Theochari, Ioanna

Link to this page

Authority KeyName Variants
fa19abcb-726e-4816-a12c-0a003db00361
  • Theochari, Ioanna (2)
Projects

Author's Bibliography

Colloidal nanodispersions for the topical delivery of Ibuprofen: Structure, dynamics and bioperformances

Theochari, Ioanna; Mitsou, E.; Nikolić, Ines; Ilić, Tanja; Dobričić, Vladimir; Pletsa, V.; Savić, Snežana; Xenakis, Aristotelis; Papadimitriou, Vassiliki

(Elsevier B.V., 2021)

TY  - JOUR
AU  - Theochari, Ioanna
AU  - Mitsou, E.
AU  - Nikolić, Ines
AU  - Ilić, Tanja
AU  - Dobričić, Vladimir
AU  - Pletsa, V.
AU  - Savić, Snežana
AU  - Xenakis, Aristotelis
AU  - Papadimitriou, Vassiliki
PY  - 2021
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3821
AB  - Colloidal liquid-in-liquid nanodispersions such as micro- and nanoemulsions were developed, characterized and compared as potential carriers for the topical administration of ibuprofen. Both colloidal systems were based on water as the continuous phase, limonene as the dispersed phase and a mixture of pharmaceutically acceptable surfactants (Pluronic® L-35, Labrasol®, Tween 80). To improve their properties regarding penetration efficacy, an aqueous solution of chitosan was used as continuous phase in both systems. Micro- and nanoemulsions were structurally studied applying Dynamic Light Scattering (DLS), Electron Paramagnetic Resonance (EPR) spectroscopy and viscometry. Microemulsions with mean droplet diameter of 41 nm and PdI < 0.3 were obtained in the absence and presence of either chitosan or ibuprofen. Nanoemulsions were developed by high-pressure homogenization using the same ingredients at different concentrations. Unlike thermodynamically stable microemulsions, nanoemulsions showed storage stability for 2 months, higher droplet size (174 nm) and lower PdI (<0.15). In the presence of Ibuprofen droplet size and stability of the nanoemulsions were not affected. EPR spectroscopy revealed ibuprofen’s location in the oil cores and gave information about the rigidity of the surfactants’ monolayer. In both cases an outer compact configuration of the interfacial layer and a more flexible inner one was observed. The cytotoxicity of both systems towards human melanoma cell line WM 164 was relatively low. Interestingly, ibuprofen was released more promptly from the microemulsions (prospectively, systemic exposure increase), however the ex vivo studies, regarding skin uptake and penetration, revealed that the nanoemulsions are more appropriate as nanocarriers for the topical administration of ibuprofen.
PB  - Elsevier B.V.
T2  - Journal of Molecular Liquids
T1  - Colloidal nanodispersions for the topical delivery of Ibuprofen: Structure, dynamics and bioperformances
VL  - 334
DO  - 10.1016/j.molliq.2021.116021
ER  - 
@article{
author = "Theochari, Ioanna and Mitsou, E. and Nikolić, Ines and Ilić, Tanja and Dobričić, Vladimir and Pletsa, V. and Savić, Snežana and Xenakis, Aristotelis and Papadimitriou, Vassiliki",
year = "2021",
