Mitrić, Miodrag

Link to this page

Authority KeyName Variants
orcid::0000-0002-1709-9890
  • Mitrić, Miodrag (11)

Author's Bibliography

Potential application of low molecular weight excipients for amorphization and dissolution enhancement of carvedilol

Pešić, Nikola; Dapčević, Aleksandra; Ivković, Branka; Kachrimanis, Kyriakos; Mitrić, Miodrag; Ibrić, Svetlana; Medarević, Đorđe

(Elsevier B.V., 2021)

TY  - JOUR
AU  - Pešić, Nikola
AU  - Dapčević, Aleksandra
AU  - Ivković, Branka
AU  - Kachrimanis, Kyriakos
AU  - Mitrić, Miodrag
AU  - Ibrić, Svetlana
AU  - Medarević, Đorđe
PY  - 2021
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3964
AB  - In this study, four low molecular weight (LMW) excipients, tryptophan (TRY), phenylalanine (PHE), lysine (LYS) and saccharin (SAC) were evaluated as co-formers to generate co-amorphous systems (CAMS) by ball milling with carvedilol (CRV). Mixtures of CRV and LMW excipient in 1:0.5, 1:1 and 1:2 drug:excipient molar ratios were ball milled and analysed by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Fourier transform (FT-IR) infrared spectroscopy and dissolution testing. CAMS were formed by milling of a mixture of CRV with TRY in 1:2 M ratio and SAC in 1:1 M ratio, while amorphization of only CRV was achieved in other mixtures with SAC. In other samples containing TRY and PHE, milling resulted in partial amorphization, while LYS was the least suitable excipient for the amorphization of CRV. Unexpectedly, the highest supersaturation of CRV was achieved from samples containing CRV and LYS in 1:1 and 1:2 M ratios, despite the absence of a significant reduction in CRV crystallinity upon milling of these samples. Increase of hydrophobic surface area caused by milling of samples with TRY and PHE and agglomeration during dissolution testing of samples containing SAC are likely causes of poor dissolution performance of mixtures containing fully or partially amorphous CRV.
PB  - Elsevier B.V.
T2  - International Journal of Pharmaceutics
T1  - Potential application of low molecular weight excipients for amorphization and dissolution enhancement of carvedilol
VL  - 608
DO  - 10.1016/j.ijpharm.2021.121033
ER  - 
@article{
author = "Pešić, Nikola and Dapčević, Aleksandra and Ivković, Branka and Kachrimanis, Kyriakos and Mitrić, Miodrag and Ibrić, Svetlana and Medarević, Đorđe",
year = "2021",
abstract = "In this study, four low molecular weight (LMW) excipients, tryptophan (TRY), phenylalanine (PHE), lysine (LYS) and saccharin (SAC) were evaluated as co-formers to generate co-amorphous systems (CAMS) by ball milling with carvedilol (CRV). Mixtures of CRV and LMW excipient in 1:0.5, 1:1 and 1:2 drug:excipient molar ratios were ball milled and analysed by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Fourier transform (FT-IR) infrared spectroscopy and dissolution testing. CAMS were formed by milling of a mixture of CRV with TRY in 1:2 M ratio and SAC in 1:1 M ratio, while amorphization of only CRV was achieved in other mixtures with SAC. In other samples containing TRY and PHE, milling resulted in partial amorphization, while LYS was the least suitable excipient for the amorphization of CRV. Unexpectedly, the highest supersaturation of CRV was achieved from samples containing CRV and LYS in 1:1 and 1:2 M ratios, despite the absence of a significant reduction in CRV crystallinity upon milling of these samples. Increase of hydrophobic surface area caused by milling of samples with TRY and PHE and agglomeration during dissolution testing of samples containing SAC are likely causes of poor dissolution performance of mixtures containing fully or partially amorphous CRV.",
publisher = "Elsevier B.V.",
journal = "International Journal of Pharmaceutics",
title = "Potential application of low molecular weight excipients for amorphization and dissolution enhancement of carvedilol",
volume = "608",
doi = "10.1016/j.ijpharm.2021.121033"
}
Pešić, N., Dapčević, A., Ivković, B., Kachrimanis, K., Mitrić, M., Ibrić, S.,& Medarević, Đ.. (2021). Potential application of low molecular weight excipients for amorphization and dissolution enhancement of carvedilol. in International Journal of Pharmaceutics
Elsevier B.V.., 608.
https://doi.org/10.1016/j.ijpharm.2021.121033
Pešić N, Dapčević A, Ivković B, Kachrimanis K, Mitrić M, Ibrić S, Medarević Đ. Potential application of low molecular weight excipients for amorphization and dissolution enhancement of carvedilol. in International Journal of Pharmaceutics. 2021;608.
doi:10.1016/j.ijpharm.2021.121033 .
Pešić, Nikola, Dapčević, Aleksandra, Ivković, Branka, Kachrimanis, Kyriakos, Mitrić, Miodrag, Ibrić, Svetlana, Medarević, Đorđe, "Potential application of low molecular weight excipients for amorphization and dissolution enhancement of carvedilol" in International Journal of Pharmaceutics, 608 (2021),
https://doi.org/10.1016/j.ijpharm.2021.121033 . .
10
1
9

Study of chitosan/xanthan gum polyelectrolyte complexes formation, solid state and influence on ibuprofen release kinetics

Ćirić, Ana; Medarević, Đorđe; Čalija, Bojan; Dobričić, Vladimir; Mitrić, Miodrag; Đekić, Ljiljana

(Elsevier B.V., 2020)

