Mian, Md Yeunus

Link to this page

Authority KeyName Variants
orcid::0000-0002-7520-1750
  • Mian, Md Yeunus (6)
Projects
Behavioral ?ffects following repeated administration of newly synthesized ligands selective for distinct subtypes of GABAA receptor benzodiazepine binding site: comparison with standard psychopharmacologic drugs Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200161 (University of Belgrade, Faculty of Pharmacy)
Chemistry synthesis funded by NIH (DA-043204, R01NS076517) to JMC DA‐ 043204 and NS‐076517 and the National Science Foundation, Divi- sion of Chemistry [Grant CHE‐1625735].
Henry and Nelly Pence Foundation Trust AA029023, DA-043204, DA054177, NS-076517 NanoCellEmoCog - Neuroimmune aspects of mood, anxiety and cognitive effects of leads/drug candidates acting at GABAA and/or sigma-2 receptors: In vitro/in vivo delineation by nano- and hiPSC-based platform
Milwaukee Institute of Drug Discovery National Science Foundation, Division of Chemistry [CHE-1625735]
Naval Research (Award No. N00014-15-WX-0-0149). NIH for generous financial support (DA-043204, R01NS076517)
The authors thank the following granting agencies for support: DA011792, DA-043204, and NS-076517 and the National Science Foundation, Division of Chemistry [Grant CHE-1625735]. The Henry and Nellie Pence Founda
The Milwaukee Institute of Drug Discovery The University of Wisconsin-Milwaukee Research Foundation
The University of Wisconsin-Milwaukee Shimadzu Laboratory University of Wisconsin-Milwaukee Research Foundation
UW-Milwaukee Shimadzu Laboratory for Advanced and Applied Analytical Chemistry

Author's Bibliography

New Imidazodiazepine Analogue, 5-(8-Bromo-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole, Provides a Simplified Synthetic Scheme, High Oral Plasma and Brain Exposures, and Produces Antiseizure Efficacy in Mice, and Antiepileptogenic Activity in Neural Networks in Brain Slices from a Patient with Mesial Temporal Lobe Epilepsy

Sharmin, Dishary; Divović, Branka; Ping, Xingjie; Cerne, Rok; Smith, Jodi L.; Rezvanian, Sepideh; Mondal, Prithu; Michelle, Meyer Jean; Kiley, Molly E.; Arnold, Leggy A.; Mian, Md Yeunus; Pandey, Kamal P.; Jin, Xiaoming; Mitrović, Jelena; Đorović, Đorđe; Lippa, Arnold; Cook, James M.; Golani, Lalit K.; Scholze, Petra; Savić, Miroslav; Witkin, Jeffrey M.

(American Chemical Society, 2024)

