hCOMET COST action (No 15132)

Link to this page

hCOMET COST action (No 15132)

Authors

Publications

Antigenotoxic and antioxidant potential of medicinal mushrooms (Immune Assist) against DNA damage induced by free radicals-an in vitro study

Živković, Lada; Bajić, Vladan; Bruić, Marija; Borozan, Sunčica; Popić, Kristina; Topalović, Dijana; Santibanez, Juan; Spremo-Potparević, Biljana

(Elsevier, 2019)

TY  - JOUR
AU  - Živković, Lada
AU  - Bajić, Vladan
AU  - Bruić, Marija
AU  - Borozan, Sunčica
AU  - Popić, Kristina
AU  - Topalović, Dijana
AU  - Santibanez, Juan
AU  - Spremo-Potparević, Biljana
PY  - 2019
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3459
AB  - Immune Assist (IA) is produced from extract of six species of medical mushrooms: Agaricus blazei - Cordyceps sinensis - Grifola frondosa - Ganoderma lucidum - Coriolus versicolor - Lentinula edodes. The genoprotective potential of IA was evaluated for the first time. Significant antigenotoxic effects were detected in human peripheral blood cells against H2O2 induced DNA damage, in the pretreatment and in the posttreatment. The most efficient concentration of IA in pretreatment was 500 μg/mL, while in posttreatment it was the concentration of 250 μg/mL. Kinetics of attenuation of H2O2 induced DNA damage in posttreatment with the optimal concentration of IA showed significant decrease in the number of damaged cells at all time periods (15–60 min), reaching the greatest reduction after 15 and 45 min. Remarkable ·OH scavenging properties and moderate reducing power, together with the modest DPPH scavenging activity, could be responsible for the great attenuation of DNA damage after 15 min of exposure to IA, while reduction of DNA damage after 45 min could be the result in additional stimulation of the cell’s repair machinery. Our results suggest that IA displayed antigenotoxic and antioxidant properties. A broader investigation of its profile in biological systems is needed.
PB  - Elsevier
T2  - Mutation Research/Genetic Toxicology and Environmental Mutagenesis
T1  - Antigenotoxic and antioxidant potential of medicinal mushrooms (Immune Assist) against DNA damage induced by free radicals-an in vitro study
VL  - 845
SP  - 1
EP  - 6
DO  - 10.1016/j.mrgentox.2019.06.008
ER  - 
@article{
author = "Živković, Lada and Bajić, Vladan and Bruić, Marija and Borozan, Sunčica and Popić, Kristina and Topalović, Dijana and Santibanez, Juan and Spremo-Potparević, Biljana",
year = "2019",
abstract = "Immune Assist (IA) is produced from extract of six species of medical mushrooms: Agaricus blazei - Cordyceps sinensis - Grifola frondosa - Ganoderma lucidum - Coriolus versicolor - Lentinula edodes. The genoprotective potential of IA was evaluated for the first time. Significant antigenotoxic effects were detected in human peripheral blood cells against H2O2 induced DNA damage, in the pretreatment and in the posttreatment. The most efficient concentration of IA in pretreatment was 500 μg/mL, while in posttreatment it was the concentration of 250 μg/mL. Kinetics of attenuation of H2O2 induced DNA damage in posttreatment with the optimal concentration of IA showed significant decrease in the number of damaged cells at all time periods (15–60 min), reaching the greatest reduction after 15 and 45 min. Remarkable ·OH scavenging properties and moderate reducing power, together with the modest DPPH scavenging activity, could be responsible for the great attenuation of DNA damage after 15 min of exposure to IA, while reduction of DNA damage after 45 min could be the result in additional stimulation of the cell’s repair machinery. Our results suggest that IA displayed antigenotoxic and antioxidant properties. A broader investigation of its profile in biological systems is needed.",
publisher = "Elsevier",
journal = "Mutation Research/Genetic Toxicology and Environmental Mutagenesis",
title = "Antigenotoxic and antioxidant potential of medicinal mushrooms (Immune Assist) against DNA damage induced by free radicals-an in vitro study",
volume = "845",
pages = "1-6",
doi = "10.1016/j.mrgentox.2019.06.008"
}
Živković, L., Bajić, V., Bruić, M., Borozan, S., Popić, K., Topalović, D., Santibanez, J.,& Spremo-Potparević, B.. (2019). Antigenotoxic and antioxidant potential of medicinal mushrooms (Immune Assist) against DNA damage induced by free radicals-an in vitro study. in Mutation Research/Genetic Toxicology and Environmental Mutagenesis
Elsevier., 845, 1-6.
https://doi.org/10.1016/j.mrgentox.2019.06.008
Živković L, Bajić V, Bruić M, Borozan S, Popić K, Topalović D, Santibanez J, Spremo-Potparević B. Antigenotoxic and antioxidant potential of medicinal mushrooms (Immune Assist) against DNA damage induced by free radicals-an in vitro study. in Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2019;845:1-6.
doi:10.1016/j.mrgentox.2019.06.008 .
Živković, Lada, Bajić, Vladan, Bruić, Marija, Borozan, Sunčica, Popić, Kristina, Topalović, Dijana, Santibanez, Juan, Spremo-Potparević, Biljana, "Antigenotoxic and antioxidant potential of medicinal mushrooms (Immune Assist) against DNA damage induced by free radicals-an in vitro study" in Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 845 (2019):1-6,
https://doi.org/10.1016/j.mrgentox.2019.06.008 . .
7
12
7
15