TY  - JOUR
AU  - Ćirić, Ana
AU  - Medarević, Đorđe
AU  - Čalija, Bojan
AU  - Dobričić, Vladimir
AU  - Mitrić, Miodrag
AU  - Đekić, Ljiljana
PY  - 2020
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3524
AB  - This study investigated the combined influence of pH adjusting agent type (hydrochloric, acetic or lactic acid) and initial pH value (3.6, 4.6, and 5.6) on formation of biocompatible chitosan/xanthan polyelectrolyte complexes (PECs), their characteristics in solid state and influence on in vitro ibuprofen release kinetics. Conductivity measurements and rheological characterization revealed generally higher extent of ionic interactions in PEC dispersions comprising acetic acid and at pH 3.6. Acid type and pH affected significantly the yield and particle size (100–250 μm) of the dried PECs. Differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and powder X-ray diffraction (PXRD) analysis of the solid PECs confirmed exclusively physical (ionic, hydrogen bonds) interactions between chitosan and xanthan gum. PECs prepared with acetic acid at pH 4.6 and 5.6 had enhanced rehydration ability in phosphate buffer pH 7.2, and at PEC-to-drug mass ratio up to 1:2, enabled extended ibuprofen release from hard capsules during 10 h.
PB  - Elsevier B.V.
T2  - International Journal of Biological Macromolecules
T1  - Study of chitosan/xanthan gum polyelectrolyte complexes formation, solid state and influence on ibuprofen release kinetics
VL  - 148
SP  - 942
EP  - 955
DO  - 10.1016/j.ijbiomac.2020.01.138
ER  - 
@article{
author = "Ćirić, Ana and Medarević, Đorđe and Čalija, Bojan and Dobričić, Vladimir and Mitrić, Miodrag and Đekić, Ljiljana",
year = "2020",
abstract = "This study investigated the combined influence of pH adjusting agent type (hydrochloric, acetic or lactic acid) and initial pH value (3.6, 4.6, and 5.6) on formation of biocompatible chitosan/xanthan polyelectrolyte complexes (PECs), their characteristics in solid state and influence on in vitro ibuprofen release kinetics. Conductivity measurements and rheological characterization revealed generally higher extent of ionic interactions in PEC dispersions comprising acetic acid and at pH 3.6. Acid type and pH affected significantly the yield and particle size (100–250 μm) of the dried PECs. Differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and powder X-ray diffraction (PXRD) analysis of the solid PECs confirmed exclusively physical (ionic, hydrogen bonds) interactions between chitosan and xanthan gum. PECs prepared with acetic acid at pH 4.6 and 5.6 had enhanced rehydration ability in phosphate buffer pH 7.2, and at PEC-to-drug mass ratio up to 1:2, enabled extended ibuprofen release from hard capsules during 10 h.",
publisher = "Elsevier B.V.",
journal = "International Journal of Biological Macromolecules",
title = "Study of chitosan/xanthan gum polyelectrolyte complexes formation, solid state and influence on ibuprofen release kinetics",
volume = "148",
pages = "942-955",
doi = "10.1016/j.ijbiomac.2020.01.138"
}
Ćirić, A., Medarević, Đ., Čalija, B., Dobričić, V., Mitrić, M.,& Đekić, L.. (2020). Study of chitosan/xanthan gum polyelectrolyte complexes formation, solid state and influence on ibuprofen release kinetics. in International Journal of Biological Macromolecules
Elsevier B.V.., 148, 942-955.
https://doi.org/10.1016/j.ijbiomac.2020.01.138
Ćirić A, Medarević Đ, Čalija B, Dobričić V, Mitrić M, Đekić L. Study of chitosan/xanthan gum polyelectrolyte complexes formation, solid state and influence on ibuprofen release kinetics. in International Journal of Biological Macromolecules. 2020;148:942-955.
doi:10.1016/j.ijbiomac.2020.01.138 .
Ćirić, Ana, Medarević, Đorđe, Čalija, Bojan, Dobričić, Vladimir, Mitrić, Miodrag, Đekić, Ljiljana, "Study of chitosan/xanthan gum polyelectrolyte complexes formation, solid state and influence on ibuprofen release kinetics" in International Journal of Biological Macromolecules, 148 (2020):942-955,
https://doi.org/10.1016/j.ijbiomac.2020.01.138 . .
44
19
46

Insight into the formation of glimepiride nanocrystals by wet media milling

Medarević, Đorđe; Ibrić, Svetlana; Vardaka, Elisavet; Mitrić, Miodrag; Nikolakakis, Ioannis; Kachrimanis, Kyriakos

(MDPI, 2020)

TY  - JOUR
AU  - Medarević, Đorđe
AU  - Ibrić, Svetlana
AU  - Vardaka, Elisavet
AU  - Mitrić, Miodrag
AU  - Nikolakakis, Ioannis
AU  - Kachrimanis, Kyriakos
PY  - 2020
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3497
AB  - Nanocrystal formation for the dissolution enhancement of glimepiride was attempted
by wet media milling. Di erent stabilizers were tested and the obtained nanosuspensions were
solidified by spray drying in presence of mannitol, and characterized regarding their redispersibility
by dynamic light scattering, physicochemical properties by di erential scanning calorimetry (DSC),
FT-IR spectroscopy, powder X-ray di raction (PXRD), and scanning electron microcopy (SEM), as
well as dissolution rate. Lattice energy frameworks combined with topology analysis were used in
order to gain insight into the mechanisms of particle fracture. It was found that nanosuspensions with
narrow size distribution can be obtained in presence of poloxamer 188, HPC-SL and Pharmacoat® 603
stabilizers, with poloxamer giving poor redispersibility due to melting and sticking of nanocrystals
during spray drying. DSC and FT-IR studies showed that glimepiride does not undergo polymorphic
transformations during processing, and that the milling process induces changes in the hydrogen
bonding patterns of glimepiride crystals. Lattice energy framework and topology analysis revealed
the existence of a possible slip plane on the (101) surface, which was experimentally verified by PXRD
analysis. Dissolution testing proved the superior performance of nanocrystals, and emphasized the
important influence of the stabilizer on the dissolution rate of the nanocrystals.
PB  - MDPI
T2  - Pharmaceutics
T1  - Insight into the formation of glimepiride nanocrystals by wet media milling
VL  - 12
IS  - 1
DO  - 10.3390/pharmaceutics12010053
ER  - 
@article{
author = "Medarević, Đorđe and Ibrić, Svetlana and Vardaka, Elisavet and Mitrić, Miodrag and Nikolakakis, Ioannis and Kachrimanis, Kyriakos",
year = "2020",
abstract = "Nanocrystal formation for the dissolution enhancement of glimepiride was attempted
by wet media milling. Di erent stabilizers were tested and the obtained nanosuspensions were
solidified by spray drying in presence of mannitol, and characterized regarding their redispersibility
by dynamic light scattering, physicochemical properties by di erential scanning calorimetry (DSC),
FT-IR spectroscopy, powder X-ray di raction (PXRD), and scanning electron microcopy (SEM), as
well as dissolution rate. Lattice energy frameworks combined with topology analysis were used in
order to gain insight into the mechanisms of particle fracture. It was found that nanosuspensions with
narrow size distribution can be obtained in presence of poloxamer 188, HPC-SL and Pharmacoat® 603
stabilizers, with poloxamer giving poor redispersibility due to melting and sticking of nanocrystals
during spray drying. DSC and FT-IR studies showed that glimepiride does not undergo polymorphic
transformations during processing, and that the milling process induces changes in the hydrogen
bonding patterns of glimepiride crystals. Lattice energy framework and topology analysis revealed
the existence of a possible slip plane on the (101) surface, which was experimentally verified by PXRD
analysis. Dissolution testing proved the superior performance of nanocrystals, and emphasized the
important influence of the stabilizer on the dissolution rate of the nanocrystals.",
publisher = "MDPI",
journal = "Pharmaceutics",
title = "Insight into the formation of glimepiride nanocrystals by wet media milling",
volume = "12",
number = "1",
doi = "10.3390/pharmaceutics12010053"
}
Medarević, Đ., Ibrić, S., Vardaka, E., Mitrić, M., Nikolakakis, I.,& Kachrimanis, K.. (2020). Insight into the formation of glimepiride nanocrystals by wet media milling. in Pharmaceutics
MDPI., 12(1).
https://doi.org/10.3390/pharmaceutics12010053
Medarević Đ, Ibrić S, Vardaka E, Mitrić M, Nikolakakis I, Kachrimanis K. Insight into the formation of glimepiride nanocrystals by wet media milling. in Pharmaceutics. 2020;12(1).
doi:10.3390/pharmaceutics12010053 .
Medarević, Đorđe, Ibrić, Svetlana, Vardaka, Elisavet, Mitrić, Miodrag, Nikolakakis, Ioannis, Kachrimanis, Kyriakos, "Insight into the formation of glimepiride nanocrystals by wet media milling" in Pharmaceutics, 12, no. 1 (2020),
https://doi.org/10.3390/pharmaceutics12010053 . .
1
15
1
14

