Giampieri, Francesca

Link to this page

Authority KeyName Variants
ca99f95d-5353-4618-a50e-728b8b97a20a
  • Giampieri, Francesca (3)
Projects

Author's Bibliography

Dry olive leaf extract attenuates DNA damage induced by estradiol and diethylstilbestrol in human peripheral blood cells in vitro

Topalović, Dijana; Dekanski, Dragana; Potparević, Biljana; Pirković, Andrea; Borozan, Sunčica; Bajić, Vladan; Stojanović, Danilo; Giampieri, Francesca; Gasparrini, Massimiliano; Živković, Lada

(Elsevier B.V., 2019)

TY  - JOUR
AU  - Topalović, Dijana
AU  - Dekanski, Dragana
AU  - Potparević, Biljana
AU  - Pirković, Andrea
AU  - Borozan, Sunčica
AU  - Bajić, Vladan
AU  - Stojanović, Danilo
AU  - Giampieri, Francesca
AU  - Gasparrini, Massimiliano
AU  - Živković, Lada
PY  - 2019
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3140
AB  - Phenolic groups of steroidal or nonsteroidal estrogens can redox cycle, leading to oxidative stress, where creation of reactive oxygen species are recognized as the main mechanism of their DNA damage properties. Dry olive (Olea europaea L.) leaf extract is known to contain bioactive and antioxidative components and to have an ability to modulate the effects of various oxidants in cells. The main goal of this study was to investigate antigenotoxic potential of a standardized dry olive leaf extract on DNA damage induced by 17β-estradiol and diethylstilbestrol in human whole blood cells in vitro, using comet assay. Our results indicated that both hormones showed a genotoxic effect at a concentration of 100 μM (P  lt  0.05, n = 6). Dry olive leaf extract was efficient in reducing number of cells with estrogen-induced DNA damage at tested concentrations (0.125, 0.5 and 1 mg/mL) (P  lt  0.05, n = 6) and under two experimental protocols, pre-treatment and post-treatment, exhibiting antigenotoxic properties. Analysis of antioxidant properties of the extract revealed moderate ABTS radical scavenging properties and reducing power. Overall, our results suggested that the protective potential of dry olive leaf extract could arise from the synergistic effect of its scavenging activity and enhancement of the cells' antioxidant capacity.
PB  - Elsevier B.V.
T2  - Mutation Research - Genetic Toxicology and Environmental Mutagenesis
T1  - Dry olive leaf extract attenuates DNA damage induced by estradiol and diethylstilbestrol in human peripheral blood cells in vitro
VL  - 845
DO  - 10.1016/j.mrgentox.2018.12.001
ER  - 
@article{
author = "Topalović, Dijana and Dekanski, Dragana and Potparević, Biljana and Pirković, Andrea and Borozan, Sunčica and Bajić, Vladan and Stojanović, Danilo and Giampieri, Francesca and Gasparrini, Massimiliano and Živković, Lada",
year = "2019",
abstract = "Phenolic groups of steroidal or nonsteroidal estrogens can redox cycle, leading to oxidative stress, where creation of reactive oxygen species are recognized as the main mechanism of their DNA damage properties. Dry olive (Olea europaea L.) leaf extract is known to contain bioactive and antioxidative components and to have an ability to modulate the effects of various oxidants in cells. The main goal of this study was to investigate antigenotoxic potential of a standardized dry olive leaf extract on DNA damage induced by 17β-estradiol and diethylstilbestrol in human whole blood cells in vitro, using comet assay. Our results indicated that both hormones showed a genotoxic effect at a concentration of 100 μM (P  lt  0.05, n = 6). Dry olive leaf extract was efficient in reducing number of cells with estrogen-induced DNA damage at tested concentrations (0.125, 0.5 and 1 mg/mL) (P  lt  0.05, n = 6) and under two experimental protocols, pre-treatment and post-treatment, exhibiting antigenotoxic properties. Analysis of antioxidant properties of the extract revealed moderate ABTS radical scavenging properties and reducing power. Overall, our results suggested that the protective potential of dry olive leaf extract could arise from the synergistic effect of its scavenging activity and enhancement of the cells' antioxidant capacity.",
publisher = "Elsevier B.V.",
journal = "Mutation Research - Genetic Toxicology and Environmental Mutagenesis",
title = "Dry olive leaf extract attenuates DNA damage induced by estradiol and diethylstilbestrol in human peripheral blood cells in vitro",
volume = "845",
doi = "10.1016/j.mrgentox.2018.12.001"
}
Topalović, D., Dekanski, D., Potparević, B., Pirković, A., Borozan, S., Bajić, V., Stojanović, D., Giampieri, F., Gasparrini, M.,& Živković, L.. (2019). Dry olive leaf extract attenuates DNA damage induced by estradiol and diethylstilbestrol in human peripheral blood cells in vitro. in Mutation Research - Genetic Toxicology and Environmental Mutagenesis
Elsevier B.V.., 845.
https://doi.org/10.1016/j.mrgentox.2018.12.001
Topalović D, Dekanski D, Potparević B, Pirković A, Borozan S, Bajić V, Stojanović D, Giampieri F, Gasparrini M, Živković L. Dry olive leaf extract attenuates DNA damage induced by estradiol and diethylstilbestrol in human peripheral blood cells in vitro. in Mutation Research - Genetic Toxicology and Environmental Mutagenesis. 2019;845.
doi:10.1016/j.mrgentox.2018.12.001 .
Topalović, Dijana, Dekanski, Dragana, Potparević, Biljana, Pirković, Andrea, Borozan, Sunčica, Bajić, Vladan, Stojanović, Danilo, Giampieri, Francesca, Gasparrini, Massimiliano, Živković, Lada, "Dry olive leaf extract attenuates DNA damage induced by estradiol and diethylstilbestrol in human peripheral blood cells in vitro" in Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 845 (2019),
https://doi.org/10.1016/j.mrgentox.2018.12.001 . .
7
3
7

