Application of advanced oxidation processes and nanostructured oxide materials for the removal of pollutants from the environment, development and optimisation of instrumental techniques for efficiency monitoring

Link to this page

info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/172030/RS//

Application of advanced oxidation processes and nanostructured oxide materials for the removal of pollutants from the environment, development and optimisation of instrumental techniques for efficiency monitoring (en)
Примена унапређених оксидационих процеса и наноструктурисаних оксидних материјала за уклањање загађивача из животне средине, развој и оптимизација инструменталних техника за праћење ефикасности (sr)
Primena unapređenih oksidacionih procesa i nanostrukturisanih oksidnih materijala za uklanjanje zagađivača iz životne sredine, razvoj i optimizacija instrumentalnih tehnika za praćenje efikasnosti (sr_RS)
Authors

Publications

Lead isotope ratios as tool for elucidation of chemical environment in a system of Macrolepiota procera (Scop.) Singer - soil

Đurđić, Slađana; Stanković, Vesna; Ražić, Slavica; Mutić, Jelena

(Springer Nature, 2020)

TY  - JOUR
AU  - Đurđić, Slađana
AU  - Stanković, Vesna
AU  - Ražić, Slavica
AU  - Mutić, Jelena
PY  - 2020
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3727
AB  - The analysis of isotope ratios of lead in the mushrooms and soil, where they were grown, assisted with a principal component analysis, offered a new perspective for understanding possible chemical environment in a real setup of those compartments. The content of lead and its isotope compositions were determined in soil samples and mushroom Macrolepiota procera from unpolluted area of Mountain Goč, Serbia. Sequential extraction procedure based on the Commission of the European Community Bureau of Reference (BCR) was applied on soil samples in order to determine the distribution of lead in the labile and un-labile fractions of the soil. Caps and stipes of mushrooms were subjected to microwave acid-assisted digestion prior to measurements by inductively coupled plasma quadrupole mass spectrometer for determination of lead content and lead isotope ratios. Information about the chemical fractionation of Pb in soil, Pb isotopic data from soil fractions and fruiting bodies allowed a more detailed insight on the uptake mechanisms. Lead was predominantly associated with reducible fraction (~ 60%). Only its small portion (∼ 1%) was present in the exchangeable and acid-extractable fractions suggesting the low mobility of Pb. Lead isotope analysis revealed the presence of anthropogenic lead in the surface soil. Significant lower 206Pb/207Pb compared with other fractions was found in exchangeable and acid-soluble fraction (1.331 ± 0.010), which corresponds to the isotope ratio of European gasoline. The highest 206Pb/207Pb ratio was observed in reducible fraction (1.162 ± 0.007), while in oxidizable and residual fraction, those values were similar (1.159 ± 0.006 and 1.159 ± 0.004, respectively). Distinction of exchangeable and acid-extractable fractions from others was also confirmed, for the first time, by principal component analysis. The analysis of four isotope ratios (206Pb/207Pb, 208Pb/206Pb, 206Pb/204Pb, and 207Pb/204Pb) indicated that the analyzed M. procera accumulates lead from the first two fractions of topsoil layers.
PB  - Springer Nature
T2  - Environmental Science and Pollution Research
T1  - Lead isotope ratios as tool for elucidation of chemical environment in a system of Macrolepiota procera (Scop.) Singer - soil
DO  - 10.1007/s11356-020-07947-6
ER  - 
@article{
author = "Đurđić, Slađana and Stanković, Vesna and Ražić, Slavica and Mutić, Jelena",
year = "2020",
abstract = "The analysis of isotope ratios of lead in the mushrooms and soil, where they were grown, assisted with a principal component analysis, offered a new perspective for understanding possible chemical environment in a real setup of those compartments. The content of lead and its isotope compositions were determined in soil samples and mushroom Macrolepiota procera from unpolluted area of Mountain Goč, Serbia. Sequential extraction procedure based on the Commission of the European Community Bureau of Reference (BCR) was applied on soil samples in order to determine the distribution of lead in the labile and un-labile fractions of the soil. Caps and stipes of mushrooms were subjected to microwave acid-assisted digestion prior to measurements by inductively coupled plasma quadrupole mass spectrometer for determination of lead content and lead isotope ratios. Information about the chemical fractionation of Pb in soil, Pb isotopic data from soil fractions and fruiting bodies allowed a more detailed insight on the uptake mechanisms. Lead was predominantly associated with reducible fraction (~ 60%). Only its small portion (∼ 1%) was present in the exchangeable and acid-extractable fractions suggesting the low mobility of Pb. Lead isotope analysis revealed the presence of anthropogenic lead in the surface soil. Significant lower 206Pb/207Pb compared with other fractions was found in exchangeable and acid-soluble fraction (1.331 ± 0.010), which corresponds to the isotope ratio of European gasoline. The highest 206Pb/207Pb ratio was observed in reducible fraction (1.162 ± 0.007), while in oxidizable and residual fraction, those values were similar (1.159 ± 0.006 and 1.159 ± 0.004, respectively). Distinction of exchangeable and acid-extractable fractions from others was also confirmed, for the first time, by principal component analysis. The analysis of four isotope ratios (206Pb/207Pb, 208Pb/206Pb, 206Pb/204Pb, and 207Pb/204Pb) indicated that the analyzed M. procera accumulates lead from the first two fractions of topsoil layers.",
publisher = "Springer Nature",
journal = "Environmental Science and Pollution Research",
title = "Lead isotope ratios as tool for elucidation of chemical environment in a system of Macrolepiota procera (Scop.) Singer - soil",
doi = "10.1007/s11356-020-07947-6"
}
Đurđić, S., Stanković, V., Ražić, S.,& Mutić, J.. (2020). Lead isotope ratios as tool for elucidation of chemical environment in a system of Macrolepiota procera (Scop.) Singer - soil. in Environmental Science and Pollution Research
Springer Nature..
https://doi.org/10.1007/s11356-020-07947-6
Đurđić S, Stanković V, Ražić S, Mutić J. Lead isotope ratios as tool for elucidation of chemical environment in a system of Macrolepiota procera (Scop.) Singer - soil. in Environmental Science and Pollution Research. 2020;.
doi:10.1007/s11356-020-07947-6 .
Đurđić, Slađana, Stanković, Vesna, Ražić, Slavica, Mutić, Jelena, "Lead isotope ratios as tool for elucidation of chemical environment in a system of Macrolepiota procera (Scop.) Singer - soil" in Environmental Science and Pollution Research (2020),
https://doi.org/10.1007/s11356-020-07947-6 . .
10
5
9