Influence of drying method on chitosan/xanthan polyelectrolyte complex characteristics

Ćirić, Ana; Mitrić, Miodrag; Dobričić, Vladimir; Đekić, Ljiljana

(University of Novi Sad, Faculty of Technology Novi Sad, 2019)

TY  - CONF
AU  - Ćirić, Ana
AU  - Mitrić, Miodrag
AU  - Dobričić, Vladimir
AU  - Đekić, Ljiljana
PY  - 2019
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/5366
AB  - Polyelectrolyte complexes are novel drug delivery systems obtained by establishing ion interactions between two oppositely charged polymers. ...
PB  - University of Novi Sad, Faculty of Technology Novi Sad
C3  - 1st International Conference on Advanced Production and Processing 10th-11th October 2019 Novi Sad, Serbia (Book of Abstracts)
T1  - Influence of drying method on chitosan/xanthan polyelectrolyte complex characteristics
SP  - 185
EP  - 185
UR  - https://hdl.handle.net/21.15107/rcub_farfar_5366
ER  - 
@conference{
author = "Ćirić, Ana and Mitrić, Miodrag and Dobričić, Vladimir and Đekić, Ljiljana",
year = "2019",
abstract = "Polyelectrolyte complexes are novel drug delivery systems obtained by establishing ion interactions between two oppositely charged polymers. ...",
publisher = "University of Novi Sad, Faculty of Technology Novi Sad",
journal = "1st International Conference on Advanced Production and Processing 10th-11th October 2019 Novi Sad, Serbia (Book of Abstracts)",
title = "Influence of drying method on chitosan/xanthan polyelectrolyte complex characteristics",
pages = "185-185",
url = "https://hdl.handle.net/21.15107/rcub_farfar_5366"
}
Ćirić, A., Mitrić, M., Dobričić, V.,& Đekić, L.. (2019). Influence of drying method on chitosan/xanthan polyelectrolyte complex characteristics. in 1st International Conference on Advanced Production and Processing 10th-11th October 2019 Novi Sad, Serbia (Book of Abstracts)
University of Novi Sad, Faculty of Technology Novi Sad., 185-185.
https://hdl.handle.net/21.15107/rcub_farfar_5366
Ćirić A, Mitrić M, Dobričić V, Đekić L. Influence of drying method on chitosan/xanthan polyelectrolyte complex characteristics. in 1st International Conference on Advanced Production and Processing 10th-11th October 2019 Novi Sad, Serbia (Book of Abstracts). 2019;:185-185.
https://hdl.handle.net/21.15107/rcub_farfar_5366 .
Ćirić, Ana, Mitrić, Miodrag, Dobričić, Vladimir, Đekić, Ljiljana, "Influence of drying method on chitosan/xanthan polyelectrolyte complex characteristics" in 1st International Conference on Advanced Production and Processing 10th-11th October 2019 Novi Sad, Serbia (Book of Abstracts) (2019):185-185,
https://hdl.handle.net/21.15107/rcub_farfar_5366 .

Assessing the potential of solid dispersions to improve dissolution rate and bioavailability of valsartan: In vitro-in silico approach

Medarević, Đorđe; Cvijić, Sandra; Dobričić, Vladimir; Mitrić, Miodrag; Đuriš, Jelena; Ibrić, Svetlana

(Elsevier Science BV, Amsterdam, 2018)