Manuka honey attenuates oxidative damage induced by H2O2 in human whole blood in vitro

Živković, Lada; Bajić, Vladan; Dekanski, Dragana; Pirković, Andrea; Giampieri, Francesca; Gasparrini, Massimiliano; Mazzoni, Luca; Potparević, Biljana

(Pergamon-Elsevier Science Ltd, Oxford, 2018)

TY  - JOUR
AU  - Živković, Lada
AU  - Bajić, Vladan
AU  - Dekanski, Dragana
AU  - Pirković, Andrea
AU  - Giampieri, Francesca
AU  - Gasparrini, Massimiliano
AU  - Mazzoni, Luca
AU  - Potparević, Biljana
PY  - 2018
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3092
AB  - Manuka honey has been widely researched regarding its biological properties, in particular its antimicrobial and antioxidant capacities. We tested the genotoxic and genoprotective properties of Manuka honey, ranging from 25-1000 mu g/mL, by performing an in vitro comet assay after exposure to human whole blood. No genotoxic effect on whole blood cells was observed within the tested concentration range (p = 0.154). Then, the antigenotoxic potency of Manuka honey against oxidative DNA damage to whole blood cells was assessed. Prior to Manuka honey treatment a modest decrease of H2O2-induced DNA damage was detected in cells, with no statistical significance (p = 0.087). Post-treatment, Manuka honey displayed a stronger potential to attenuate damaged cells at all tested concentrations, with a statistical significant difference (p  lt  0.001), where concentrations of 25 and 100 mu g/mL were most efficient. Manuka honey exhibited a marked potential to protect DNA of whole blood cells from oxidative damage induced by hydrogen peroxide in vitro.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Food and Chemical Toxicology
T1  - Manuka honey attenuates oxidative damage induced by H2O2 in human whole blood in vitro
VL  - 119
SP  - 61
EP  - 65
DO  - 10.1016/j.fct.2018.05.034
ER  - 
@article{
author = "Živković, Lada and Bajić, Vladan and Dekanski, Dragana and Pirković, Andrea and Giampieri, Francesca and Gasparrini, Massimiliano and Mazzoni, Luca and Potparević, Biljana",
year = "2018",
abstract = "Manuka honey has been widely researched regarding its biological properties, in particular its antimicrobial and antioxidant capacities. We tested the genotoxic and genoprotective properties of Manuka honey, ranging from 25-1000 mu g/mL, by performing an in vitro comet assay after exposure to human whole blood. No genotoxic effect on whole blood cells was observed within the tested concentration range (p = 0.154). Then, the antigenotoxic potency of Manuka honey against oxidative DNA damage to whole blood cells was assessed. Prior to Manuka honey treatment a modest decrease of H2O2-induced DNA damage was detected in cells, with no statistical significance (p = 0.087). Post-treatment, Manuka honey displayed a stronger potential to attenuate damaged cells at all tested concentrations, with a statistical significant difference (p  lt  0.001), where concentrations of 25 and 100 mu g/mL were most efficient. Manuka honey exhibited a marked potential to protect DNA of whole blood cells from oxidative damage induced by hydrogen peroxide in vitro.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Food and Chemical Toxicology",
title = "Manuka honey attenuates oxidative damage induced by H2O2 in human whole blood in vitro",
volume = "119",
pages = "61-65",
doi = "10.1016/j.fct.2018.05.034"
}
Živković, L., Bajić, V., Dekanski, D., Pirković, A., Giampieri, F., Gasparrini, M., Mazzoni, L.,& Potparević, B.. (2018). Manuka honey attenuates oxidative damage induced by H2O2 in human whole blood in vitro. in Food and Chemical Toxicology
Pergamon-Elsevier Science Ltd, Oxford., 119, 61-65.
https://doi.org/10.1016/j.fct.2018.05.034
Živković L, Bajić V, Dekanski D, Pirković A, Giampieri F, Gasparrini M, Mazzoni L, Potparević B. Manuka honey attenuates oxidative damage induced by H2O2 in human whole blood in vitro. in Food and Chemical Toxicology. 2018;119:61-65.
doi:10.1016/j.fct.2018.05.034 .
Živković, Lada, Bajić, Vladan, Dekanski, Dragana, Pirković, Andrea, Giampieri, Francesca, Gasparrini, Massimiliano, Mazzoni, Luca, Potparević, Biljana, "Manuka honey attenuates oxidative damage induced by H2O2 in human whole blood in vitro" in Food and Chemical Toxicology, 119 (2018):61-65,
https://doi.org/10.1016/j.fct.2018.05.034 . .
8
9
10

