Ministry of Education, Youth and Sports of the Czech Republic (8X17027)

Link to this page

Ministry of Education, Youth and Sports of the Czech Republic (8X17027)

Authors

Publications

Synthesis and characterization of polyaniline/BEA zeolite composites and their application in nicosulfuron adsorption

Jevremović, Anka; Bober, Patrycja; Mičušík, Matej; Kuliček, Jaroslav; Acharya, Udit; Pfleger, Jiří; Milojević-Rakić, Maja; Krajišnik, Danina; Trchova, Miroslava; Stejskal, Jaroslav; Ćirić-Marjanović, Gordana

(Elsevier B.V., 2019)

TY  - JOUR
AU  - Jevremović, Anka
AU  - Bober, Patrycja
AU  - Mičušík, Matej
AU  - Kuliček, Jaroslav
AU  - Acharya, Udit
AU  - Pfleger, Jiří
AU  - Milojević-Rakić, Maja
AU  - Krajišnik, Danina
AU  - Trchova, Miroslava
AU  - Stejskal, Jaroslav
AU  - Ćirić-Marjanović, Gordana
PY  - 2019
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3248
AB  - Composite materials of BEA zeolite and polyaniline (PANI) were prepared by the chemical oxidative polymerization of aniline in the presence of zeolite in water (without added acid) and in an aqueous solution of sulfuric acid, using ammonium peroxydisulfate as an oxidant. Protonated (as-synthesized) and deprotonated forms of the composites and pristine PANIs were characterized by scanning electron microscopy, conductivity and zeta potential measurements, FTIR, Raman and XPS spectroscopies, and thermogravimetric analysis. Adsorption properties of synthesized materials for removal of nicosulfuron pesticide from aqueous solutions were studied, using HPLC technique. The obtained adsorption isotherms were analyzed using Freundlich and Langmuir-Freundlich equations. Protonated PANI/BEA composites showed excellent adsorption capacity (18.4–25.4 mg g−1), that was higher than the adsorption capacity of pristine BEA zeolite (18.2 mg g−1) but slightly less than neat PANI. Among PANIs, the highest adsorption capacity of 29.8 mg g−1 of adsorbent was found for protonated PANI prepared in sulfuric acid solution. Analysis of adsorption isotherms revealed high degree of surface homogeneity for all prepared composite materials and PANIs. Proposed mechanism for enhanced adsorption of nicosulfuron on protonated composites is based on hydrogen bonding of nicosulfuron O- and N-containing groups with bridging hydroxyls of BEA zeolite and –NH/ = NH+/−NH•+ groups in protonated emeraldine salt form of PANI chains (PANI-ES), accompanied with electrostatic attractive interaction between anionic nicosulfuron species and positive = NH+/−NH•+ groups in bipolaron/polaron containing structures of PANI-ES. Presence of protons in bridging hydroxyls in BEA zeolite and in protonated PANI-ES chains is essential for excellent adsorption of nicosulfuron via hydrogen bonding on all protonated composite samples. In support of this interpretation, deprotonated PANI/BEA composites and deprotonated PANIs showed significantly lower adsorption capacities (in the range 5.5–13.0 mg g−1) compared to those of their protonated counterparts.
PB  - Elsevier B.V.
T2  - Microporous and Mesoporous Materials
T1  - Synthesis and characterization of polyaniline/BEA zeolite composites and their application in nicosulfuron adsorption
SP  - 234
EP  - 245
DO  - 10.1016/j.micromeso.2019.06.006
ER  - 
@article{
author = "Jevremović, Anka and Bober, Patrycja and Mičušík, Matej and Kuliček, Jaroslav and Acharya, Udit and Pfleger, Jiří and Milojević-Rakić, Maja and Krajišnik, Danina and Trchova, Miroslava and Stejskal, Jaroslav and Ćirić-Marjanović, Gordana",
year = "2019",
