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Benzodiazepines negatively affect motor coordination and

balance and produce myorelaxation. The aim of the present

study was to examine the extent to which populations of

c-aminobutyric acid A (GABAA) receptors containing a1 and

a5 subunits contribute to these motor-impairing effects in

rats. We used the nonselective agonist diazepam and

the a1-selective agonist zolpidem, as well as nonselective,

a1-subunit and a5-subunit-selective antagonists flumazenil,

bCCt, and XLi093, respectively. Ataxia and muscle

relaxation were assessed by rotarod and grip strength

tests performed 20 min after intraperitoneal treatment.

Diazepam (2 mg/kg) induced significant ataxia and

muscle relaxation, which were completely prevented by

pretreatment with flumazenil (10mg/kg) and bCCt (20 mg/kg).

XLi093 antagonized the myorelaxant, but not the ataxic

actions of diazepam. All three doses of zolpidem (1, 2, and

5 mg/kg) produced ataxia, but only the highest dose

(5 mg/kg) significantly decreased the grip strength.

These effects of zolpidem were reversed by bCCt at

doses of 5 and 10 mg/kg, respectively. The present

study demonstrates that a1 GABAA receptors mediate

ataxia and indirectly contribute to myorelaxation

in rats, whereas a5 GABAA receptors contribute

significantly, although not dominantly, to muscle

relaxation but not ataxia. Behavioural Pharmacology
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Introduction
Benzodiazepines (BZs) were introduced into clinical

practice in the beginning of the 1960s and, since then,

have been widely prescribed as anxiolytic, hypnotic, anti-

convulsant, and myorelaxant drugs. During the 1990s, it

became clear that the pharmacological effects of BZs are

mediated by positive modulation of four different subtypes

of g-aminobutyric acid A (GABAA) receptors, namely those

containing the a1, a2, a3, or a5 subunit, in addition to the

g2 subunit (Sieghart, 2006). Genetic and pharmacological

studies, by the means of the generation of mutant mouse

lines [a1(H101R), a2(H101R), a3(H126R), and a5(H105R)

knock-ins] (Rudolph and Möhler, 2004) and synthesis of

novel, subtype-selective ligands, have helped in linking

particular behavioral responses to specific GABAA receptor

subtypes. The sedative effects of BZs were principally

attributed to the a1-GABAA receptor subtype, anxiolytic

actions to a2/a3 containing receptors, anterograde amnesic

effects to a1/a5 subtypes, and anticonvulsant activity

partially to a1-GABAA receptors (Löw et al., 2000; McKernan

et al., 2000; Collinson et al., 2002; Savić et al., 2009).

BZs negatively affect motor coordination and balance,

that is, they induce ataxia, which is, together with

myorelaxation, often referred to as motor impairment

(Verster et al., 2002; Licata et al., 2009). In contrast to

ataxia, myorelaxation can be therapeutically desirable,

and disentangling the molecular substrates of these two

effects would benefit the development of compounds

with an improved pharmacological profile. Like sedation,

the impaired coordination and balance were also ascribed

to potentiation at a1-GABAA receptors and these results

were consistent with experiments in both rodents and

nonhuman primates (McKernan et al., 2000; Platt et al.,
2002; Licata et al., 2009). Ligands that lack or have

substantially decreased activity at a1-GABAA receptors,

compared with conventional nonselective BZs, did not

engender ataxia over the wide dose range tested (Licata

et al., 2005; Mirza et al., 2008; Savić et al., 2008; Atack

2010). The experiments on genetically modified mice

have excluded the role of the a1 subunit as a molecu-

lar substrate of myorelaxation (Rudolph et al., 1999;

McKernan et al., 2000) and found that the myorelaxant

properties of diazepam are mainly mediated by a2-GABAA

receptors; at very high doses of diazepam, the a3-GABAA

and a5-GABAA receptor subtypes may also become

implicated (Crestani et al., 2001). However, a number of

pharmacological studies have shown that muscle relaxa-

tion induced by nonselective BZ-site agonists could be

reversed with the use of the a1-GABAA selective

antagonist b CCt, demonstrating ambiguity in this area

(Griebel et al., 1999; Licata et al., 2009).
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The overall aim of the present study was to examine, by