TY  - JOUR
AU  - Sharmin, Dishary
AU  - Divović, Branka
AU  - Ping, Xingjie
AU  - Cerne, Rok
AU  - Smith, Jodi L.
AU  - Rezvanian, Sepideh
AU  - Mondal, Prithu
AU  - Michelle, Meyer Jean
AU  - Kiley, Molly E.
AU  - Arnold, Leggy A.
AU  - Mian, Md Yeunus
AU  - Pandey, Kamal P.
AU  - Jin, Xiaoming
AU  - Mitrović, Jelena
AU  - Đorović, Đorđe
AU  - Lippa, Arnold
AU  - Cook, James M.
AU  - Golani, Lalit K.
AU  - Scholze, Petra
AU  - Savić, Miroslav
AU  - Witkin, Jeffrey M.
PY  - 2024
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/5505
AB  - KRM-II-81 (1) is an imidazodiazepine GABAA receptor (GABAAR) potentiator with broad antiseizure efficacy and a low sedative burden. A brominated analogue, DS-II-73 (5), was synthesized and pharmacologically characterized as a potential backup compound as KRM-II-81 moves forward into development. The synthesis from 2-amino-5-bromophenyl)(pyridin-2yl)methanone (6) was processed in five steps with an overall yield of 38% and without the need for a palladium catalyst. GABAAR binding occurred with a Ki of 150 nM, and only 3 of 41 screened binding sites produced inhibition ≥50% at 10 μM, and the potency to induce cytotoxicity was ≥240 mM. DS-II-73 was selective for α2/3/5- over that of α1-containing GABAARs. Oral exposure of plasma and brain of rats was more than sufficient to functionally impact GABAARs. Tonic convulsions in mice and lethality induced by pentylenetetrazol were suppressed by DS-II-73 after oral administration and latencies to clonic and tonic seizures were prolonged. Cortical slice preparations from a patient with pharmacoresistant epilepsy (mesial temporal lobe) showed decreases in the frequency of local field potentials by DS-II-73. As with KRM-II-81, the motor-impairing effects of DS-II-73 were low compared to diazepam. Molecular docking studies of DS-II-73 with the α1β3γ2L-configured GABAAR showed low interaction with α1His102 that is suggested as a potential molecular mechanism for its low sedative side effects. These findings support the viability of DS-II-73 as a backup molecule for its ethynyl analogue, KRM-II-81, with the human tissue data providing translational credibility.
PB  - American Chemical Society
T2  - ACS Chemical Neuroscience
T1  - New Imidazodiazepine Analogue, 5-(8-Bromo-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole, Provides a Simplified Synthetic Scheme, High Oral Plasma and Brain Exposures, and Produces Antiseizure Efficacy in Mice, and Antiepileptogenic Activity in Neural Networks in Brain Slices from a Patient with Mesial Temporal Lobe Epilepsy
VL  - 15
IS  - 3
SP  - 517
EP  - 526
DO  - 10.1021/acschemneuro.3c00555
ER  - 
@article{
author = "Sharmin, Dishary and Divović, Branka and Ping, Xingjie and Cerne, Rok and Smith, Jodi L. and Rezvanian, Sepideh and Mondal, Prithu and Michelle, Meyer Jean and Kiley, Molly E. and Arnold, Leggy A. and Mian, Md Yeunus and Pandey, Kamal P. and Jin, Xiaoming and Mitrović, Jelena and Đorović, Đorđe and Lippa, Arnold and Cook, James M. and Golani, Lalit K. and Scholze, Petra and Savić, Miroslav and Witkin, Jeffrey M.",
year = "2024",
abstract = "KRM-II-81 (1) is an imidazodiazepine GABAA receptor (GABAAR) potentiator with broad antiseizure efficacy and a low sedative burden. A brominated analogue, DS-II-73 (5), was synthesized and pharmacologically characterized as a potential backup compound as KRM-II-81 moves forward into development. The synthesis from 2-amino-5-bromophenyl)(pyridin-2yl)methanone (6) was processed in five steps with an overall yield of 38% and without the need for a palladium catalyst. GABAAR binding occurred with a Ki of 150 nM, and only 3 of 41 screened binding sites produced inhibition ≥50% at 10 μM, and the potency to induce cytotoxicity was ≥240 mM. DS-II-73 was selective for α2/3/5- over that of α1-containing GABAARs. Oral exposure of plasma and brain of rats was more than sufficient to functionally impact GABAARs. Tonic