TY  - JOUR
AU  - Medarević, Đorđe
AU  - Cvijić, Sandra
AU  - Dobričić, Vladimir
AU  - Mitrić, Miodrag
AU  - Đuriš, Jelena
AU  - Ibrić, Svetlana
PY  - 2018
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3045
AB  - This study aimed to improve dissolution rate of valsartan in an acidic environment and consequently its oral bioavailability by solid dispersion formulation. Valsartan was selected as a model drug due to its low oral bioavailability (similar to 23%) caused by poor solubility of this drug in the low pH region of gastrointestinal tract (GIT) and presence of absorption window in the upper part of GIT. Solid dispersions were prepared by solvent evaporation method with Eudragit (R) E100, Soluplus (R) or polyvinylpyrrolidone K25 (PVP K25) in drug:polymer weight ratios of 1:1, 1:2, 1:4 and 1:6 and further subjected to solid-state characterization and in vitro drug dissolution testing in 0.1 M HCl. The expected drug plasma concentration vs. time profiles after oral administration of the selected solid dispersion formulations were predicted using physiologically-based in silico modeling. Fast and complete dissolution of valsartan, with > 80% of dissolved drug within the first 10 min of testing, was observed only from solid dispersions prepared with Eudragit (R) E100 in drug:polymer ratios of 1:2, 1:4 and 1:6. In all other samples, valsartan dissolution was slow and incomplete. Solid-state characterization showed amorphous nature of both pure drug and solid dispersion samples, as well as favourable intermolecular interactions between valsartan and polymers over interactions between drug molecules. The constructed in silico model predicted > 40% of increase in valsartan bioavailability, C-max and AUC values from selected solid dispersion formulations compared to conventional solid oral dosage form such as IR capsules. Based on the results of the in vitro-in silico study, formulation of solid dispersions of valsartan with Eudragit (R) E100 polymer can be considered as a promising approach for improving valsartan bioavailability.
PB  - Elsevier Science BV, Amsterdam
T2  - European Journal of Pharmaceutical Sciences
T1  - Assessing the potential of solid dispersions to improve dissolution rate and bioavailability of valsartan: In vitro-in silico approach
VL  - 124
SP  - 188
EP  - 198
DO  - 10.1016/j.ejps.2018.08.026
ER  - 
@article{
author = "Medarević, Đorđe and Cvijić, Sandra and Dobričić, Vladimir and Mitrić, Miodrag and Đuriš, Jelena and Ibrić, Svetlana",
year = "2018",
abstract = "This study aimed to improve dissolution rate of valsartan in an acidic environment and consequently its oral bioavailability by solid dispersion formulation. Valsartan was selected as a model drug due to its low oral bioavailability (similar to 23%) caused by poor solubility of this drug in the low pH region of gastrointestinal tract (GIT) and presence of absorption window in the upper part of GIT. Solid dispersions were prepared by solvent evaporation method with Eudragit (R) E100, Soluplus (R) or polyvinylpyrrolidone K25 (PVP K25) in drug:polymer weight ratios of 1:1, 1:2, 1:4 and 1:6 and further subjected to solid-state characterization and in vitro drug dissolution testing in 0.1 M HCl. The expected drug plasma concentration vs. time profiles after oral administration of the selected solid dispersion formulations were predicted using physiologically-based in silico modeling. Fast and complete dissolution of valsartan, with > 80% of dissolved drug within the first 10 min of testing, was observed only from solid dispersions prepared with Eudragit (R) E100 in drug:polymer ratios of 1:2, 1:4 and 1:6. In all other samples, valsartan dissolution was slow and incomplete. Solid-state characterization showed amorphous nature of both pure drug and solid dispersion samples, as well as favourable intermolecular interactions between valsartan and polymers over interactions between drug molecules. The constructed in silico model predicted > 40% of increase in valsartan bioavailability, C-max and AUC values from selected solid dispersion formulations compared to conventional solid oral dosage form such as IR capsules. Based on the results of the in vitro-in silico study, formulation of solid dispersions of valsartan with Eudragit (R) E100 polymer can be considered as a promising approach for improving valsartan bioavailability.",
publisher = "Elsevier Science BV, Amsterdam",
journal = "European Journal of Pharmaceutical Sciences",
title = "Assessing the potential of solid dispersions to improve dissolution rate and bioavailability of valsartan: In vitro-in silico approach",
volume = "124",
pages = "188-198",
doi = "10.1016/j.ejps.2018.08.026"
}
Medarević, Đ., Cvijić, S., Dobričić, V., Mitrić, M., Đuriš, J.,& Ibrić, S.. (2018). Assessing the potential of solid dispersions to improve dissolution rate and bioavailability of valsartan: In vitro-in silico approach. in European Journal of Pharmaceutical Sciences
Elsevier Science BV, Amsterdam., 124, 188-198.
https://doi.org/10.1016/j.ejps.2018.08.026
Medarević Đ, Cvijić S, Dobričić V, Mitrić M, Đuriš J, Ibrić S. Assessing the potential of solid dispersions to improve dissolution rate and bioavailability of valsartan: In vitro-in silico approach. in European Journal of Pharmaceutical Sciences. 2018;124:188-198.
doi:10.1016/j.ejps.2018.08.026 .
Medarević, Đorđe, Cvijić, Sandra, Dobričić, Vladimir, Mitrić, Miodrag, Đuriš, Jelena, Ibrić, Svetlana, "Assessing the potential of solid dispersions to improve dissolution rate and bioavailability of valsartan: In vitro-in silico approach" in European Journal of Pharmaceutical Sciences, 124 (2018):188-198,
https://doi.org/10.1016/j.ejps.2018.08.026 . .
3
23
16
23

Optimization of formulation and process parameters for the production of carvedilol nanosuspension by wet media milling

Medarević, Đorđe; Đuriš, Jelena; Ibrić, Svetlana; Mitrić, Miodrag; Kachrimanis, Kyriakos

(Elsevier Science BV, Amsterdam, 2018)

