Holclajtner-Antunović, Ivanka

Link to this page

Authority KeyName Variants
be9a827e-c8fc-49c1-9ea4-6e5ccb7a2ccc
  • Holclajtner-Antunović, Ivanka (2)
Projects

Author's Bibliography

Preparation and characterisation of amino-functionalized pore-expanded mesoporous silica for carbon dioxide capture

Popa, Alexandru; Borcanescu, Silvana; Holclajtner-Antunović, Ivanka; Bajuk-Bogdanović, Danica; Uskoković-Marković, Snežana

(Springer Nature, 2021)

TY  - JOUR
AU  - Popa, Alexandru
AU  - Borcanescu, Silvana
AU  - Holclajtner-Antunović, Ivanka
AU  - Bajuk-Bogdanović, Danica
AU  - Uskoković-Marković, Snežana
PY  - 2021
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3726
AB  - In this study, the preparation of some large-pore ordered mesoporous silicas using a proper surfactant with different swelling agents was carried out. The synthesis of conventional SBA-15 was modified to obtain pore-expanded materials, with pore diameters up to 10 nm. To use a micelle swelling agent with a moderate swelling ability, three swelling agents were selected: 1-phenyl-decane (Dec), butyl benzene (BB), and mesitylene (Mes). These syntheses aimed to achieve a pore diameter enlargement but at the same time to avoid the formation of heterogeneous and/or poorly defined nanostructure of silica. The CO2 adsorbents were obtained by post-synthesis functionalization treatments carried out by grafting with 3-aminopropyl triethoxysilane. The CO2 adsorption/desorption experiments showed that carbon dioxide sorption capacities depend on the textural characteristics and the temperature used for the adsorption process. Good CO2 adsorption capacities were obtained for all prepared adsorbents, especially for SSBA-15-Mes-sil and SSBA-15-BB-sil samples. At 50 °C, the SSBA-15-Mes-sil sample has an adsorption capacity of 3.58 mmol CO2/g SiO2, and an efficiency of amino groups of 0.99 mmol CO2/mmol NH2. The results of adsorption capacities are comparable or even superior with the ones reported in literature for mesoporous silica functionalized with different amines. After nine adsorption–desorption cycles, the performance of the SSBA-15-Mes-sil adsorbent is relatively stable, with a low decrease in the adsorption capacity (0.1 mmol/g of CO2, i.e., 2.8% of initial capacity). These studies show the potential of mesoporous silica for carbon dioxide capture.
PB  - Springer Nature
T2  - Journal of Porous Materials
T1  - Preparation and characterisation of amino-functionalized pore-expanded mesoporous silica for carbon dioxide capture
VL  - 28
SP  - 143
EP  - 156
DO  - 10.1007/s10934-020-00974-1
ER  - 
@article{
author = "Popa, Alexandru and Borcanescu, Silvana and Holclajtner-Antunović, Ivanka and Bajuk-Bogdanović, Danica and Uskoković-Marković, Snežana",
year = "2021",
abstract = "In this study, the preparation of some large-pore ordered mesoporous silicas using a proper surfactant with different swelling agents was carried out. The synthesis of conventional SBA-15 was modified to obtain pore-expanded materials, with pore diameters up to 10 nm. To use a micelle swelling agent with a moderate swelling ability, three swelling agents were selected: 1-phenyl-decane (Dec), butyl benzene (BB), and mesitylene (Mes). These syntheses aimed to achieve a pore diameter enlargement but at the same time to avoid the formation of heterogeneous and/or poorly defined nanostructure of silica. The CO2 adsorbents were obtained by post-synthesis functionalization treatments carried out by grafting with 3-aminopropyl triethoxysilane. The CO2 adsorption/desorption experiments showed that carbon dioxide sorption capacities depend on the textural characteristics and the temperature used for the adsorption process. Good CO2 adsorption capacities were obtained for all prepared adsorbents, especially for SSBA-15-Mes-sil and SSBA-15-BB-sil samples. At 50 °C, the SSBA-15-Mes-sil sample has an adsorption capacity of 3.58 mmol CO2/g SiO2, and an efficiency of amino groups of 0.99 mmol CO2/mmol NH2. The results of adsorption capacities are comparable or even superior with the ones reported in literature for mesoporous silica functionalized with different amines. After nine adsorption–desorption cycles, the performance of the SSBA-15-Mes-sil adsorbent is relatively stable, with a low decrease in the adsorption capacity (0.1 mmol/g of CO2, i.e., 2.8% of initial capacity). These studies show the potential of mesoporous silica for carbon dioxide capture.",
publisher = "Springer Nature",
journal = "Journal of Porous Materials",
title = "Preparation and characterisation of amino-functionalized pore-expanded mesoporous silica for carbon dioxide capture",
volume = "28",
pages = "143-156",
doi = "10.1007/s10934-020-00974-1"
}
Popa, A., Borcanescu, S., Holclajtner-Antunović, I., Bajuk-Bogdanović, D.,& Uskoković-Marković, S.. (2021). Preparation and characterisation of amino-functionalized pore-expanded mesoporous silica for carbon dioxide capture. in Journal of Porous Materials
Springer Nature., 28, 143-156.
https://doi.org/10.1007/s10934-020-00974-1
Popa A, Borcanescu S, Holclajtner-Antunović I, Bajuk-Bogdanović D, Uskoković-Marković S. Preparation and characterisation of amino-functionalized pore-expanded mesoporous silica for carbon dioxide capture. in Journal of Porous Materials. 2021;28:143-156.
doi:10.1007/s10934-020-00974-1 .
Popa, Alexandru, Borcanescu, Silvana, Holclajtner-Antunović, Ivanka, Bajuk-Bogdanović, Danica, Uskoković-Marković, Snežana, "Preparation and characterisation of amino-functionalized pore-expanded mesoporous silica for carbon dioxide capture" in Journal of Porous Materials, 28 (2021):143-156,
https://doi.org/10.1007/s10934-020-00974-1 . .
19
4
18

Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?