convulsions in mice and lethality induced by pentylenetetrazol were suppressed by DS-II-73 after oral administration and latencies to clonic and tonic seizures were prolonged. Cortical slice preparations from a patient with pharmacoresistant epilepsy (mesial temporal lobe) showed decreases in the frequency of local field potentials by DS-II-73. As with KRM-II-81, the motor-impairing effects of DS-II-73 were low compared to diazepam. Molecular docking studies of DS-II-73 with the α1β3γ2L-configured GABAAR showed low interaction with α1His102 that is suggested as a potential molecular mechanism for its low sedative side effects. These findings support the viability of DS-II-73 as a backup molecule for its ethynyl analogue, KRM-II-81, with the human tissue data providing translational credibility.",
publisher = "American Chemical Society",
journal = "ACS Chemical Neuroscience",
title = "New Imidazodiazepine Analogue, 5-(8-Bromo-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole, Provides a Simplified Synthetic Scheme, High Oral Plasma and Brain Exposures, and Produces Antiseizure Efficacy in Mice, and Antiepileptogenic Activity in Neural Networks in Brain Slices from a Patient with Mesial Temporal Lobe Epilepsy",
volume = "15",
number = "3",
pages = "517-526",
doi = "10.1021/acschemneuro.3c00555"
}
Sharmin, D., Divović, B., Ping, X., Cerne, R., Smith, J. L., Rezvanian, S., Mondal, P., Michelle, M. J., Kiley, M. E., Arnold, L. A., Mian, M. Y., Pandey, K. P., Jin, X., Mitrović, J., Đorović, Đ., Lippa, A., Cook, J. M., Golani, L. K., Scholze, P., Savić, M.,& Witkin, J. M.. (2024). New Imidazodiazepine Analogue, 5-(8-Bromo-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole, Provides a Simplified Synthetic Scheme, High Oral Plasma and Brain Exposures, and Produces Antiseizure Efficacy in Mice, and Antiepileptogenic Activity in Neural Networks in Brain Slices from a Patient with Mesial Temporal Lobe Epilepsy. in ACS Chemical Neuroscience
American Chemical Society., 15(3), 517-526.
https://doi.org/10.1021/acschemneuro.3c00555
Sharmin D, Divović B, Ping X, Cerne R, Smith JL, Rezvanian S, Mondal P, Michelle MJ, Kiley ME, Arnold LA, Mian MY, Pandey KP, Jin X, Mitrović J, Đorović Đ, Lippa A, Cook JM, Golani LK, Scholze P, Savić M, Witkin JM. New Imidazodiazepine Analogue, 5-(8-Bromo-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole, Provides a Simplified Synthetic Scheme, High Oral Plasma and Brain Exposures, and Produces Antiseizure Efficacy in Mice, and Antiepileptogenic Activity in Neural Networks in Brain Slices from a Patient with Mesial Temporal Lobe Epilepsy. in ACS Chemical Neuroscience. 2024;15(3):517-526.
doi:10.1021/acschemneuro.3c00555 .
Sharmin, Dishary, Divović, Branka, Ping, Xingjie, Cerne, Rok, Smith, Jodi L., Rezvanian, Sepideh, Mondal, Prithu, Michelle, Meyer Jean, Kiley, Molly E., Arnold, Leggy A., Mian, Md Yeunus, Pandey, Kamal P., Jin, Xiaoming, Mitrović, Jelena, Đorović, Đorđe, Lippa, Arnold, Cook, James M., Golani, Lalit K., Scholze, Petra, Savić, Miroslav, Witkin, Jeffrey M., "New Imidazodiazepine Analogue, 5-(8-Bromo-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole, Provides a Simplified Synthetic Scheme, High Oral Plasma and Brain Exposures, and Produces Antiseizure Efficacy in Mice, and Antiepileptogenic Activity in Neural Networks in Brain Slices from a Patient with Mesial Temporal Lobe Epilepsy" in ACS Chemical Neuroscience, 15, no. 3 (2024):517-526,
https://doi.org/10.1021/acschemneuro.3c00555 . .

Structural Analogs of the GABAkine KRM-II-81 Are Orally Bioavailable Anticonvulsants without Sedation

Pandey, Kamal P.; Divović, Branka; Rashid, Farjana; Golani, Lalit K.; Cerne, Rok; Zahn, Nicolas M.; Meyer, Michelle Jean; Arnold, Leggy A.; Sharmin, Dishary; Mian, Md Yeunus; Smith, Jodi L.; Ping, Xingjie; Jin, Xiaoming; Lippa, Arnold; Tiruveedhula, Phani Babu V. V. N.; Cook, James M.; Savić, Miroslav; Witkin, Jeffrey M.

