Boccaccini, Aldo R.

Link to this page

Authority KeyName Variants
4ae82fd3-90b7-40ea-ac64-96770a029b06
  • Boccaccini, Aldo R. (3)
Projects

Author's Bibliography

Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles

Stevanović, Magdalena M.; Filipović, Nenad; Kuzmanović, Maja; Tomić, Nina; Ušjak, Dušan; Milenković, Marina; Zheng, Kai; Stampfl, Juergen; Boccaccini, Aldo R.

(SAGE Publications Ltd, 2022)

TY  - JOUR
AU  - Stevanović, Magdalena M.
AU  - Filipović, Nenad
AU  - Kuzmanović, Maja
AU  - Tomić, Nina
AU  - Ušjak, Dušan
AU  - Milenković, Marina
AU  - Zheng, Kai
AU  - Stampfl, Juergen
AU  - Boccaccini, Aldo R.
PY  - 2022
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4357
AB  - Multidrug-resistant bacterial strains represent an emerging global health threat and a great obstacle for bone tissue engineering. One of the major components of the extracellular matrix of the bone is a collagen protein, while selenium is an element that has antimicrobial potential, and is also important for bone metabolism and bone health. Here we represent the incorporation of selenium nanoparticles (SeNPs) synthesized by the green chemical reduction method into collagen gels to produce a composite material, collagen/SeNPs, with antimicrobial properties. The samples were comprehensively characterized by zeta potential measurements, dynamic light scattering inductively coupled plasma-mass spectrometry (ICP-MS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), optical microscopy, field-emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry The cytotoxicity of the SeNPS, as well as collagen/SeNPs, was tested on the MRC-5 cells. It was revealed that collagen/SeNPS expressed a lower cytotoxic effect. Collagen/SeNPs showed significant antibacterial activity against all tested Gram-positive strains, the major causative agents of orthopedic infections as well as Candida albicans. Furthermore, three-dimensional β-tricalcium phosphate (3D-TCP) scaffolds were fabricated by a well-established 3D printing (lithography) method, and afterward preliminary coated by newly-synthesized SeNPs or collagen/SeNPs. In addition, uncoated 3D-TCP scaffolds as well as coated by collagen/SeNPs were subjected to biofilm formation. The production of Staphylococcus aureus biofilm on coated scaffolds by collagen/SeNPs was significantly reduced compared to the uncoated ones.
PB  - SAGE Publications Ltd
T2  - Journal of Biomaterials Applications
T1  - Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles
VL  - 36
IS  - 10
SP  - 1800
EP  - 1811
DO  - 10.1177/08853282211073731
ER  - 
@article{
author = "Stevanović, Magdalena M. and Filipović, Nenad and Kuzmanović, Maja and Tomić, Nina and Ušjak, Dušan and Milenković, Marina and Zheng, Kai and Stampfl, Juergen and Boccaccini, Aldo R.",
year = "2022",
abstract = "Multidrug-resistant bacterial strains represent an emerging global health threat and a great obstacle for bone tissue engineering. One of the major components of the extracellular matrix of the bone is a collagen protein, while selenium is an element that has antimicrobial potential, and is also important for bone metabolism and bone health. Here we represent the incorporation of selenium nanoparticles (SeNPs) synthesized by the green chemical reduction method into collagen gels to produce a composite material, collagen/SeNPs, with antimicrobial properties. The samples were comprehensively characterized by zeta potential measurements, dynamic light scattering inductively coupled plasma-mass spectrometry (ICP-MS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), optical microscopy, field-emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry The cytotoxicity of the SeNPS, as well as collagen/SeNPs, was tested on the MRC-5 cells. It was revealed that collagen/SeNPS expressed a lower cytotoxic effect. Collagen/SeNPs showed significant antibacterial activity against all tested Gram-positive strains, the major causative agents of orthopedic infections as well as Candida albicans. Furthermore, three-dimensional β-tricalcium phosphate (3D-TCP) scaffolds were fabricated by a well-established 3D printing (lithography) method, and afterward preliminary coated by newly-synthesized SeNPs or collagen/SeNPs. In addition, uncoated 3D-TCP scaffolds as well as coated by collagen/SeNPs were subjected to biofilm formation. The production of Staphylococcus aureus biofilm on coated scaffolds by collagen/SeNPs was significantly reduced compared to the uncoated ones.",
publisher = "SAGE Publications Ltd",
journal = "Journal of Biomaterials Applications",
title = "Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles",
volume = "36",
number = "10",
pages = "1800-1811",
doi = "10.1177/08853282211073731"
}
Stevanović, M. M., Filipović, N., Kuzmanović, M., Tomić, N., Ušjak, D., Milenković, M., Zheng, K., Stampfl, J.,& Boccaccini, A. R.. (2022). Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles. in Journal of Biomaterials Applications
SAGE Publications Ltd., 36(10), 1800-1811.
https://doi.org/10.1177/08853282211073731
Stevanović MM, Filipović N, Kuzmanović M, Tomić N, Ušjak D, Milenković M, Zheng K, Stampfl J, Boccaccini AR. Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles. in Journal of Biomaterials Applications. 2022;36(10):1800-1811.
doi:10.1177/08853282211073731 .
Stevanović, Magdalena M., Filipović, Nenad, Kuzmanović, Maja, Tomić, Nina, Ušjak, Dušan, Milenković, Marina, Zheng, Kai, Stampfl, Juergen, Boccaccini, Aldo R., "Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles" in Journal of Biomaterials Applications, 36, no. 10 (2022):1800-1811,
https://doi.org/10.1177/08853282211073731 . .
1
1