pharmacological means, the extent to which a1-GABAA

and a5-GABAA receptor subtypes contribute to BZ-

induced ataxia and muscle relaxation in Wistar rats and

to provide further information on the molecular sub-

strates of these two effects. Benzodiazepine-induced

ataxia in rodents is usually measured using the rotarod

test (Mirza et al., 2008; Savić et al., 2008), whereas the

myorelaxant effects of BZs are often assessed using the

grip strength test (Maurissen et al., 2003). In the present

study, we used diazepam, a ligand with high efficacy and

no selectivity for GABAA receptor subtypes, and the

a1-GABAA receptor-selective agonist zolpidem, which

possesses intermediate and no affinity for a2/a3-GABAA

and a5-GABAA receptor subtypes, respectively (Sanna

et al., 2002). Using the GABAA nonselective antagonist

flumazenil, the a1-subunit affinity-selective antagonist

bCCt (Shannon et al., 1984), and the a5-subunit affinity-

selective and efficacy-selective antagonist XLi093 (Li

et al., 2003), we examined the degree to which zolpidem-

induced and diazepam-induced ataxia and myorelaxation

could be antagonized.

Methods
Subjects

Male Wistar rats, weighing 200–230 g, were supplied by

Military Farm, Belgrade, Serbia. Rats were housed in groups

of six and were maintained under standard laboratory

conditions (21 ± 21C, relative humidity 40–45%) with free

access to pellet food and tap water. They were kept on

a 12 : 12 h light/dark cycle with lights on at 07.00 h.

All handling and testing took place during the light

phase of the diurnal cycle. Experiments were carried out

in accordance with the European Economic Community

Directive 86/609 and were approved by the Ethical

Committee on Animal Experimentation of the Faculty of

Pharmacy in Belgrade.

Rotarod test

Motor performance was assessed using an automated

rotarod (Ugo Basile, Comerio, Italy). Before testing, rats

were trained for 3 days until they could remain on a

revolving rod for 120 s with acceleration from 15 rpm to

25 rpm. During the training days, all animals were given

three training sessions of 2 min each, with a 30 min

intersession interval. On the fourth day, rats that met

the given criteria were selected for inclusion in the

experiment. Groups of 6–8 animals received one of

the following treatments: diazepam (0 and 2 mg/kg) in

combination with bCCt (0, 1, 5, 20, and 30 mg/kg),

flumazenil (0, 10, and 20 mg/kg), or XLi093 (0, 10, and

20 mg/kg), as well as zolpidem (0, 1, 2, and 5 mg/kg) and

zolpidem (0 and 2 mg/kg) combined with bCCt (0, 5, and

20 mg/kg) or flumazenil (0, 10, and 20 mg/kg). Latency to

falling off the rod was recorded automatically for each

animal.

Grip strength test

This test was used to examine the myorelaxant propert-

ies of agonists, antagonists, and their combinations.

Two experiments were performed: in the first, animals

received diazepam (0 and 2 mg/kg) in combination with

three levels of flumazenil (0, 10, and 20 mg/kg), bCCt

(0, 20, and 30 mg/kg), and XLi093 (0, 10 and 20 mg/kg);

in the second experiment, animals received zolpidem

(0, 1, 2, and 5 mg/kg) and zolpidem (0 and 5 mg/kg) in

combination with bCCt (0 and 10 mg/kg). After admin-

istration of the appropriate treatment, rats were allowed

to grip, with their front paws, a metal trapezoid wire

attached to a grip-strength meter (Ugo Basile, Italy). Grip

strength was tested by dragging the rat gently by the tail.

The apparatus measured the pull force (expressed in

grams) necessary to overcome the animal’s forelimbs

grip-strength to the bar connected to a force transducer.

Each animal was given three consecutive trials and the

maximum value was taken.

Drugs

The compounds used were diazepam (Galenika, Belgrade,

Serbia), zolpidem (Toronto Chemical Research, Toronto,

Ontario, Canada), flumazenil (Feicheng BoYuan Fine

Chemicals Co. Ltd, East Feicheng, China), XLi093 (4H-

imidazo[1,5-a][1,4]benzodiazepine-3-carboxylic acid, 8-ethynyl-

5,6-dihydro-5-methyl-6-oxo-, 1,3-propanediyl ester), the

a5-subunit affinity-selective and efficacy-selective an-

tagonist, and bCCt (t-butyl-b-carboline-3-carboxylate),

the a1-subunit affinity-selective antagonist; the latter two

agents were synthesized at the Department of Chemistry

and Biochemistry, University of Wisconsin–Milwaukee,

USA. The ligands were suspended in a solvent containing

85% distilled water, 14% propylene glycol, and 1% Tween-

80. All animals received two intraperitoneal injections

consisting of the appropriate ligand(s) and/or solvent (in a

total volume of 2 ml/kg), 20 min before the testing. When

a combination of two compounds was administered, the

first compound was injected into the lower right and the

second into the lower left quadrant of the peritoneum.