Unexpected effect of dry olive leaf extract on the level of DNA damage in lymphocytes of lead intoxicated workers, before and after CaNa(2)EDTA chelation therapy

Pirković, Andrea; Dekanski, Dragana; Živković, Lada; Milanović-Čabarkapa, Mirjana; Bajić, Vladan; Topalović, Dijana; Giampieri, Francesca; Gasparrini, Massimiliano; Battino, Maurizio; Potparević, Biljana

(Pergamon-Elsevier Science Ltd, Oxford, 2017)

TY  - JOUR
AU  - Pirković, Andrea
AU  - Dekanski, Dragana
AU  - Živković, Lada
AU  - Milanović-Čabarkapa, Mirjana
AU  - Bajić, Vladan
AU  - Topalović, Dijana
AU  - Giampieri, Francesca
AU  - Gasparrini, Massimiliano
AU  - Battino, Maurizio
AU  - Potparević, Biljana
PY  - 2017
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/2822
AB  - The CaNa(2)EDTA chelation therapy is often practiced with antioxidant supplementation. Dry olive leaf extract (DOLE) is natural product with antioxidant and DNA protective properties. The effects of DOLE on the levels of DNA damage were investigated ex vivo in peripheral blood lymphocytes (PBLs) of 19 workers occupationally exposed to lead (Pb), before and after CaNa(2)EDTA chelation therapy. POLE demonstrated pronounced radical scavenging activity in concentrations >= 1 mg/mL, and showed no genotoxicity per se, in concentrations 0.125-1 mg/mL. The level of DNA damage in PBLs of workers before chelation therapy was elevated (24.21 +/- 14.26) compared to controls (6.0 +/- 3.37). The incubation of PBLs before chelation therapy with selected concentration of DOLE lead to a severe increase of DNA damage (64.03 +/- 20.96), exhibiting prooxidant rather than antioxidant effect. After the five-day CaNa2EDTA chelation regimen, DNA damage in PBLs of workers decreased (8.26 +/- 4.62) significantly compared to baseline. Treatment of PBLs with DOLE after chelation, again produced high level of damage (41.82 +/- 23.17) and the acute prooxidant effects of DOLE remained, but, DNA damage was less severe than before chelation. The DOLE exhibits prooxidant effect in presence of Pb in lymphocytes of exposed workers, and its effect is less pronounced following the removal of Pb after standard chelation therapy.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Food and Chemical Toxicology
T1  - Unexpected effect of dry olive leaf extract on the level of DNA damage in lymphocytes of lead intoxicated workers, before and after CaNa(2)EDTA chelation therapy
VL  - 106
SP  - 616
EP  - 623
DO  - 10.1016/j.fct.2016.12.023
ER  - 
@article{
author = "Pirković, Andrea and Dekanski, Dragana and Živković, Lada and Milanović-Čabarkapa, Mirjana and Bajić, Vladan and Topalović, Dijana and Giampieri, Francesca and Gasparrini, Massimiliano and Battino, Maurizio and Potparević, Biljana",
year = "2017",