TY  - JOUR
AU  - Medarević, Đorđe
AU  - Đuriš, Jelena
AU  - Ibrić, Svetlana
AU  - Mitrić, Miodrag
AU  - Kachrimanis, Kyriakos
PY  - 2018
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3171
AB  - The aim of this study is to develop nanosuspension of carvedilol (CRV) by wet media milling. Concentration of polymeric stabilizer (hydroxypropyl cellulose-HPC-SL), milling speed and size of milling beads were identified as critical formulation and process parameters and their effect on CRV particle size after 60 min of milling was assessed using a Box-Behnken experimental design. Optimized nanosuspension was solidified using spray drying and freeze drying and subjected to solid state characterization. Low stabilizer concentration (10%), low milling speed (300 rpm) with small milling beads (0.1 mm) were found as optimal milling conditions. Crystal lattice simulation identified potential slip plane within CRV crystals, where fractures are the most likely to occur. Calculated mechanical properties of CRV crystal indicates that low energy stress is sufficient to initiate fracture, if applied in the correct direction, explaining the advantage of using smaller milling beads. Only spray dried nanosuspension redispersed to original nanoparticles, while particle agglomeration during freeze drying prevented sample redispersion. Wet milling and spray drying did not induce polymorphic transition of CRV, while there is indication of polymorphic transition during freeze drying, making spray drying as the preferred solidification method.
PB  - Elsevier Science BV, Amsterdam
T2  - International Journal of Pharmaceutics
T1  - Optimization of formulation and process parameters for the production of carvedilol nanosuspension by wet media milling
VL  - 540
IS  - 1-2
SP  - 150
EP  - 161
DO  - 10.1016/j.ijpharm.2018.02.011
ER  - 
@article{
author = "Medarević, Đorđe and Đuriš, Jelena and Ibrić, Svetlana and Mitrić, Miodrag and Kachrimanis, Kyriakos",
year = "2018",
abstract = "The aim of this study is to develop nanosuspension of carvedilol (CRV) by wet media milling. Concentration of polymeric stabilizer (hydroxypropyl cellulose-HPC-SL), milling speed and size of milling beads were identified as critical formulation and process parameters and their effect on CRV particle size after 60 min of milling was assessed using a Box-Behnken experimental design. Optimized nanosuspension was solidified using spray drying and freeze drying and subjected to solid state characterization. Low stabilizer concentration (10%), low milling speed (300 rpm) with small milling beads (0.1 mm) were found as optimal milling conditions. Crystal lattice simulation identified potential slip plane within CRV crystals, where fractures are the most likely to occur. Calculated mechanical properties of CRV crystal indicates that low energy stress is sufficient to initiate fracture, if applied in the correct direction, explaining the advantage of using smaller milling beads. Only spray dried nanosuspension redispersed to original nanoparticles, while particle agglomeration during freeze drying prevented sample redispersion. Wet milling and spray drying did not induce polymorphic transition of CRV, while there is indication of polymorphic transition during freeze drying, making spray drying as the preferred solidification method.",
publisher = "Elsevier Science BV, Amsterdam",
journal = "International Journal of Pharmaceutics",
title = "Optimization of formulation and process parameters for the production of carvedilol nanosuspension by wet media milling",
volume = "540",
number = "1-2",
pages = "150-161",
doi = "10.1016/j.ijpharm.2018.02.011"
}
Medarević, Đ., Đuriš, J., Ibrić, S., Mitrić, M.,& Kachrimanis, K.. (2018). Optimization of formulation and process parameters for the production of carvedilol nanosuspension by wet media milling. in International Journal of Pharmaceutics
Elsevier Science BV, Amsterdam., 540(1-2), 150-161.
https://doi.org/10.1016/j.ijpharm.2018.02.011
Medarević Đ, Đuriš J, Ibrić S, Mitrić M, Kachrimanis K. Optimization of formulation and process parameters for the production of carvedilol nanosuspension by wet media milling. in International Journal of Pharmaceutics. 2018;540(1-2):150-161.
doi:10.1016/j.ijpharm.2018.02.011 .
Medarević, Đorđe, Đuriš, Jelena, Ibrić, Svetlana, Mitrić, Miodrag, Kachrimanis, Kyriakos, "Optimization of formulation and process parameters for the production of carvedilol nanosuspension by wet media milling" in International Journal of Pharmaceutics, 540, no. 1-2 (2018):150-161,
https://doi.org/10.1016/j.ijpharm.2018.02.011 . .
59
35
60

Weak Light Performance of Synthesized Amorphous Sb2S3-Based Hybrid Solar Cell

Janošević, Valentina; Mitrić, Miodrag; Janošević-Ležaić, Aleksandra; Validzić, Ivana Lj.

(IEEE-Inst Electrical Electronics Engineers Inc, Piscataway, 2016)

TY  - JOUR
AU  - Janošević, Valentina
AU  - Mitrić, Miodrag
AU  - Janošević-Ležaić, Aleksandra
AU  - Validzić, Ivana Lj.
PY  - 2016
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/2560
AB  - We report here on an inexpensive solar cell made entirely of a synthesized material (indium tin oxide/amorphous Sb2S3 + polyaniline composite/TiO2/electrolyte). The cell has a solid efficiency of around 2.5% at very low light intensity of only 5% sun, which makes it particularly suitable for indoor applications. As found, the cell performance at intensity of 5% sun is governed by high shunt resistance only. At higher light intensities (25% sun), however, the cell has lower efficiency (around 0.8%), governed by both series and shunt resistance. An initial decrease in the fill factor with the light intensity decrease is not sufficient to cause reduction in the cell efficiency, due to slight variations in voltage and current. A minimal permeability in the ultraviolet (UV) region and its almost constant value in the visible and near-infrared regions at low light intensity of 5% sun could be the reason for higher cell efficiency.
PB  - IEEE-Inst Electrical Electronics Engineers Inc, Piscataway
T2  - IEEE Journal of Photovoltaics
T1  - Weak Light Performance of Synthesized Amorphous Sb2S3-Based Hybrid Solar Cell
VL  - 6
IS  - 2
SP  - 473
EP  - 479
DO  - 10.1109/JPHOTOV.2015.2501731
ER  - 
@article{
author = "Janošević, Valentina and Mitrić, Miodrag and Janošević-Ležaić, Aleksandra and Validzić, Ivana Lj.",
year = "2016",
abstract = "We report here on an inexpensive solar cell made entirely of a synthesized material (indium tin oxide/amorphous Sb2S3 + polyaniline composite/TiO2/electrolyte). The cell has a solid efficiency of around 2.5% at very low light intensity of only 5% sun, which makes it particularly suitable for indoor applications. As found, the cell performance at intensity of 5% sun is governed by high shunt resistance only. At higher light intensities (25% sun), however, the cell has lower efficiency (around 0.8%), governed by both series and shunt resistance. An initial decrease in the fill factor with the light intensity decrease is not sufficient to cause reduction in the cell efficiency, due to slight variations in voltage and current. A minimal permeability in the ultraviolet (UV) region and its almost constant value in the visible and near-infrared regions at low light intensity of 5% sun could be the reason for higher cell efficiency.",
publisher = "IEEE-Inst Electrical Electronics Engineers Inc, Piscataway",
journal = "IEEE Journal of Photovoltaics",
title = "Weak Light Performance of Synthesized Amorphous Sb2S3-Based Hybrid Solar Cell",
volume = "6",
number = "2",
pages = "473-479",
doi = "10.1109/JPHOTOV.2015.2501731"
}
Janošević, V., Mitrić, M., Janošević-Ležaić, A.,& Validzić, I. Lj.. (2016). Weak Light Performance of Synthesized Amorphous Sb2S3-Based Hybrid Solar Cell. in IEEE Journal of Photovoltaics
IEEE-Inst Electrical Electronics Engineers Inc, Piscataway., 6(2), 473-479.
https://doi.org/10.1109/JPHOTOV.2015.2501731
Janošević V, Mitrić M, Janošević-Ležaić A, Validzić IL. Weak Light Performance of Synthesized Amorphous Sb2S3-Based Hybrid Solar Cell. in IEEE Journal of Photovoltaics. 2016;6(2):473-479.
doi:10.1109/JPHOTOV.2015.2501731 .
Janošević, Valentina, Mitrić, Miodrag, Janošević-Ležaić, Aleksandra, Validzić, Ivana Lj., "Weak Light Performance of Synthesized Amorphous Sb2S3-Based Hybrid Solar Cell" in IEEE Journal of Photovoltaics, 6, no. 2 (2016):473-479,
https://doi.org/10.1109/JPHOTOV.2015.2501731 . .
10
4
9

Dissolution rate enhancement and physicochemical characterization of carbamazepine-poloxamer solid dispersions