Comparative Study of the Antimicrobial Activity of Selenium Nanoparticles With Different Surface Chemistry and Structure

Filipović, Nenad; Ušjak, Dušan; Milenković, Marina; Zheng, Kai; Liverani, Liliana; Boccaccini, Aldo R.; Stevanović, Magdalena

(Frontiers Media S.A., 2021)

TY  - JOUR
AU  - Filipović, Nenad
AU  - Ušjak, Dušan
AU  - Milenković, Marina
AU  - Zheng, Kai
AU  - Liverani, Liliana
AU  - Boccaccini, Aldo R.
AU  - Stevanović, Magdalena
PY  - 2021
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3787
AB  - Although selenium nanoparticles (SeNPs) have gained attention in the scientific community mostly through investigation of their anticancer activity, a great potential of this nanomaterial was recognized recently regarding its antimicrobial activity. The particle form, size, and surface chemistry have been recognized as crucial parameters determining the interaction of nanomaterials with biological entities. Furthermore, considering a narrow boundary between beneficial and toxic effects for selenium per se, it is clear that investigations of biomedical applications of SeNPs are very demanding and must be done with great precautions. The goal of this work is to evaluate the effects of SeNPs surface chemistry and structure on antimicrobial activity against several common bacterial strains, including Staphylococcus aureus (ATCC 6538), Enterococcus faecalis (ATCC 29212), Bacillus subtilis (ATCC 6633), and Kocuria rhizophila (ATCC 9341), as well as Escherichia coli (ATCC 8739), Salmonella Abony (NCTC 6017), Klebsiella pneumoniae (NCIMB 9111) and Pseudomonas aeruginosa (ATCC 9027), and the standard yeast strain Candida albicans (ATCC 10231). Three types of SeNPs were synthesized by chemical reduction approach using different stabilizers and reducing agents: (i) bovine serum albumin (BSA) + ascorbic acid, (ii) chitosan + ascorbic acid, and (iii) with glucose. A thorough physicochemical characterization of the obtained SeNPs was performed to determine the effects of varying synthesis parameters on their morphology, size, structure, and surface chemistry. All SeNPs were amorphous, with spherical morphology and size in the range 70–300 nm. However, the SeNPs obtained under different synthesis conditions, i.e. by using different stabilizers as well as reducing agents, exhibited different antimicrobial activity as well as cytotoxicity which are crucial for their applications. In this paper, the antimicrobial screening of the selected systems is presented, which was determined by the broth microdilution method, and inhibitory influence on the production of monomicrobial and dual-species biofilm was evaluated. The potential mechanism of action of different systems is proposed. Additionally, the cytotoxicity of SeNPs was examined on the MRC-5 cell line, in the same concentration interval as for antimicrobial testing. It was shown that formulation SeNPs-BSA expressed a significantly lower cytotoxic effect than the other two formulations.
PB  - Frontiers Media S.A.
T2  - Frontiers in Bioengineering and Biotechnology
T1  - Comparative Study of the Antimicrobial Activity of Selenium Nanoparticles With Different Surface Chemistry and Structure
VL  - 8
DO  - 10.3389/fbioe.2020.624621
ER  - 
@article{
author = "Filipović, Nenad and Ušjak, Dušan and Milenković, Marina and Zheng, Kai and Liverani, Liliana and Boccaccini, Aldo R. and Stevanović, Magdalena",
year = "2021",