abstract = "The CaNa(2)EDTA chelation therapy is often practiced with antioxidant supplementation. Dry olive leaf extract (DOLE) is natural product with antioxidant and DNA protective properties. The effects of DOLE on the levels of DNA damage were investigated ex vivo in peripheral blood lymphocytes (PBLs) of 19 workers occupationally exposed to lead (Pb), before and after CaNa(2)EDTA chelation therapy. POLE demonstrated pronounced radical scavenging activity in concentrations >= 1 mg/mL, and showed no genotoxicity per se, in concentrations 0.125-1 mg/mL. The level of DNA damage in PBLs of workers before chelation therapy was elevated (24.21 +/- 14.26) compared to controls (6.0 +/- 3.37). The incubation of PBLs before chelation therapy with selected concentration of DOLE lead to a severe increase of DNA damage (64.03 +/- 20.96), exhibiting prooxidant rather than antioxidant effect. After the five-day CaNa2EDTA chelation regimen, DNA damage in PBLs of workers decreased (8.26 +/- 4.62) significantly compared to baseline. Treatment of PBLs with DOLE after chelation, again produced high level of damage (41.82 +/- 23.17) and the acute prooxidant effects of DOLE remained, but, DNA damage was less severe than before chelation. The DOLE exhibits prooxidant effect in presence of Pb in lymphocytes of exposed workers, and its effect is less pronounced following the removal of Pb after standard chelation therapy.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Food and Chemical Toxicology",
title = "Unexpected effect of dry olive leaf extract on the level of DNA damage in lymphocytes of lead intoxicated workers, before and after CaNa(2)EDTA chelation therapy",
volume = "106",
pages = "616-623",
doi = "10.1016/j.fct.2016.12.023"
}
Pirković, A., Dekanski, D., Živković, L., Milanović-Čabarkapa, M., Bajić, V., Topalović, D., Giampieri, F., Gasparrini, M., Battino, M.,& Potparević, B.. (2017). Unexpected effect of dry olive leaf extract on the level of DNA damage in lymphocytes of lead intoxicated workers, before and after CaNa(2)EDTA chelation therapy. in Food and Chemical Toxicology
Pergamon-Elsevier Science Ltd, Oxford., 106, 616-623.
https://doi.org/10.1016/j.fct.2016.12.023
Pirković A, Dekanski D, Živković L, Milanović-Čabarkapa M, Bajić V, Topalović D, Giampieri F, Gasparrini M, Battino M, Potparević B. Unexpected effect of dry olive leaf extract on the level of DNA damage in lymphocytes of lead intoxicated workers, before and after CaNa(2)EDTA chelation therapy. in Food and Chemical Toxicology. 2017;106:616-623.
doi:10.1016/j.fct.2016.12.023 .
Pirković, Andrea, Dekanski, Dragana, Živković, Lada, Milanović-Čabarkapa, Mirjana, Bajić, Vladan, Topalović, Dijana, Giampieri, Francesca, Gasparrini, Massimiliano, Battino, Maurizio, Potparević, Biljana, "Unexpected effect of dry olive leaf extract on the level of DNA damage in lymphocytes of lead intoxicated workers, before and after CaNa(2)EDTA chelation therapy" in Food and Chemical Toxicology, 106 (2017):616-623,
https://doi.org/10.1016/j.fct.2016.12.023 . .
13
7
10