Medarević, Đorđe; Kachrimanis, Kyriakos; Mitrić, Miodrag; Đuriš, Jelena; Đurić, Zorica; Ibrić, Svetlana

(Taylor & Francis Ltd, Abingdon, 2016)

TY  - JOUR
AU  - Medarević, Đorđe
AU  - Kachrimanis, Kyriakos
AU  - Mitrić, Miodrag
AU  - Đuriš, Jelena
AU  - Đurić, Zorica
AU  - Ibrić, Svetlana
PY  - 2016
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/2570
AB  - This study investigates the potential of poloxamers as solid dispersions (SDs) carriers in improving the dissolution rate of a poorly soluble drug, carbamazepine (CBZ). Solid dispersions were prepared with poloxamer 188 (P188) and poloxamer 407 (P407) by melting method in different drug:carrier ratios (1:1, 1:2 and 1:3). Prepared samples were characterized using differential scanning calorimetry (DSC), hot-stage polarized light microscopy (HSM), powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FT-IR) to investigate drug physical state within the SDs matrix, possible polymorphic transitions and drug-polymer interactions. The interactions between CBZ molecules and polymeric chains were also evaluated using molecular dynamics simulation (MDS) technique. The most thermodynamically stable polymorphic form III of CBZ was present in all SDs, regardless of the type of poloxamer and drug-to-carrier ratio. The absence of drug-polymer interactions was observed by FT-IR analysis and additionally confirmed by MDS. Formation of persistent hydrogen bond between two CBZ molecules, observed by MDS indicate high tendency of CBZ molecules to aggregate and form crystalline phase within dispersion. P188 exhibit higher efficiency in increasing CBZ dissolution rate due to its more pronounced hydrophilic properties, while increasing poloxamers concentration resulted in decreasing drug release rate, as a consequence of their thermoreversible gelation.
PB  - Taylor & Francis Ltd, Abingdon
T2  - Pharmaceutical Development and Technology
T1  - Dissolution rate enhancement and physicochemical characterization of carbamazepine-poloxamer solid dispersions
VL  - 21
IS  - 3
SP  - 268
EP  - 276
DO  - 10.3109/10837450.2014.996899
ER  - 
@article{
author = "Medarević, Đorđe and Kachrimanis, Kyriakos and Mitrić, Miodrag and Đuriš, Jelena and Đurić, Zorica and Ibrić, Svetlana",
year = "2016",
abstract = "This study investigates the potential of poloxamers as solid dispersions (SDs) carriers in improving the dissolution rate of a poorly soluble drug, carbamazepine (CBZ). Solid dispersions were prepared with poloxamer 188 (P188) and poloxamer 407 (P407) by melting method in different drug:carrier ratios (1:1, 1:2 and 1:3). Prepared samples were characterized using differential scanning calorimetry (DSC), hot-stage polarized light microscopy (HSM), powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FT-IR) to investigate drug physical state within the SDs matrix, possible polymorphic transitions and drug-polymer interactions. The interactions between CBZ molecules and polymeric chains were also evaluated using molecular dynamics simulation (MDS) technique. The most thermodynamically stable polymorphic form III of CBZ was present in all SDs, regardless of the type of poloxamer and drug-to-carrier ratio. The absence of drug-polymer interactions was observed by FT-IR analysis and additionally confirmed by MDS. Formation of persistent hydrogen bond between two CBZ molecules, observed by MDS indicate high tendency of CBZ molecules to aggregate and form crystalline phase within dispersion. P188 exhibit higher efficiency in increasing CBZ dissolution rate due to its more pronounced hydrophilic properties, while increasing poloxamers concentration resulted in decreasing drug release rate, as a consequence of their thermoreversible gelation.",
publisher = "Taylor & Francis Ltd, Abingdon",
journal = "Pharmaceutical Development and Technology",
title = "Dissolution rate enhancement and physicochemical characterization of carbamazepine-poloxamer solid dispersions",
volume = "21",
number = "3",
pages = "268-276",
doi = "10.3109/10837450.2014.996899"
}
Medarević, Đ., Kachrimanis, K., Mitrić, M., Đuriš, J., Đurić, Z.,& Ibrić, S.. (2016). Dissolution rate enhancement and physicochemical characterization of carbamazepine-poloxamer solid dispersions. in Pharmaceutical Development and Technology
Taylor & Francis Ltd, Abingdon., 21(3), 268-276.
https://doi.org/10.3109/10837450.2014.996899
Medarević Đ, Kachrimanis K, Mitrić M, Đuriš J, Đurić Z, Ibrić S. Dissolution rate enhancement and physicochemical characterization of carbamazepine-poloxamer solid dispersions. in Pharmaceutical Development and Technology. 2016;21(3):268-276.
doi:10.3109/10837450.2014.996899 .
Medarević, Đorđe, Kachrimanis, Kyriakos, Mitrić, Miodrag, Đuriš, Jelena, Đurić, Zorica, Ibrić, Svetlana, "Dissolution rate enhancement and physicochemical characterization of carbamazepine-poloxamer solid dispersions" in Pharmaceutical Development and Technology, 21, no. 3 (2016):268-276,
https://doi.org/10.3109/10837450.2014.996899 . .
42
31
47

Microporous conducting carbonized polyaniline nanorods: Synthesis, characterization and electrocatalytic properties

Janošević, Aleksandra; Pasti, Igor; Gavrilov, Nemanja; Mentus, Slavko; Krstić, Jugoslav; Mitrić, Miodrag; Travas-Sejdić, Jadranka; Ćirić-Marjanović, Gordana

(Elsevier Science BV, Amsterdam, 2012)