abstract = "Composite materials of BEA zeolite and polyaniline (PANI) were prepared by the chemical oxidative polymerization of aniline in the presence of zeolite in water (without added acid) and in an aqueous solution of sulfuric acid, using ammonium peroxydisulfate as an oxidant. Protonated (as-synthesized) and deprotonated forms of the composites and pristine PANIs were characterized by scanning electron microscopy, conductivity and zeta potential measurements, FTIR, Raman and XPS spectroscopies, and thermogravimetric analysis. Adsorption properties of synthesized materials for removal of nicosulfuron pesticide from aqueous solutions were studied, using HPLC technique. The obtained adsorption isotherms were analyzed using Freundlich and Langmuir-Freundlich equations. Protonated PANI/BEA composites showed excellent adsorption capacity (18.4–25.4 mg g−1), that was higher than the adsorption capacity of pristine BEA zeolite (18.2 mg g−1) but slightly less than neat PANI. Among PANIs, the highest adsorption capacity of 29.8 mg g−1 of adsorbent was found for protonated PANI prepared in sulfuric acid solution. Analysis of adsorption isotherms revealed high degree of surface homogeneity for all prepared composite materials and PANIs. Proposed mechanism for enhanced adsorption of nicosulfuron on protonated composites is based on hydrogen bonding of nicosulfuron O- and N-containing groups with bridging hydroxyls of BEA zeolite and –NH/ = NH+/−NH•+ groups in protonated emeraldine salt form of PANI chains (PANI-ES), accompanied with electrostatic attractive interaction between anionic nicosulfuron species and positive = NH+/−NH•+ groups in bipolaron/polaron containing structures of PANI-ES. Presence of protons in bridging hydroxyls in BEA zeolite and in protonated PANI-ES chains is essential for excellent adsorption of nicosulfuron via hydrogen bonding on all protonated composite samples. In support of this interpretation, deprotonated PANI/BEA composites and deprotonated PANIs showed significantly lower adsorption capacities (in the range 5.5–13.0 mg g−1) compared to those of their protonated counterparts.",
publisher = "Elsevier B.V.",
journal = "Microporous and Mesoporous Materials",
title = "Synthesis and characterization of polyaniline/BEA zeolite composites and their application in nicosulfuron adsorption",
pages = "234-245",
doi = "10.1016/j.micromeso.2019.06.006"
}
Jevremović, A., Bober, P., Mičušík, M., Kuliček, J., Acharya, U., Pfleger, J., Milojević-Rakić, M., Krajišnik, D., Trchova, M., Stejskal, J.,& Ćirić-Marjanović, G.. (2019). Synthesis and characterization of polyaniline/BEA zeolite composites and their application in nicosulfuron adsorption. in Microporous and Mesoporous Materials
Elsevier B.V.., 234-245.
https://doi.org/10.1016/j.micromeso.2019.06.006
Jevremović A, Bober P, Mičušík M, Kuliček J, Acharya U, Pfleger J, Milojević-Rakić M, Krajišnik D, Trchova M, Stejskal J, Ćirić-Marjanović G. Synthesis and characterization of polyaniline/BEA zeolite composites and their application in nicosulfuron adsorption. in Microporous and Mesoporous Materials. 2019;:234-245.
doi:10.1016/j.micromeso.2019.06.006 .
Jevremović, Anka, Bober, Patrycja, Mičušík, Matej, Kuliček, Jaroslav, Acharya, Udit, Pfleger, Jiří, Milojević-Rakić, Maja, Krajišnik, Danina, Trchova, Miroslava, Stejskal, Jaroslav, Ćirić-Marjanović, Gordana, "Synthesis and characterization of polyaniline/BEA zeolite composites and their application in nicosulfuron adsorption" in Microporous and Mesoporous Materials (2019):234-245,
https://doi.org/10.1016/j.micromeso.2019.06.006 . .
1
32
16
29