abstract = "Colloidal liquid-in-liquid nanodispersions such as micro- and nanoemulsions were developed, characterized and compared as potential carriers for the topical administration of ibuprofen. Both colloidal systems were based on water as the continuous phase, limonene as the dispersed phase and a mixture of pharmaceutically acceptable surfactants (Pluronic® L-35, Labrasol®, Tween 80). To improve their properties regarding penetration efficacy, an aqueous solution of chitosan was used as continuous phase in both systems. Micro- and nanoemulsions were structurally studied applying Dynamic Light Scattering (DLS), Electron Paramagnetic Resonance (EPR) spectroscopy and viscometry. Microemulsions with mean droplet diameter of 41 nm and PdI < 0.3 were obtained in the absence and presence of either chitosan or ibuprofen. Nanoemulsions were developed by high-pressure homogenization using the same ingredients at different concentrations. Unlike thermodynamically stable microemulsions, nanoemulsions showed storage stability for 2 months, higher droplet size (174 nm) and lower PdI (<0.15). In the presence of Ibuprofen droplet size and stability of the nanoemulsions were not affected. EPR spectroscopy revealed ibuprofen’s location in the oil cores and gave information about the rigidity of the surfactants’ monolayer. In both cases an outer compact configuration of the interfacial layer and a more flexible inner one was observed. The cytotoxicity of both systems towards human melanoma cell line WM 164 was relatively low. Interestingly, ibuprofen was released more promptly from the microemulsions (prospectively, systemic exposure increase), however the ex vivo studies, regarding skin uptake and penetration, revealed that the nanoemulsions are more appropriate as nanocarriers for the topical administration of ibuprofen.",
publisher = "Elsevier B.V.",
journal = "Journal of Molecular Liquids",
title = "Colloidal nanodispersions for the topical delivery of Ibuprofen: Structure, dynamics and bioperformances",
volume = "334",
doi = "10.1016/j.molliq.2021.116021"
}
Theochari, I., Mitsou, E., Nikolić, I., Ilić, T., Dobričić, V., Pletsa, V., Savić, S., Xenakis, A.,& Papadimitriou, V.. (2021). Colloidal nanodispersions for the topical delivery of Ibuprofen: Structure, dynamics and bioperformances. in Journal of Molecular Liquids
Elsevier B.V.., 334.
https://doi.org/10.1016/j.molliq.2021.116021
Theochari I, Mitsou E, Nikolić I, Ilić T, Dobričić V, Pletsa V, Savić S, Xenakis A, Papadimitriou V. Colloidal nanodispersions for the topical delivery of Ibuprofen: Structure, dynamics and bioperformances. in Journal of Molecular Liquids. 2021;334.
doi:10.1016/j.molliq.2021.116021 .
Theochari, Ioanna, Mitsou, E., Nikolić, Ines, Ilić, Tanja, Dobričić, Vladimir, Pletsa, V., Savić, Snežana, Xenakis, Aristotelis, Papadimitriou, Vassiliki, "Colloidal nanodispersions for the topical delivery of Ibuprofen: Structure, dynamics and bioperformances" in Journal of Molecular Liquids, 334 (2021),
https://doi.org/10.1016/j.molliq.2021.116021 . .
15
14