TY  - JOUR
AU  - Janošević, Aleksandra
AU  - Pasti, Igor
AU  - Gavrilov, Nemanja
AU  - Mentus, Slavko
AU  - Krstić, Jugoslav
AU  - Mitrić, Miodrag
AU  - Travas-Sejdić, Jadranka
AU  - Ćirić-Marjanović, Gordana
PY  - 2012
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/1726
AB  - Microporous conducting nitrogen-containing nanostructured carbon with excellent catalytic activity for the electrochemical synthesis of hydrogen peroxide was synthesized by the carbonization of self-assembled polyaniline 3,5-dinitrosalicylate nanorods. Carbonization was carried out by means of gradual heating in a nitrogen atmosphere up to 800 degrees C. Carbonized polyaniline nanorods containing 9.8 wt.% of nitrogen had a conductivity of 0.35 S cm(-1). The electrical characteristics, morphology, textural parameters, elemental composition, molecular structure and crystallinity of novel carbonized nanostructured polyaniline were investigated by conductivity measurements, scanning and transmission electron microscopies, nitrogen adsorption-desorption measurements, elemental microanalysis, XPS, FTIR and Raman spectroscopies, and XRD, respectively. The electrocatalytic activity of carbonized polyaniline nanorods towards oxygen reduction in alkaline conditions has been studied by the voltammetry with the rotating disk electrode.
PB  - Elsevier Science BV, Amsterdam
T2  - Microporous and Mesoporous Materials
T1  - Microporous conducting carbonized polyaniline nanorods: Synthesis, characterization and electrocatalytic properties
VL  - 152
SP  - 50
EP  - 57
DO  - 10.1016/j.micromeso.2011.12.002
ER  - 
@article{
author = "Janošević, Aleksandra and Pasti, Igor and Gavrilov, Nemanja and Mentus, Slavko and Krstić, Jugoslav and Mitrić, Miodrag and Travas-Sejdić, Jadranka and Ćirić-Marjanović, Gordana",
year = "2012",
abstract = "Microporous conducting nitrogen-containing nanostructured carbon with excellent catalytic activity for the electrochemical synthesis of hydrogen peroxide was synthesized by the carbonization of self-assembled polyaniline 3,5-dinitrosalicylate nanorods. Carbonization was carried out by means of gradual heating in a nitrogen atmosphere up to 800 degrees C. Carbonized polyaniline nanorods containing 9.8 wt.% of nitrogen had a conductivity of 0.35 S cm(-1). The electrical characteristics, morphology, textural parameters, elemental composition, molecular structure and crystallinity of novel carbonized nanostructured polyaniline were investigated by conductivity measurements, scanning and transmission electron microscopies, nitrogen adsorption-desorption measurements, elemental microanalysis, XPS, FTIR and Raman spectroscopies, and XRD, respectively. The electrocatalytic activity of carbonized polyaniline nanorods towards oxygen reduction in alkaline conditions has been studied by the voltammetry with the rotating disk electrode.",
publisher = "Elsevier Science BV, Amsterdam",
journal = "Microporous and Mesoporous Materials",
title = "Microporous conducting carbonized polyaniline nanorods: Synthesis, characterization and electrocatalytic properties",
volume = "152",
pages = "50-57",
doi = "10.1016/j.micromeso.2011.12.002"
}
Janošević, A., Pasti, I., Gavrilov, N., Mentus, S., Krstić, J., Mitrić, M., Travas-Sejdić, J.,& Ćirić-Marjanović, G.. (2012). Microporous conducting carbonized polyaniline nanorods: Synthesis, characterization and electrocatalytic properties. in Microporous and Mesoporous Materials
Elsevier Science BV, Amsterdam., 152, 50-57.
https://doi.org/10.1016/j.micromeso.2011.12.002
Janošević A, Pasti I, Gavrilov N, Mentus S, Krstić J, Mitrić M, Travas-Sejdić J, Ćirić-Marjanović G. Microporous conducting carbonized polyaniline nanorods: Synthesis, characterization and electrocatalytic properties. in Microporous and Mesoporous Materials. 2012;152:50-57.
doi:10.1016/j.micromeso.2011.12.002 .
Janošević, Aleksandra, Pasti, Igor, Gavrilov, Nemanja, Mentus, Slavko, Krstić, Jugoslav, Mitrić, Miodrag, Travas-Sejdić, Jadranka, Ćirić-Marjanović, Gordana, "Microporous conducting carbonized polyaniline nanorods: Synthesis, characterization and electrocatalytic properties" in Microporous and Mesoporous Materials, 152 (2012):50-57,
https://doi.org/10.1016/j.micromeso.2011.12.002 . .
53
47
55

Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering

Stanić, Vojislav; Janacković, Đorđe; Dimitrijević, Suzana; Tanasković, Slađana; Mitrić, Miodrag; Pavlović, Mirjana S.; Krstić, Aleksandra; Jovanović, Dragoljub; Raičević, Slavica

(Elsevier Science BV, Amsterdam, 2011)

TY  - JOUR
AU  - Stanić, Vojislav
AU  - Janacković, Đorđe
AU  - Dimitrijević, Suzana
AU  - Tanasković, Slađana
AU  - Mitrić, Miodrag
AU  - Pavlović, Mirjana S.
AU  - Krstić, Aleksandra
AU  - Jovanović, Dragoljub
AU  - Raičević, Slavica
PY  - 2011
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/1538
AB  - Monophase silver-doped hydroxyapatite (AgxCa10-x(PO4)(6)(OH)(2); 0.002  lt = x  lt = 0.04) nanoparticles were prepared using a neutralization method and investigated with respect to potential medical applications. This method consists of dissolving Ag2O in solution of H3PO4, and the slow addition to suspension of Ca(OH)(2) was applied for the purpose of homogenous distribution of silver ions. Characterization studies from XRD, TEM and FTIR spectra showed that obtained crystals are monophase hydroxyapatites and that particles of all samples are of nano size, with average length of 70nm and about 15-25nm in diameter. Antimicrobial studies have demonstrated that all silver-doped hydroxyapatite samples exhibit excellent antimicrobial activity in vitro against the following pathogens: Staphylococcus aureus, Escherichia coli and Candida albicans. The hydroxyapatite sample with the highest content of silver has shown the highest antimicrobial activity; killed all cells of E. coli and brought to more than 99% reduction in viable counts of S. aureus and C. albicans. The atomic force microscopic studies illustrate that silver-doped hydroxyapatite sample causes considerable morphological changes of microorganism cells which might be the cause of cells' death. Hemolysis ratios of the silver-doped hydroxyapatite samples were below 3%, indicating good blood compatibility and that are promising as biomaterials. Crown Copyright
PB  - Elsevier Science BV, Amsterdam
T2  - Applied Surface Science
T1  - Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering
VL  - 257
IS  - 9
SP  - 4510
EP  - 4518
DO  - 10.1016/j.apsusc.2010.12.113
ER  - 
@article{
author = "Stanić, Vojislav and Janacković, Đorđe and Dimitrijević, Suzana and Tanasković, Slađana and Mitrić, Miodrag and Pavlović, Mirjana S. and Krstić, Aleksandra and Jovanović, Dragoljub and Raičević, Slavica",
year = "2011",
abstract = "Monophase silver-doped hydroxyapatite (AgxCa10-x(PO4)(6)(OH)(2); 0.002  lt = x  lt = 0.04) nanoparticles were prepared using a neutralization method and investigated with respect to potential medical applications. This method consists of dissolving Ag2O in solution of H3PO4, and the slow addition to suspension of Ca(OH)(2) was applied for the purpose of homogenous distribution of silver ions. Characterization studies from XRD, TEM and FTIR spectra showed that obtained crystals are monophase hydroxyapatites and that particles of all samples are of nano size, with average length of 70nm and about 15-25nm in diameter. Antimicrobial studies have demonstrated that all silver-doped hydroxyapatite samples exhibit excellent antimicrobial activity in vitro against the following pathogens: Staphylococcus aureus, Escherichia coli and Candida albicans. The hydroxyapatite sample with the highest content of silver has shown the highest antimicrobial activity; killed all cells of E. coli and brought to more than 99% reduction in viable counts of S. aureus and C. albicans. The atomic force microscopic studies illustrate that silver-doped hydroxyapatite sample causes considerable morphological changes of microorganism cells which might be the cause of cells' death. Hemolysis ratios of the silver-doped hydroxyapatite samples were below 3%, indicating good blood compatibility and that are promising as biomaterials. Crown Copyright",
publisher = "Elsevier Science BV, Amsterdam",
journal = "Applied Surface Science",
title = "Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering",
volume = "257",
number = "9",
pages = "4510-4518",
doi = "10.1016/j.apsusc.2010.12.113"
}
Stanić, V., Janacković, Đ., Dimitrijević, S., Tanasković, S., Mitrić, M., Pavlović, M. S., Krstić, A., Jovanović, D.,& Raičević, S.. (2011). Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. in Applied Surface Science
Elsevier Science BV, Amsterdam., 257(9), 4510-4518.
https://doi.org/10.1016/j.apsusc.2010.12.113
Stanić V, Janacković Đ, Dimitrijević S, Tanasković S, Mitrić M, Pavlović MS, Krstić A, Jovanović D, Raičević S. Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. in Applied Surface Science. 2011;257(9):4510-4518.
doi:10.1016/j.apsusc.2010.12.113 .
Stanić, Vojislav, Janacković, Đorđe, Dimitrijević, Suzana, Tanasković, Slađana, Mitrić, Miodrag, Pavlović, Mirjana S., Krstić, Aleksandra, Jovanović, Dragoljub, Raičević, Slavica, "Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering" in Applied Surface Science, 257, no. 9 (2011):4510-4518,
https://doi.org/10.1016/j.apsusc.2010.12.113 . .
3
217
183
231

Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders

Stanić, Vojislav; Dimitrijević, Suzana; Antić-Stanković, Jelena; Mitrić, Miodrag; Jokić, Bojan; Plecas, Ilija B.; Raičević, Slavica

(Elsevier Science BV, Amsterdam, 2010)

TY  - JOUR
AU  - Stanić, Vojislav
AU  - Dimitrijević, Suzana
AU  - Antić-Stanković, Jelena
AU  - Mitrić, Miodrag
AU  - Jokić, Bojan
AU  - Plecas, Ilija B.
AU  - Raičević, Slavica
PY  - 2010
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/1413
AB  - Antimicrobial materials based on hydroxyapatite are potentially attractive in a wide variety of medical applications. The synthesis of copper and zinc-doped hydroxyapatite was done by neutralization method. This method consists of dissolving CuO or ZnO in solution of H(3)PO(4), and the slow addition to suspension of Ca(OH)(2) for obtaining monophasic product. Characterization studies from XRD, SEM, TEM and FTIR spectra showed that particles of all samples are of nano size and they do not contain any discernible crystalline impurity. The quantitative elemental analysis showed that the copper and zinc ions fully incorporated into the hydroxyapatite. The antimicrobial effects of doped hydroxyapatite powders against pathogen bacterial strains Escherichia coli, Staphylococcus aureus and pathogen yeast Candida albicans were tested in solid and liquid media. Quantitative test in liquid media clearly showed that copper and zinc-doped samples had viable cells reduction ability for all tested strains.
PB  - Elsevier Science BV, Amsterdam
T2  - Applied Surface Science
T1  - Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders
VL  - 256
IS  - 20
SP  - 6083
EP  - 6089
DO  - 10.1016/j.apsusc.2010.03.124
ER  - 
@article{
author = "Stanić, Vojislav and Dimitrijević, Suzana and Antić-Stanković, Jelena and Mitrić, Miodrag and Jokić, Bojan and Plecas, Ilija B. and Raičević, Slavica",
year = "2010",
abstract = "Antimicrobial materials based on hydroxyapatite are potentially attractive in a wide variety of medical applications. The synthesis of copper and zinc-doped hydroxyapatite was done by neutralization method. This method consists of dissolving CuO or ZnO in solution of H(3)PO(4), and the slow addition to suspension of Ca(OH)(2) for obtaining monophasic product. Characterization studies from XRD, SEM, TEM and FTIR spectra showed that particles of all samples are of nano size and they do not contain any discernible crystalline impurity. The quantitative elemental analysis showed that the copper and zinc ions fully incorporated into the hydroxyapatite. The antimicrobial effects of doped hydroxyapatite powders against pathogen bacterial strains Escherichia coli, Staphylococcus aureus and pathogen yeast Candida albicans were tested in solid and liquid media. Quantitative test in liquid media clearly showed that copper and zinc-doped samples had viable cells reduction ability for all tested strains.",
publisher = "Elsevier Science BV, Amsterdam",
journal = "Applied Surface Science",
title = "Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders",
volume = "256",
number = "20",
pages = "6083-6089",
doi = "10.1016/j.apsusc.2010.03.124"
}
Stanić, V., Dimitrijević, S., Antić-Stanković, J., Mitrić, M., Jokić, B., Plecas, I. B.,& Raičević, S.. (2010). Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. in Applied Surface Science
Elsevier Science BV, Amsterdam., 256(20), 6083-6089.
https://doi.org/10.1016/j.apsusc.2010.03.124
Stanić V, Dimitrijević S, Antić-Stanković J, Mitrić M, Jokić B, Plecas IB, Raičević S. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. in Applied Surface Science. 2010;256(20):6083-6089.
doi:10.1016/j.apsusc.2010.03.124 .
Stanić, Vojislav, Dimitrijević, Suzana, Antić-Stanković, Jelena, Mitrić, Miodrag, Jokić, Bojan, Plecas, Ilija B., Raičević, Slavica, "Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders" in Applied Surface Science, 256, no. 20 (2010):6083-6089,
https://doi.org/10.1016/j.apsusc.2010.03.124 . .
12
453
342
474