization and dissolution improvement of carvedilol" in 12th World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, 11-14 May 2021, Vienna, Austria, Virtual meeting (2021):1-2,
https://hdl.handle.net/21.15107/rcub_farfar_5327 .