Bajuk-Bogdanovic, Danica; Holclajtner-Antunović, Ivanka; Jovanović, Zoran; Mravik, Željko; Krstić, Jugoslav; Uskoković-Marković, Snežana; Vujkovic, Milica

(Springer, 2019)

TY  - JOUR
AU  - Bajuk-Bogdanovic, Danica
AU  - Holclajtner-Antunović, Ivanka
AU  - Jovanović, Zoran
AU  - Mravik, Željko
AU  - Krstić, Jugoslav
AU  - Uskoković-Marković, Snežana
AU  - Vujkovic, Milica
PY  - 2019
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3455
AB  - The synergistic effects between two Keggin-type heteropoly acids (HPAs) and carbon surface were examined and elucidated. An improved high rate capability (and potential high capacitor electrode for supercapacitors) of the hybrid materials, obtained by anchoring of α-dodecamolybdophosphoric (MoPA), α-dodecatungstophosphoric (WPA), and their mixture to activated carbon (AC), was achieved through the different mechanism of interaction. In order to elaborate this, a detailed analysis of AC-HPA composites has been performed by scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, temperature-programmed desorption (TPD), Fourier-transform infrared spectroscopy (FTIR), micro Raman spectroscopy, and zeta potential measurements. The zeta potential measurements revealed positive charge of carbon surface thus indicating attractive interactions with negatively charged Keggin anion. The surface analysis has shown that WPA spontaneously reduces the carbon surface, while interaction with MoPA leads to its oxidation. As the consequence of the tailoring of the functional groups at carbon surface through HPAs’ action, the distortion of cyclic voltammograms (CVs) decreased in the following order: AC-MoPA, AC-MoPA-WPA, and AC-WPA. A prominent rectangular shape of AC-WPA, even at an extremely high scan rate of 400 mVs−1, was measured, which is rarely demonstrated for carbon-based composites. By applying the theory of electrode potentials, the HPA-AC synergistic effect was explained and discussed in terms of charge storage improvement of HPA-modified carbon.
PB  - Springer
T2  - Journal of Solid State Electrochemistry
T1  - Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?
VL  - 23
IS  - 9
SP  - 2747
EP  - 2758
DO  - 10.1007/s10008-019-04369-4
ER  - 
@article{
author = "Bajuk-Bogdanovic, Danica and Holclajtner-Antunović, Ivanka and Jovanović, Zoran and Mravik, Željko and Krstić, Jugoslav and Uskoković-Marković, Snežana and Vujkovic, Milica",
year = "2019",
abstract = "The synergistic effects between two Keggin-type heteropoly acids (HPAs) and carbon surface were examined and elucidated. An improved high rate capability (and potential high capacitor electrode for supercapacitors) of the hybrid materials, obtained by anchoring of α-dodecamolybdophosphoric (MoPA), α-dodecatungstophosphoric (WPA), and their mixture to activated carbon (AC), was achieved through the different mechanism of interaction. In order to elaborate this, a detailed analysis of AC-HPA composites has been performed by scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, temperature-programmed desorption (TPD), Fourier-transform infrared spectroscopy (FTIR), micro Raman spectroscopy, and zeta potential measurements. The zeta potential measurements revealed positive charge of carbon surface thus indicating attractive interactions with negatively charged Keggin anion. The surface analysis has shown that WPA spontaneously reduces the carbon surface, while interaction with MoPA leads to its oxidation. As the consequence of the tailoring of the functional groups at carbon surface through HPAs’ action, the distortion of cyclic voltammograms (CVs) decreased in the following order: AC-MoPA, AC-MoPA-WPA, and AC-WPA. A prominent rectangular shape of AC-WPA, even at an extremely high scan rate of 400 mVs−1, was measured, which is rarely demonstrated for carbon-based composites. By applying the theory of electrode potentials, the HPA-AC synergistic effect was explained and discussed in terms of charge storage improvement of HPA-modified carbon.",
publisher = "Springer",
journal = "Journal of Solid State Electrochemistry",
title = "Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?",
volume = "23",
number = "9",
pages = "2747-2758",
doi = "10.1007/s10008-019-04369-4"
}
Bajuk-Bogdanovic, D., Holclajtner-Antunović, I., Jovanović, Z., Mravik, Ž., Krstić, J., Uskoković-Marković, S.,& Vujkovic, M.. (2019). Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?. in Journal of Solid State Electrochemistry
Springer., 23(9), 2747-2758.
https://doi.org/10.1007/s10008-019-04369-4
Bajuk-Bogdanovic D, Holclajtner-Antunović I, Jovanović Z, Mravik Ž, Krstić J, Uskoković-Marković S, Vujkovic M. Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?. in Journal of Solid State Electrochemistry. 2019;23(9):2747-2758.
doi:10.1007/s10008-019-04369-4 .
Bajuk-Bogdanovic, Danica, Holclajtner-Antunović, Ivanka, Jovanović, Zoran, Mravik, Željko, Krstić, Jugoslav, Uskoković-Marković, Snežana, Vujkovic, Milica, "Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?" in Journal of Solid State Electrochemistry, 23, no. 9 (2019):2747-2758,
https://doi.org/10.1007/s10008-019-04369-4 . .
3
2
3