(American Society for Pharmacology and Experimental Therapy (ASPET), 2023)

TY  - JOUR
AU  - Pandey, Kamal P.
AU  - Divović, Branka
AU  - Rashid, Farjana
AU  - Golani, Lalit K.
AU  - Cerne, Rok
AU  - Zahn, Nicolas M.
AU  - Meyer, Michelle Jean
AU  - Arnold, Leggy A.
AU  - Sharmin, Dishary
AU  - Mian, Md Yeunus
AU  - Smith, Jodi L.
AU  - Ping, Xingjie
AU  - Jin, Xiaoming
AU  - Lippa, Arnold
AU  - Tiruveedhula, Phani Babu V. V. N.
AU  - Cook, James M.
AU  - Savić, Miroslav
AU  - Witkin, Jeffrey M.
PY  - 2023
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/5605
AB  - To provide back-up compounds to support the development of the GABAA receptor (GABAAR) potentiator KRM-II-81, three novel analogs were designed: replacing the pyridinyl with 2'-Cl-phenyl (FR-II-60), changing the positions of the N and O atoms in the oxazole ring with addition of an ethyl group (KPPIII-34 and KPP-III-51), or substituting a Br atom for the ethynyl of KRM-II-81 (KPP-III-34). The compounds bound to brain GABAARs. Intraperitoneal administration of FR-II-60 and KPP-III-34 produced anticonvulsant activity in mice [maximal electroshock (MES)-induced seizures or 6 Hz-induced seizures], whereas KPPIII-51 did not. Although all compounds were orally bioavailable, structural changes reduced the plasma and brain (FR-II-60 and KPP-III-51) exposures relative to KRM-II-81. Oral administration of each compound produced dose-dependent increases in the latency for both clonic and tonic seizures and the lethality induced by pentylenetetrazol (PTZ) in mice. Since KPP-III-34 produced the highest brain area under the curve (AUC) exposures, it was selected for further profiling. Oral administration of KPP-III-34 suppressed seizures in corneal-kindled mice, hippocampal paroxysmal discharges in mesial temporal lobe epileptic mice, and PTZ-induced convulsions in rats. Only transient sensorimotor impairment was observed in mice, and doses of KPP-III-34 up to 500 mg/kg did not produce impairment in rats. Molecular docking studies demonstrated that all compounds displayed a reduced propensity for binding to a1His102 compared with the sedating compound alprazolam; the bromine-substituted KPP-III-34 achieved the least interaction. Overall, these findings document the oral bioavailability and anticonvulsant efficacy of three novel analogs of KRM-II-81 with reduced sedative effects. SIGNIFICANCE STATEMENT A new non-sedating compound, KRM-II-81, with reduced propensity for tolerance is moving into clinical development. Three new analogs were orally bioavailable, produced anticonvulsant effects in rodents, and displayed low sensorimotor impairment. KPP-III-34 demonstrated efficacy in models of pharmacoresistant epilepsy. Docking studies demonstrated a low propensity for compound binding to the a1His102 residue implicated in sedation. Thus, three additional structures have been added to the list of non-sedating imidazodiazepine anticonvulsants that could serve as backups in the clinical development of KRM-II-81. Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics.
PB  - American Society for Pharmacology and Experimental Therapy (ASPET)
T2  - Journal of Pharmacology and Experimental Therapeutics
T1  - Structural Analogs of the GABAkine KRM-II-81 Are Orally Bioavailable Anticonvulsants without Sedation
VL  - 385
IS  - 1
SP  - 50
EP  - 61
DO  - 10.1124/jpet.122.001362
ER  - 
@article{
author = "Pandey, Kamal P. and Divović, Branka and Rashid, Farjana and Golani, Lalit K. and Cerne, Rok and Zahn, Nicolas M. and Meyer, Michelle Jean and Arnold, Leggy A. and Sharmin, Dishary and Mian, Md Yeunus and Smith, Jodi L. and Ping, Xingjie and Jin, Xiaoming and Lippa, Arnold and Tiruveedhula, Phani Babu V. V. N. and Cook, James M. and Savić, Miroslav and Witkin, Jeffrey M.",
year = "2023",
abstract = "To provide back-up compounds to support the development of the GABAA receptor (GABAAR) potentiator KRM-II-81, three novel analogs were designed: replacing the pyridinyl with 2'-Cl-phenyl (FR-II-60), changing the positions of the N and O atoms in the oxazole ring with addition of an ethyl group (KPPIII-34 and KPP-III-51), or substituting a Br atom for the ethynyl of KRM-II-81 (KPP-III-34). The compounds bound to brain GABAARs. Intraperitoneal administration of FR-II-60 and KPP-III-34 produced anticonvulsant activity in mice [maximal electroshock (MES)-induced seizures or 6 Hz-induced seizures], whereas KPPIII-51 did not. Although all compounds were orally bioavailable, structural changes reduced the plasma and brain (FR-II-60 and KPP-III-51) exposures relative to KRM-II-81. Oral administration of each compound produced dose-dependent increases in the latency for both clonic and tonic seizures and the lethality induced by pentylenetetrazol (PTZ) in mice. Since KPP-III-34 produced the highest brain area under the curve (AUC) exposures, it was selected for further profiling. Oral administration of KPP-III-34 suppressed seizures in corneal-kindled mice, hippocampal paroxysmal discharges in mesial temporal lobe epileptic mice, and PTZ-induced convulsions in rats. Only transient sensorimotor impairment was observed in mice, and doses of KPP-III-34 up to 500 mg/kg did not produce impairment in rats. Molecular docking studies demonstrated that all compounds displayed a reduced propensity for binding to a1His102 compared with the sedating compound alprazolam; the bromine-substituted KPP-III-34 achieved the least interaction. Overall, these findings document the oral bioavailability and anticonvulsant efficacy of three novel analogs of KRM-II-81 with reduced sedative effects. SIGNIFICANCE STATEMENT A new non-sedating compound, KRM-II-81, with reduced propensity for tolerance is moving into clinical development. Three new analogs were orally bioavailable, produced anticonvulsant effects in rodents, and displayed low sensorimotor impairment. KPP-III-34 demonstrated efficacy in models of pharmacoresistant epilepsy. Docking studies demonstrated a low propensity for compound binding to the a1His102 residue implicated in sedation. Thus, three additional structures have been added to the list of non-sedating imidazodiazepine anticonvulsants that could serve as backups in the clinical development of KRM-II-81. Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics.",
publisher = "American Society for Pharmacology and Experimental Therapy (ASPET)",
journal = "Journal of Pharmacology and Experimental Therapeutics",
title = "Structural Analogs of the GABAkine KRM-II-81 Are Orally Bioavailable Anticonvulsants without Sedation",
volume = "385",
number = "1",
pages = "50-61",
doi = "10.1124/jpet.122.001362"
}
Pandey, K. P., Divović, B., Rashid, F., Golani, L. K., Cerne, R., Zahn, N. M., Meyer, M. J., Arnold, L. A., Sharmin, D., Mian, M. Y., Smith, J. L., Ping, X., Jin, X., Lippa, A., Tiruveedhula, P. B. V. V. N., Cook, J. M., Savić, M.,& Witkin, J. M.. (2023). Structural Analogs of the GABAkine KRM-II-81 Are Orally Bioavailable Anticonvulsants without Sedation. in Journal of Pharmacology and Experimental Therapeutics
American Society for Pharmacology and Experimental Therapy (ASPET)., 385(1), 50-61.
https://doi.org/10.1124/jpet.122.001362
Pandey KP, Divović B, Rashid F, Golani LK, Cerne R, Zahn NM, Meyer MJ, Arnold LA, Sharmin D, Mian MY, Smith JL, Ping X, Jin X, Lippa A, Tiruveedhula PBVVN, Cook JM, Savić M, Witkin JM. Structural Analogs of the GABAkine KRM-II-81 Are Orally Bioavailable Anticonvulsants without Sedation. in Journal of Pharmacology and Experimental Therapeutics. 2023;385(1):50-61.
doi:10.1124/jpet.122.001362 .
Pandey, Kamal P., Divović, Branka, Rashid, Farjana, Golani, Lalit K., Cerne, Rok, Zahn, Nicolas M., Meyer, Michelle Jean, Arnold, Leggy A., Sharmin, Dishary, Mian, Md Yeunus, Smith, Jodi L., Ping, Xingjie, Jin, Xiaoming, Lippa, Arnold, Tiruveedhula, Phani Babu V. V. N., Cook, James M., Savić, Miroslav, Witkin, Jeffrey M., "Structural Analogs of the GABAkine KRM-II-81 Are Orally Bioavailable Anticonvulsants without Sedation" in Journal of Pharmacology and Experimental Therapeutics, 385, no. 1 (2023):50-61,
https://doi.org/10.1124/jpet.122.001362 . .