Antigenotoxic and antioxidant potential of medicinal mushrooms (Immune Assist) against DNA damage induced by free radicals-an in vitro study

Živković, Lada; Bajić, Vladan; Bruić, Marija; Borozan, Sunčica; Popić, Kristina; Topalović, Dijana; Santibanez, Juan; Spremo-Potparević, Biljana

(Elsevier, 2019)

TY  - JOUR
AU  - Živković, Lada
AU  - Bajić, Vladan
AU  - Bruić, Marija
AU  - Borozan, Sunčica
AU  - Popić, Kristina
AU  - Topalović, Dijana
AU  - Santibanez, Juan
AU  - Spremo-Potparević, Biljana
PY  - 2019
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3456
AB  - Immune Assist (IA) is produced from extract of six species of medical mushrooms: Agaricus blazei - Cordyceps sinensis - Grifola frondosa - Ganoderma lucidum - Coriolus versicolor - Lentinula edodes. The genoprotective potential of IA was evaluated for the first time. Significant antigenotoxic effects were detected in human peripheral blood cells against H2O2 induced DNA damage, in the pretreatment and in the posttreatment. The most efficient concentration of IA in pretreatment was 500 μg/mL, while in posttreatment it was the concentration of 250 μg/mL. Kinetics of attenuation of H2O2 induced DNA damage in posttreatment with the optimal concentration of IA showed significant decrease in the number of damaged cells at all time periods (15–60 min), reaching the greatest reduction after 15 and 45 min. Remarkable ·OH scavenging properties and moderate reducing power, together with the modest DPPH scavenging activity, could be responsible for the great attenuation of DNA damage after 15 min of exposure to IA, while reduction of DNA damage after 45 min could be the result in additional stimulation of the cell’s repair machinery. Our results suggest that IA displayed antigenotoxic and antioxidant properties. A broader investigation of its profile in biological systems is needed.
PB  - Elsevier
T2  - Mutation Research/Genetic Toxicology and Environmental Mutagenesis
T1  - Antigenotoxic and antioxidant potential of medicinal mushrooms (Immune Assist) against DNA damage induced by free radicals-an in vitro study
VL  - 845
SP  - 1
EP  - 6
DO  - 10.1016/j.mrgentox.2019.06.008
ER  - 
@article{
author = "Živković, Lada and Bajić, Vladan and Bruić, Marija and Borozan, Sunčica and Popić, Kristina and Topalović, Dijana and Santibanez, Juan and Spremo-Potparević, Biljana",
year = "2019",
abstract = "Immune Assist (IA) is produced from extract of six species of medical mushrooms: Agaricus blazei - Cordyceps sinensis - Grifola frondosa - Ganoderma lucidum - Coriolus versicolor - Lentinula edodes. The genoprotective potential of IA was evaluated for the first time. Significant antigenotoxic effects were detected in human peripheral blood cells against H2O2 induced DNA damage, in the pretreatment and in the posttreatment. The most efficient concentration of IA in pretreatment was 500 μg/mL, while in posttreatment it was the concentration of 250 μg/mL. Kinetics of attenuation of H2O2 induced DNA damage in posttreatment with the optimal concentration of IA showed significant decrease in the number of damaged cells at all time periods (15–60 min), reaching the greatest reduction after 15 and 45 min. Remarkable ·OH scavenging properties and moderate reducing power, together with the modest DPPH scavenging activity, could be responsible for the great attenuation of DNA damage after 15 min of exposure to IA, while reduction of DNA damage after 45 min could be the result in additional stimulation of the cell’s repair machinery. Our results suggest that IA displayed antigenotoxic and antioxidant properties. A broader investigation of its profile in biological systems is needed.",
publisher = "Elsevier",
journal = "Mutation Research/Genetic Toxicology and Environmental Mutagenesis",
title = "Antigenotoxic and antioxidant potential of medicinal mushrooms (Immune Assist) against DNA damage induced by free radicals-an in vitro study",
volume = "845",
pages = "1-6",
doi = "10.1016/j.mrgentox.2019.06.008"
}
Živković, L., Bajić, V., Bruić, M., Borozan, S., Popić, K., Topalović, D., Santibanez, J.,& Spremo-Potparević, B.. (2019). Antigenotoxic and antioxidant potential of medicinal mushrooms (Immune Assist) against DNA damage induced by free radicals-an in vitro study. in Mutation Research/Genetic Toxicology and Environmental Mutagenesis
Elsevier., 845, 1-6.
https://doi.org/10.1016/j.mrgentox.2019.06.008
Živković L, Bajić V, Bruić M, Borozan S, Popić K, Topalović D, Santibanez J, Spremo-Potparević B. Antigenotoxic and antioxidant potential of medicinal mushrooms (Immune Assist) against DNA damage induced by free radicals-an in vitro study. in Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2019;845:1-6.
doi:10.1016/j.mrgentox.2019.06.008 .
Živković, Lada, Bajić, Vladan, Bruić, Marija, Borozan, Sunčica, Popić, Kristina, Topalović, Dijana, Santibanez, Juan, Spremo-Potparević, Biljana, "Antigenotoxic and antioxidant potential of medicinal mushrooms (Immune Assist) against DNA damage induced by free radicals-an in vitro study" in Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 845 (2019):1-6,
https://doi.org/10.1016/j.mrgentox.2019.06.008 . .
7
12
7
15