abstract = "Although selenium nanoparticles (SeNPs) have gained attention in the scientific community mostly through investigation of their anticancer activity, a great potential of this nanomaterial was recognized recently regarding its antimicrobial activity. The particle form, size, and surface chemistry have been recognized as crucial parameters determining the interaction of nanomaterials with biological entities. Furthermore, considering a narrow boundary between beneficial and toxic effects for selenium per se, it is clear that investigations of biomedical applications of SeNPs are very demanding and must be done with great precautions. The goal of this work is to evaluate the effects of SeNPs surface chemistry and structure on antimicrobial activity against several common bacterial strains, including Staphylococcus aureus (ATCC 6538), Enterococcus faecalis (ATCC 29212), Bacillus subtilis (ATCC 6633), and Kocuria rhizophila (ATCC 9341), as well as Escherichia coli (ATCC 8739), Salmonella Abony (NCTC 6017), Klebsiella pneumoniae (NCIMB 9111) and Pseudomonas aeruginosa (ATCC 9027), and the standard yeast strain Candida albicans (ATCC 10231). Three types of SeNPs were synthesized by chemical reduction approach using different stabilizers and reducing agents: (i) bovine serum albumin (BSA) + ascorbic acid, (ii) chitosan + ascorbic acid, and (iii) with glucose. A thorough physicochemical characterization of the obtained SeNPs was performed to determine the effects of varying synthesis parameters on their morphology, size, structure, and surface chemistry. All SeNPs were amorphous, with spherical morphology and size in the range 70–300 nm. However, the SeNPs obtained under different synthesis conditions, i.e. by using different stabilizers as well as reducing agents, exhibited different antimicrobial activity as well as cytotoxicity which are crucial for their applications. In this paper, the antimicrobial screening of the selected systems is presented, which was determined by the broth microdilution method, and inhibitory influence on the production of monomicrobial and dual-species biofilm was evaluated. The potential mechanism of action of different systems is proposed. Additionally, the cytotoxicity of SeNPs was examined on the MRC-5 cell line, in the same concentration interval as for antimicrobial testing. It was shown that formulation SeNPs-BSA expressed a significantly lower cytotoxic effect than the other two formulations.",
publisher = "Frontiers Media S.A.",
journal = "Frontiers in Bioengineering and Biotechnology",
title = "Comparative Study of the Antimicrobial Activity of Selenium Nanoparticles With Different Surface Chemistry and Structure",
volume = "8",
doi = "10.3389/fbioe.2020.624621"
}
Filipović, N., Ušjak, D., Milenković, M., Zheng, K., Liverani, L., Boccaccini, A. R.,& Stevanović, M.. (2021). Comparative Study of the Antimicrobial Activity of Selenium Nanoparticles With Different Surface Chemistry and Structure. in Frontiers in Bioengineering and Biotechnology
Frontiers Media S.A.., 8.
https://doi.org/10.3389/fbioe.2020.624621
Filipović N, Ušjak D, Milenković M, Zheng K, Liverani L, Boccaccini AR, Stevanović M. Comparative Study of the Antimicrobial Activity of Selenium Nanoparticles With Different Surface Chemistry and Structure. in Frontiers in Bioengineering and Biotechnology. 2021;8.
doi:10.3389/fbioe.2020.624621 .
Filipović, Nenad, Ušjak, Dušan, Milenković, Marina, Zheng, Kai, Liverani, Liliana, Boccaccini, Aldo R., Stevanović, Magdalena, "Comparative Study of the Antimicrobial Activity of Selenium Nanoparticles With Different Surface Chemistry and Structure" in Frontiers in Bioengineering and Biotechnology, 8 (2021),
https://doi.org/10.3389/fbioe.2020.624621 . .
3
104
12
100

Editorial: Antimicrobial Nanostructured Polymeric Materials and Nanocomposites

Stevanović, Magdalena; Vukomanović, Marija; Milenković, Marina; Boccaccini, Aldo R.