Symptomatic and neurotrophic effects of GABAA receptor positive allosteric modulation in a mouse model of chronic stress

Bernardo, Ashley; Lee, Philip; Marcotte, Michael; Mian, Md Yeunus; Rezvanian, Sepideh; Sharmin, Dishary; Kovačević, Aleksandra; Savić, Miroslav; Cook, James M.; Sibille, Etienne; Prevot, Thomas D.

(Springer Nature, 2022)

TY  - JOUR
AU  - Bernardo, Ashley
AU  - Lee, Philip
AU  - Marcotte, Michael
AU  - Mian, Md Yeunus
AU  - Rezvanian, Sepideh
AU  - Sharmin, Dishary
AU  - Kovačević, Aleksandra
AU  - Savić, Miroslav
AU  - Cook, James M.
AU  - Sibille, Etienne
AU  - Prevot, Thomas D.
PY  - 2022
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/5540
AB  - Chronic stress is a risk factor for Major Depressive Disorder (MDD), and in rodents, it recapitulates human behavioral, cellular and molecular changes. In MDD and after chronic stress, neuronal dysfunctions and deficits in GABAergic signaling are observed and responsible for symptom severity. GABA signals predominantly through GABAA receptors (GABAA-R) composed of various subunit types that relate to downstream outcomes. Activity at α2-GABAA-Rs contributes to anxiolytic properties, α5-GABAA-Rs to cognitive functions, and α1-GABAA-Rs to sedation. Therefore, a therapy aiming at increasing α2- and α5-GABAA-Rs activity, but devoid of α1-GABAA-R activity, has potential to address several symptomologies of depression while avoiding side-effects. This study investigated the activity profiles and behavioral efficacy of two enantiomers of each other (GL-II-73 and GL-I-54), separately and as a racemic mixture (GL-RM), and potential disease-modifying effects on neuronal morphology. Results confirm GL-I-54 and GL-II-73 exert positive allosteric modulation at the α2-, α3-, α5-GABAA-Rs and α5-containing GABAA-Rs, respectively, and separately reduces immobility in the forced swim test and improves stress-induced spatial working memory deficits. Using unpredictable chronic mild stress (UCMS), we show that acute and chronic administration of GL-RM provide pro-cognitive effects, with mild efficacy on mood symptoms, although at lower doses avoiding sedation. Morphology studies showed reversal of spine density loss caused by UCMS after chronic GL-RM treatment at apical and basal dendrites of the PFC and CA1. Together, these results support using a racemic mixture with combined α2-, α3-, α5-GABAA-R profile to reverse chronic stress-induced mood symptoms, cognitive deficits, and with anti-stress neurotrophic effects.
PB  - Springer Nature
T2  - Neuropsychopharmacology
T1  - Symptomatic and neurotrophic effects of GABAA receptor positive allosteric modulation in a mouse model of chronic stress
VL  - 47
IS  - 9
SP  - 1608
EP  - 1619
DO  - 10.1038/s41386-022-01360-y
ER  - 
@article{
author = "Bernardo, Ashley and Lee, Philip and Marcotte, Michael and Mian, Md Yeunus and Rezvanian, Sepideh and Sharmin, Dishary and Kovačević, Aleksandra and Savić, Miroslav and Cook, James M. and Sibille, Etienne and Prevot, Thomas D.",
year = "2022",
abstract = "Chronic stress is a risk factor for Major Depressive Disorder (MDD), and in rodents, it recapitulates human behavioral, cellular and molecular changes. In MDD and after chronic stress, neuronal dysfunctions and deficits in GABAergic signaling are observed and responsible for symptom severity. GABA signals predominantly through GABAA receptors (GABAA-R) composed of various subunit types that relate to downstream outcomes. Activity at α2-GABAA-Rs contributes to anxiolytic properties, α5-GABAA-Rs to cognitive functions, and α1-GABAA-Rs to sedation. Therefore, a therapy aiming at increasing α2- and α5-GABAA-Rs activity, but devoid of α1-GABAA-R activity, has potential to address several symptomologies of depression while avoiding side-effects. This study investigated the activity profiles and behavioral efficacy of two enantiomers of each other (GL-II-73 and GL-I-54), separately and as a racemic mixture (GL-RM), and potential disease-modifying effects on neuronal morphology. Results confirm GL-I-54 and GL-II-73 exert positive allosteric modulation at the α2-, α3-, α5-GABAA-Rs and α5-containing GABAA-Rs, respectively, and separately reduces immobility in the forced swim test and improves stress-induced spatial working memory deficits. Using unpredictable chronic mild stress (UCMS), we show that acute and chronic administration of GL-RM provide pro-cognitive effects, with mild efficacy on mood symptoms, although at lower doses avoiding sedation. Morphology studies showed reversal of spine density loss caused by UCMS after chronic GL-RM treatment at apical and basal dendrites of the PFC and CA1. Together, these results support using a racemic mixture with combined α2-, α3-, α5-GABAA-R profile to reverse chronic stress-induced mood symptoms, cognitive deficits, and with anti-stress neurotrophic effects.",
publisher = "Springer Nature",
journal = "Neuropsychopharmacology",
title = "Symptomatic and neurotrophic effects of GABAA receptor positive allosteric modulation in a mouse model of chronic stress",
volume = "47",
number = "9",
pages = "1608-1619",
doi = "10.1038/s41386-022-01360-y"
}
Bernardo, A., Lee, P., Marcotte, M., Mian, M. Y., Rezvanian, S., Sharmin, D., Kovačević, A., Savić, M., Cook, J. M., Sibille, E.,& Prevot, T. D.. (2022). Symptomatic and neurotrophic effects of GABAA receptor positive allosteric modulation in a mouse model of chronic stress. in Neuropsychopharmacology
Springer Nature., 47(9), 1608-1619.
https://doi.org/10.1038/s41386-022-01360-y
Bernardo A, Lee P, Marcotte M, Mian MY, Rezvanian S, Sharmin D, Kovačević A, Savić M, Cook JM, Sibille E, Prevot TD. Symptomatic and neurotrophic effects of GABAA receptor positive allosteric modulation in a mouse model of chronic stress. in Neuropsychopharmacology. 2022;47(9):1608-1619.
doi:10.1038/s41386-022-01360-y .
Bernardo, Ashley, Lee, Philip, Marcotte, Michael, Mian, Md Yeunus, Rezvanian, Sepideh, Sharmin, Dishary, Kovačević, Aleksandra, Savić, Miroslav, Cook, James M., Sibille, Etienne, Prevot, Thomas D., "Symptomatic and neurotrophic effects of GABAA receptor positive allosteric modulation in a mouse model of chronic stress" in Neuropsychopharmacology, 47, no. 9 (2022):1608-1619,
https://doi.org/10.1038/s41386-022-01360-y . .
7
10
9

Hydrochloride Salt of the GABAkine KRM-II-81

Mian, Md Yeunus; Divović, Branka; Sharmin, Dishary; Pandey, Kamal P.; Golani, Lalit K.; Tiruveedhula, V. V. N. Phani Babu; Cerne, Rok; Smith, Jodi L.; Ping, Xingjie; Jin, Xiaoming; Imler, Gregory H.; Deschamps, Jeffrey R.; Lippa, Arnold; Cook, James M.; Savić, Miroslav; Rowlett, James; Witkin, Jeffrey M.

(ACS Publications, 2022)