Biological evaluation of oil-in-water microemulsions as carriers of benzothiophene analogues for dermal applications

Theochari, Ioanna; Ilić, Tanja; Nikolić, Ines; Dobričić, Vladimir; Tenchiou, Alia; Papahatjis, Demetris; Savić, Snežana; Xenakis, Aristotelis; Papadimitriou, Vassiliki; Pletsa, Vasiliki

(MDPI AG, 2021)

TY  - JOUR
AU  - Theochari, Ioanna
AU  - Ilić, Tanja
AU  - Nikolić, Ines
AU  - Dobričić, Vladimir
AU  - Tenchiou, Alia
AU  - Papahatjis, Demetris
AU  - Savić, Snežana
AU  - Xenakis, Aristotelis
AU  - Papadimitriou, Vassiliki
AU  - Pletsa, Vasiliki
PY  - 2021
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3801
AB  - During the last decade, many studies have been reported on the design and formulation of novel drug delivery systems proposed for dermal or transdermal administration. The efforts focus on the development of biocompatible nanodispersions that can be delivered to the skin and treat severe skin disorders, including cancer. In this context, oil-in-water (O/W) microemulsions have been developed to encapsulate and deliver lipophilic bioactive molecules for dermal application. An O/W biocompatible microemulsion composed of PBS buffer, Tween 80, and triacetin was assessed for its efficacy as a drug carrier of DPS-2, a lead compound, initially designed in-house to inhibit BRAFV600E oncogenic kinase. The system was evaluated through both in vitro and ex vivo approaches. The cytotoxic effect, in the presence and absence of DPS-2, was examined through the thiazolyl blue tetrazolium bromide (MTT) cell proliferation assay using various cell lines. Further investigation through Western blotting revealed that cells died of necrosis. Porcine ear skin was used as a skin model to evaluate the degree of permeation of DPS-2 through skin and assess its retention. Through the ex vivo experiments, it was clarified that encapsulated DPS-2 was distributed within the full thickness of the stratum corneum (SC) and had a high affinity to hair follicles.
PB  - MDPI AG
T2  - Biomimetics
T1  - Biological evaluation of oil-in-water microemulsions as carriers of benzothiophene analogues for dermal applications
VL  - 6
IS  - 1
SP  - 1
EP  - 15
DO  - 10.3390/biomimetics6010010
ER  - 
@article{
author = "Theochari, Ioanna and Ilić, Tanja and Nikolić, Ines and Dobričić, Vladimir and Tenchiou, Alia and Papahatjis, Demetris and Savić, Snežana and Xenakis, Aristotelis and Papadimitriou, Vassiliki and Pletsa, Vasiliki",
year = "2021",
abstract = "During the last decade, many studies have been reported on the design and formulation of novel drug delivery systems proposed for dermal or transdermal administration. The efforts focus on the development of biocompatible nanodispersions that can be delivered to the skin and treat severe skin disorders, including cancer. In this context, oil-in-water (O/W) microemulsions have been developed to encapsulate and deliver lipophilic bioactive molecules for dermal application. An O/W biocompatible microemulsion composed of PBS buffer, Tween 80, and triacetin was assessed for its efficacy as a drug carrier of DPS-2, a lead compound, initially designed in-house to inhibit BRAFV600E oncogenic kinase. The system was evaluated through both in vitro and ex vivo approaches. The cytotoxic effect, in the presence and absence of DPS-2, was examined through the thiazolyl blue tetrazolium bromide (MTT) cell proliferation assay using various cell lines. Further investigation through Western blotting revealed that cells died of necrosis. Porcine ear skin was used as a skin model to evaluate the degree of permeation of DPS-2 through skin and assess its retention. Through the ex vivo experiments, it was clarified that encapsulated DPS-2 was distributed within the full thickness of the stratum corneum (SC) and had a high affinity to hair follicles.",
publisher = "MDPI AG",
journal = "Biomimetics",
title = "Biological evaluation of oil-in-water microemulsions as carriers of benzothiophene analogues for dermal applications",
volume = "6",
number = "1",
pages = "1-15",
doi = "10.3390/biomimetics6010010"
}
Theochari, I., Ilić, T., Nikolić, I., Dobričić, V., Tenchiou, A., Papahatjis, D., Savić, S., Xenakis, A., Papadimitriou, V.,& Pletsa, V.. (2021). Biological evaluation of oil-in-water microemulsions as carriers of benzothiophene analogues for dermal applications. in Biomimetics
MDPI AG., 6(1), 1-15.
https://doi.org/10.3390/biomimetics6010010
Theochari I, Ilić T, Nikolić I, Dobričić V, Tenchiou A, Papahatjis D, Savić S, Xenakis A, Papadimitriou V, Pletsa V. Biological evaluation of oil-in-water microemulsions as carriers of benzothiophene analogues for dermal applications. in Biomimetics. 2021;6(1):1-15.
doi:10.3390/biomimetics6010010 .
Theochari, Ioanna, Ilić, Tanja, Nikolić, Ines, Dobričić, Vladimir, Tenchiou, Alia, Papahatjis, Demetris, Savić, Snežana, Xenakis, Aristotelis, Papadimitriou, Vassiliki, Pletsa, Vasiliki, "Biological evaluation of oil-in-water microemulsions as carriers of benzothiophene analogues for dermal applications" in Biomimetics, 6, no. 1 (2021):1-15,
https://doi.org/10.3390/biomimetics6010010 . .
1
4
1
4