(Frontiers Media S.A., 2021)

TY  - JOUR
AU  - Stevanović, Magdalena
AU  - Vukomanović, Marija
AU  - Milenković, Marina
AU  - Boccaccini, Aldo R.
PY  - 2021
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3948
AB  - Infectious diseases are a significant burden on the public health and the economic stability of societies all over the world. Drug resistance presents an ever-increasing global public health threat that involves all major microbial pathogens and antimicrobial drugs. The considerable concern regarding bacterial resistance to antimicrobial agents, bacterial adhesion, and proliferation has generated intense research in this field. Although urgently needed, an effective and long-lasting solution to this problem, i.e. microbial and especially bacterial colonization, has not yet been found. In the last decades, nanomaterials have attracted much attention because of their unique physical, chemical, and mechanical properties, due to their high surface area and size at the nanoscale. Owing to these extraordinary characteristics, nanomaterials are appropriate candidates for various applications in different fields such as medicine, pharmacy, food industry, etc. New strategies based on the use of nanomaterials such as nanoparticles, nanocapsules, nanogels, nanofibers, nanocomposites, or nanocoatings for controlling microbial virulence factors are very promising. In addition special focus recently is paid on nanostructured polymeric materials and nanocomposites with antimicrobial properties. The increasing attention within the scientific community regarding this topic can be easily assessed by searching the suitable keywords in some recognized literature databases. According to Scopus, in the last 10 years, more than 1,300 peer-reviewed documents have been published jointly containing keywords such as “nanocomposites” and “antimicrobial”. Interestingly, in the more specified search which refers to the utilization of nanostructured polymeric materials, it could be observed a similar profile i.e. growing tendency.
PB  - Frontiers Media S.A.
T2  - Frontiers in Materials
T1  - Editorial: Antimicrobial Nanostructured Polymeric Materials and Nanocomposites
VL  - 8
DO  - 10.3389/fmats.2021.748813
ER  - 
@article{
author = "Stevanović, Magdalena and Vukomanović, Marija and Milenković, Marina and Boccaccini, Aldo R.",
year = "2021",
abstract = "Infectious diseases are a significant burden on the public health and the economic stability of societies all over the world. Drug resistance presents an ever-increasing global public health threat that involves all major microbial pathogens and antimicrobial drugs. The considerable concern regarding bacterial resistance to antimicrobial agents, bacterial adhesion, and proliferation has generated intense research in this field. Although urgently needed, an effective and long-lasting solution to this problem, i.e. microbial and especially bacterial colonization, has not yet been found. In the last decades, nanomaterials have attracted much attention because of their unique physical, chemical, and mechanical properties, due to their high surface area and size at the nanoscale. Owing to these extraordinary characteristics, nanomaterials are appropriate candidates for various applications in different fields such as medicine, pharmacy, food industry, etc. New strategies based on the use of nanomaterials such as nanoparticles, nanocapsules, nanogels, nanofibers, nanocomposites, or nanocoatings for controlling microbial virulence factors are very promising. In addition special focus recently is paid on nanostructured polymeric materials and nanocomposites with antimicrobial properties. The increasing attention within the scientific community regarding this topic can be easily assessed by searching the suitable keywords in some recognized literature databases. According to Scopus, in the last 10 years, more than 1,300 peer-reviewed documents have been published jointly containing keywords such as “nanocomposites” and “antimicrobial”. Interestingly, in the more specified search which refers to the utilization of nanostructured polymeric materials, it could be observed a similar profile i.e. growing tendency.",
publisher = "Frontiers Media S.A.",
journal = "Frontiers in Materials",
title = "Editorial: Antimicrobial Nanostructured Polymeric Materials and Nanocomposites",
volume = "8",
doi = "10.3389/fmats.2021.748813"
}
Stevanović, M., Vukomanović, M., Milenković, M.,& Boccaccini, A. R.. (2021). Editorial: Antimicrobial Nanostructured Polymeric Materials and Nanocomposites. in Frontiers in Materials
Frontiers Media S.A.., 8.
https://doi.org/10.3389/fmats.2021.748813
Stevanović M, Vukomanović M, Milenković M, Boccaccini AR. Editorial: Antimicrobial Nanostructured Polymeric Materials and Nanocomposites. in Frontiers in Materials. 2021;8.
doi:10.3389/fmats.2021.748813 .
Stevanović, Magdalena, Vukomanović, Marija, Milenković, Marina, Boccaccini, Aldo R., "Editorial: Antimicrobial Nanostructured Polymeric Materials and Nanocomposites" in Frontiers in Materials, 8 (2021),
https://doi.org/10.3389/fmats.2021.748813 . .
1