TY  - JOUR
AU  - Mian, Md Yeunus
AU  - Divović, Branka
AU  - Sharmin, Dishary
AU  - Pandey, Kamal P.
AU  - Golani, Lalit K.
AU  - Tiruveedhula, V. V. N. Phani Babu
AU  - Cerne, Rok
AU  - Smith, Jodi L.
AU  - Ping, Xingjie
AU  - Jin, Xiaoming
AU  - Imler, Gregory H.
AU  - Deschamps, Jeffrey R.
AU  - Lippa, Arnold
AU  - Cook, James M.
AU  - Savić, Miroslav
AU  - Rowlett, James
AU  - Witkin, Jeffrey M.
PY  - 2022
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4363
AB  - Imidazodiazepine (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole or KRM-II-81) is a potentiator of GABAA receptors (a GABAkine) undergoing preparation for clinical development. KRM-II-81 is active against many seizure and pain models in rodents, where it exhibits improved pharmacological properties over standard-of-care agents. Since salts can be utilized to create opportunities for increased solubility, enhanced absorption, and distribution, as well as for efficient methods of bulk synthesis, a hydrochloride salt of KRM-II-81 was prepared. KRM-II-81·HCl was produced from the free base with anhydrous hydrochloric acid. The formation of the monohydrochloride salt was confirmed by X-ray crystallography, as well as 1H NMR and 13C NMR analyses. High water solubility and a lower partition coefficient (octanol/water) were exhibited by KRM-II-81·HCl as compared to the free base. Oral administration of either KRM-II-81·HCl or the free base resulted in high concentrations in the brain and plasma of rats. Oral dosing in mice significantly increased the latency to both clonic and tonic convulsions and decreased pentylenetetrazol-induced lethality. The increased water solubility of the HCl salt enables intravenous dosing and the potential for higher concentration formulations compared with the free base without impacting anticonvulsant potency. Thus, KRM-II-81·HCl adds an important new compound to facilitate the development of these imidazodiazepines for clinical evaluation.
PB  - ACS Publications
T2  - ACS Omega
T1  - Hydrochloride Salt of the GABAkine KRM-II-81
VL  - 7
IS  - 31
SP  - 27550
EP  - 27559
DO  - 10.1021/acsomega.2c03029
ER  - 
@article{
author = "Mian, Md Yeunus and Divović, Branka and Sharmin, Dishary and Pandey, Kamal P. and Golani, Lalit K. and Tiruveedhula, V. V. N. Phani Babu and Cerne, Rok and Smith, Jodi L. and Ping, Xingjie and Jin, Xiaoming and Imler, Gregory H. and Deschamps, Jeffrey R. and Lippa, Arnold and Cook, James M. and Savić, Miroslav and Rowlett, James and Witkin, Jeffrey M.",
year = "2022",
abstract = "Imidazodiazepine (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole or KRM-II-81) is a potentiator of GABAA receptors (a GABAkine) undergoing preparation for clinical development. KRM-II-81 is active against many seizure and pain models in rodents, where it exhibits improved pharmacological properties over standard-of-care agents. Since salts can be utilized to create opportunities for increased solubility, enhanced absorption, and distribution, as well as for efficient methods of bulk synthesis, a hydrochloride salt of KRM-II-81 was prepared. KRM-II-81·HCl was produced from the free base with anhydrous hydrochloric acid. The formation of the monohydrochloride salt was confirmed by X-ray crystallography, as well as 1H NMR and 13C NMR analyses. High water solubility and a lower partition coefficient (octanol/water) were exhibited by KRM-II-81·HCl as compared to the free base. Oral administration of either KRM-II-81·HCl or the free base resulted in high concentrations in the brain and plasma of rats. Oral dosing in mice significantly increased the latency to both clonic and tonic convulsions and decreased pentylenetetrazol-induced lethality. The increased water solubility of the HCl salt enables intravenous dosing and the potential for higher concentration formulations compared with the free base without impacting anticonvulsant potency. Thus, KRM-II-81·HCl adds an important new compound to facilitate the development of these imidazodiazepines for clinical evaluation.",
publisher = "ACS Publications",
journal = "ACS Omega",
title = "Hydrochloride Salt of the GABAkine KRM-II-81",
volume = "7",
number = "31",
pages = "27550-27559",
doi = "10.1021/acsomega.2c03029"
}
Mian, M. Y., Divović, B., Sharmin, D., Pandey, K. P., Golani, L. K., Tiruveedhula, V. V. N. P. B., Cerne, R., Smith, J. L., Ping, X., Jin, X., Imler, G. H., Deschamps, J. R., Lippa, A., Cook, J. M., Savić, M., Rowlett, J.,& Witkin, J. M.. (2022). Hydrochloride Salt of the GABAkine KRM-II-81. in ACS Omega
ACS Publications., 7(31), 27550-27559.
https://doi.org/10.1021/acsomega.2c03029
Mian MY, Divović B, Sharmin D, Pandey KP, Golani LK, Tiruveedhula VVNPB, Cerne R, Smith JL, Ping X, Jin X, Imler GH, Deschamps JR, Lippa A, Cook JM, Savić M, Rowlett J, Witkin JM. Hydrochloride Salt of the GABAkine KRM-II-81. in ACS Omega. 2022;7(31):27550-27559.
doi:10.1021/acsomega.2c03029 .
Mian, Md Yeunus, Divović, Branka, Sharmin, Dishary, Pandey, Kamal P., Golani, Lalit K., Tiruveedhula, V. V. N. Phani Babu, Cerne, Rok, Smith, Jodi L., Ping, Xingjie, Jin, Xiaoming, Imler, Gregory H., Deschamps, Jeffrey R., Lippa, Arnold, Cook, James M., Savić, Miroslav, Rowlett, James, Witkin, Jeffrey M., "Hydrochloride Salt of the GABAkine KRM-II-81" in ACS Omega, 7, no. 31 (2022):27550-27559,
https://doi.org/10.1021/acsomega.2c03029 . .
3
1

Metabolism, pharmacokinetics, and anticonvulsant activity of a deuterated analog of the α2/3-selective GABAkine KRM-II-81

Golani, Lalit; Divović, Branka; Sharmin, Dishary; Pandey, Kamal; Mian, Md Yeunus; Cerne, Rok; Zahn, Nicolas; Meyer, Michelle; Tiruveedhula, Veera; Smith, Jodi; Ping, Xingjie; Jin, Xiaoming; Lippa, Arnold; Schkeryantz, Jeffrey; Arnold, Leggy; Cook, James; Savić, Miroslav; Witkin, Jeffrey

(John Wiley and Sons Ltd, 2022)

TY  - JOUR
AU  - Golani, Lalit
AU  - Divović, Branka
AU  - Sharmin, Dishary
AU  - Pandey, Kamal
AU  - Mian, Md Yeunus
AU  - Cerne, Rok
AU  - Zahn, Nicolas
AU  - Meyer, Michelle
AU  - Tiruveedhula, Veera
AU  - Smith, Jodi
AU  - Ping, Xingjie
AU  - Jin, Xiaoming
AU  - Lippa, Arnold
AU  - Schkeryantz, Jeffrey
AU  - Arnold, Leggy
AU  - Cook, James
AU  - Savić, Miroslav
AU  - Witkin, Jeffrey
PY  - 2022
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4108
AB  - The imidazodiazepine, (5‐(8‐ethynyl‐6‐(pyridin‐2‐yl)‐4H‐benzo [f]imidazole[1,5‐α] [1,4]diazepin‐3‐yl) oxazole or KRM‐II‐81) is a new α2/3‐selective GABAkine (gamma aminobutyric acid A receptor potentiator) with anticonvulsant, anxiolytic, and antinociceptive activity in preclinical models. Reducing metabolism was utilized as a means of potentially extending the half‐life of KRM‐II‐81. In vitro and in vivo studies were conducted to evaluate metabolic liabilities. Incubation of KRM‐II‐81 in hepatocytes revealed sites of potential metabolism on the oxazole and the diazepine rings. These sites were targeted in the design of a deuterated analog (D5‐KRM‐II‐ 81) that could be evaluated as a potentially longer‐acting analog. In contrast to computer predictions, peak plasma concentrations of D5‐KRM‐II‐81 in rats were not significantly greater than those produced by KRM‐II‐81 after oral administra- tion. Furthermore, brain disposition of KRM‐II‐81 was higher than that of D5‐KRM‐ II‐81. The half‐life of the two compounds in either plasma or brain did not statis- tically differ from one another but the tmax for D5‐KRM‐II‐81 occurred slightly earlier than for KRM‐II‐81. Non‐metabolic considerations might be relevant to the lack of increases in exposure by D5‐KRM‐II‐81. Alternative sites of metabolism on KRM‐II‐81, not targeted by the current deuteration process, are also possible. Despite its lack of augmented exposure, D5‐KRM‐II‐81, like KRM‐II‐81, significantly prevented seizures induced by pentylenetetrazol when given orally. The present findings introduce a new orally active anticonvulsant GABAkine, D5‐KRM‐II‐81.
PB  - John Wiley and Sons Ltd
T2  - Biopharmaceutics and Drug Disposition
T1  - Metabolism, pharmacokinetics, and anticonvulsant activity of a deuterated analog of the α2/3-selective GABAkine KRM-II-81
VL  - 43
IS  - 2
SP  - 66
EP  - 75
DO  - 10.1002/bdd.2313
ER  - 
@article{
author = "Golani, Lalit and Divović, Branka and Sharmin, Dishary and Pandey, Kamal and Mian, Md Yeunus and Cerne, Rok and Zahn, Nicolas and Meyer, Michelle and Tiruveedhula, Veera and Smith, Jodi and Ping, Xingjie and Jin, Xiaoming and Lippa, Arnold and Schkeryantz, Jeffrey and Arnold, Leggy and Cook, James and Savić, Miroslav and Witkin, Jeffrey",
year = "2022",
abstract = "The imidazodiazepine, (5‐(8‐ethynyl‐6‐(pyridin‐2‐yl)‐4H‐benzo [f]imidazole[1,5‐α] [1,4]diazepin‐3‐yl) oxazole or KRM‐II‐81) is a new α2/3‐selective GABAkine (gamma aminobutyric acid A receptor potentiator) with anticonvulsant, anxiolytic, and antinociceptive activity in preclinical models. Reducing metabolism was utilized as a means of potentially extending the half‐life of KRM‐II‐81. In vitro and in vivo studies were conducted to evaluate metabolic liabilities. Incubation of KRM‐II‐81 in hepatocytes revealed sites of potential metabolism on the oxazole and the diazepine rings. These sites were targeted in the design of a deuterated analog (D5‐KRM‐II‐ 81) that could be evaluated as a potentially longer‐acting analog. In contrast to computer predictions, peak plasma concentrations of D5‐KRM‐II‐81 in rats were not significantly greater than those produced by KRM‐II‐81 after oral administra- tion. Furthermore, brain disposition of KRM‐II‐81 was higher than that of D5‐KRM‐ II‐81. The half‐life of the two compounds in either plasma or brain did not statis- tically differ from one another but the tmax for D5‐KRM‐II‐81 occurred slightly earlier than for KRM‐II‐81. Non‐metabolic considerations might be relevant to the lack of increases in exposure by D5‐KRM‐II‐81. Alternative sites of metabolism on KRM‐II‐81, not targeted by the current deuteration process, are also possible. Despite its lack of augmented exposure, D5‐KRM‐II‐81, like KRM‐II‐81, significantly prevented seizures induced by pentylenetetrazol when given orally. The present findings introduce a new orally active anticonvulsant GABAkine, D5‐KRM‐II‐81.",
publisher = "John Wiley and Sons Ltd",
journal = "Biopharmaceutics and Drug Disposition",
title = "Metabolism, pharmacokinetics, and anticonvulsant activity of a deuterated analog of the α2/3-selective GABAkine KRM-II-81",
volume = "43",
number = "2",
pages = "66-75",
doi = "10.1002/bdd.2313"
}
Golani, L., Divović, B., Sharmin, D., Pandey, K., Mian, M. Y., Cerne, R., Zahn, N., Meyer, M., Tiruveedhula, V., Smith, J., Ping, X., Jin, X., Lippa, A., Schkeryantz, J., Arnold, L., Cook, J., Savić, M.,& Witkin, J.. (2022). Metabolism, pharmacokinetics, and anticonvulsant activity of a deuterated analog of the α2/3-selective GABAkine KRM-II-81. in Biopharmaceutics and Drug Disposition
John Wiley and Sons Ltd., 43(2), 66-75.
https://doi.org/10.1002/bdd.2313
Golani L, Divović B, Sharmin D, Pandey K, Mian MY, Cerne R, Zahn N, Meyer M, Tiruveedhula V, Smith J, Ping X, Jin X, Lippa A, Schkeryantz J, Arnold L, Cook J, Savić M, Witkin J. Metabolism, pharmacokinetics, and anticonvulsant activity of a deuterated analog of the α2/3-selective GABAkine KRM-II-81. in Biopharmaceutics and Drug Disposition. 2022;43(2):66-75.
doi:10.1002/bdd.2313 .
Golani, Lalit, Divović, Branka, Sharmin, Dishary, Pandey, Kamal, Mian, Md Yeunus, Cerne, Rok, Zahn, Nicolas, Meyer, Michelle, Tiruveedhula, Veera, Smith, Jodi, Ping, Xingjie, Jin, Xiaoming, Lippa, Arnold, Schkeryantz, Jeffrey, Arnold, Leggy, Cook, James, Savić, Miroslav, Witkin, Jeffrey, "Metabolism, pharmacokinetics, and anticonvulsant activity of a deuterated analog of the α2/3-selective GABAkine KRM-II-81" in Biopharmaceutics and Drug Disposition, 43, no. 2 (2022):66-75,
https://doi.org/10.1002/bdd.2313 . .
75
4
4

Vasodilatory effects of a variety of positive allosteric modulators of GABAA receptors on rat thoracic aorta

Gajić Bojić, Milica; Todorović, Lidija; Santrač, Anja; Mian, Md Yeunus; Sharmin, Dishary; Cook, James M.; Savić, Miroslav

(Elsevier B.V., 2021)

TY  - JOUR
AU  - Gajić Bojić, Milica
AU  - Todorović, Lidija
AU  - Santrač, Anja
AU  - Mian, Md Yeunus
AU  - Sharmin, Dishary
AU  - Cook, James M.
AU  - Savić, Miroslav
PY  - 2021
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3812
AB  - Different subtypes of GABAA (gamma-aminobutyric acid A) receptors, through their specific regional and cellular localization, are involved in the manifestation of various functions, both at the central and peripheral levels. We hypothesized that various non-neuronal GABAA receptors are expressed on blood vessels, through which positive allosteric modulators of GABAA receptors exhibit vasodilatory effects.  This study involved two parts: one to determine the presence of α1-6 subunit GABAA receptor mRNAs in the rat thoracic aorta, and the other to determine the vasoactivity of the various selective and non-selective positive GABAA receptor modulators: zolpidem (α1-selective), XHe–III–074 (α4-selective), MP–III–022 (α5-selective), DK-I-56-1 (α6-selective), SH-I-048A and diazepam (non-selective).  Reverse transcription-polymerase chain reaction (RT-PCR) analysis data demonstrated for the first time the expression of α1, α2, α3, α4 and α5 subunits in the rat thoracic aorta tissue. Tissue bath assays on isolated rat aortic rings revealed significant vasodilatory effects of diazepam, SH-I-048A, XHe–III–074, MP–III–022 and DK-I-56-1, all in terms of achieved relaxations (over 50% of relative tension decrease), as well as in terms of preventive effects on phenylephrine (PE) contraction. Diazepam was the most efficient ligand in the present study, while zolpidem showed the weakest vascular effects. In addition, diazepam-induced relaxations in the presence of antagonists PK11195 or bicuculline were significantly reduced (P < 0.001 and P < 0.05, respectively) at lower concentrations of diazepam (10−7 M and 3 × 10−7 M).  The present work suggests that the observed vasoactivity is due to modulation of “vascular” GABAA receptors, which after further detailed research may provide a therapeutic target.
PB  - Elsevier B.V.
T2  - European Journal of Pharmacology
T1  - Vasodilatory effects of a variety of positive allosteric modulators of GABAA receptors on rat thoracic aorta
VL  - 899
DO  - 10.1016/j.ejphar.2021.174023
ER  - 
@article{
author = "Gajić Bojić, Milica and Todorović, Lidija and Santrač, Anja and Mian, Md Yeunus and Sharmin, Dishary and Cook, James M. and Savić, Miroslav",
year = "2021",
abstract = "Different subtypes of GABAA (gamma-aminobutyric acid A) receptors, through their specific regional and cellular localization, are involved in the manifestation of various functions, both at the central and peripheral levels. We hypothesized that various non-neuronal GABAA receptors are expressed on blood vessels, through which positive allosteric modulators of GABAA receptors exhibit vasodilatory effects.  This study involved two parts: one to determine the presence of α1-6 subunit GABAA receptor mRNAs in the rat thoracic aorta, and the other to determine the vasoactivity of the various selective and non-selective positive GABAA receptor modulators: zolpidem (α1-selective), XHe–III–074 (α4-selective), MP–III–022 (α5-selective), DK-I-56-1 (α6-selective), SH-I-048A and diazepam (non-selective).  Reverse transcription-polymerase chain reaction (RT-PCR) analysis data demonstrated for the first time the expression of α1, α2, α3, α4 and α5 subunits in the rat thoracic aorta tissue. Tissue bath assays on isolated rat aortic rings revealed significant vasodilatory effects of diazepam, SH-I-048A, XHe–III–074, MP–III–022 and DK-I-56-1, all in terms of achieved relaxations (over 50% of relative tension decrease), as well as in terms of preventive effects on phenylephrine (PE) contraction. Diazepam was the most efficient ligand in the present study, while zolpidem showed the weakest vascular effects. In addition, diazepam-induced relaxations in the presence of antagonists PK11195 or bicuculline were significantly reduced (P < 0.001 and P < 0.05, respectively) at lower concentrations of diazepam (10−7 M and 3 × 10−7 M).  The present work suggests that the observed vasoactivity is due to modulation of “vascular” GABAA receptors, which after further detailed research may provide a therapeutic target.",
publisher = "Elsevier B.V.",
journal = "European Journal of Pharmacology",
title = "Vasodilatory effects of a variety of positive allosteric modulators of GABAA receptors on rat thoracic aorta",
volume = "899",
doi = "10.1016/j.ejphar.2021.174023"
}
Gajić Bojić, M., Todorović, L., Santrač, A., Mian, M. Y., Sharmin, D., Cook, J. M.,& Savić, M.. (2021). Vasodilatory effects of a variety of positive allosteric modulators of GABAA receptors on rat thoracic aorta. in European Journal of Pharmacology
Elsevier B.V.., 899.
https://doi.org/10.1016/j.ejphar.2021.174023
Gajić Bojić M, Todorović L, Santrač A, Mian MY, Sharmin D, Cook JM, Savić M. Vasodilatory effects of a variety of positive allosteric modulators of GABAA receptors on rat thoracic aorta. in European Journal of Pharmacology. 2021;899.
doi:10.1016/j.ejphar.2021.174023 .
Gajić Bojić, Milica, Todorović, Lidija, Santrač, Anja, Mian, Md Yeunus, Sharmin, Dishary, Cook, James M., Savić, Miroslav, "Vasodilatory effects of a variety of positive allosteric modulators of GABAA receptors on rat thoracic aorta" in European Journal of Pharmacology, 899 (2021),
https://doi.org/10.1016/j.ejphar.2021.174023 . .
5
4