Statistics

All numerical data presented in the figures are shown as

the mean ± SEM. The dose response of zolpidem was

assessed using one-way analysis of variance (ANOVA),

with a post-hoc Student–Newman–Keuls test. The effects

of combined treatments were assessed using two-way

ANOVA with a post-hoc Student–Newman–Keuls test,

where applicable.

Results
Rotarod

Animals that received 2 mg/kg diazepam spent signifi-

cantly less time on the rotarod than the control group of

rats (Fig. 1; P < 0.001). When diazepam was injected

immediately after flumazenil, a significant main effect of
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flumazenil [F(2,40) = 18.07, P < 0.001] and diazepam�
flumazenil interaction [F(2,45) = 18.07, P < 0.001] were

found. Both 10 and 20 mg/kg of flumazenil antagonized

the motor incoordination induced by diazepam (Fig. 1a;

both P < 0.001 compared with 2 mg/kg diazepam).

Similarly, coadministration of bCCt resulted in a sig-

nificant treatment effect [F(4,68) = 4.05, P < 0.005]

and a significant diazepam� bCCt interaction [F(4,77) =

3.83, P < 0.01]. Although the two lower doses of bCCt (1

and 5 mg/kg) failed to antagonize the diazepam-induced

motor impairment, coadministration of the two higher

doses of bCCt (20 and 30 mg/kg) significantly increased

the time spent on the rotarod (Fig. 1b; both P < 0.001),

when compared with diazepam dosed at 2 mg/kg. XLi093,

an a5-selective antagonist, did not antagonize the diazepam-

induced motor incoordination (Fig. 1c).

All three doses of zolpidem (1, 2, and 5 mg/kg) impaired

motor coordination (Fig. 2a; P < 0.001 in all three cases).

Pretreatment with flumazenil significantly influenced the

zolpidem-induced ataxia [zolpidem: F(1,37) = 114.02,

P < 0.001; zolpidem� flumazenil interaction: F(2,42) =

108.54, P < 0.001]. When compared with animals that

received only 2 mg/kg of zolpidem, animals treated with

the combination of zolpidem 2 mg/kg + flumazenil (10

or 20 mg/kg) spent significantly more time on the rotarod

(Fig. 2b; P < 0.001 and P < 0.001, respectively). The

effect on motor coordination of bCCt [F(1,34) = 73.94,

P < 0.001] and the zolpidem� bCCt interaction [F(2,39) =

40.61, P < 0.001] was also significant. The subsequent post-

hoc test showed that both 5 and 20 mg/kg of bCCt

antagonized the zolpidem-induced ataxia (Fig. 2c; both

P < 0.001, compared with 2 mg/kg zolpidem). There was also

a significant difference in the time spent on the rotarod be-

tween animals that received 2 mg/kg zolpidem + 5 mg/kg

bCCt and animals that received only 5 mg/kg bCCt

(P < 0.025). None of the antagonists (flumazenil, bCCt,

and XLi093) itself impaired the motor performance on

the rotarod.

Grip strength

Application of 2 mg/kg diazepam produced significant

muscle relaxation (Fig. 3; P < 0.01, relative to control).

For the combination of diazepam + flumazenil, two-way

ANOVA showed significant effects of diazepam [F(1,31) =

6.09, P < 0.02] and the flumazenil� diazepam interaction

[F(2,36) = 5.94, P < 0.01); coadministration of flumazenil

(10 and 20 mg/kg) reversed the diazepam-induced myor-

elaxation (Fig. 3a; P < 0.001 and P < 0.01, compared with

diazepam 2 mg/kg, respectively). As with flumazenil, the

effect of bCCt did not reach statistical significance,

whereas the effect of diazepam [F(1,28) = 7.82, P < 0.01]

as well as the interaction [F(2,33) = 5.83, P < 0.01] were

significant. There were significant differences between the

group that received 2 mg/kg diazepam and groups that

received 2 mg/kg diazepam with either 20 or 30 mg/kg of

XCCt (Fig. 3b; P < 0.05 and P < 0.001, respectively). The

assessment of the results obtained with the a5-selective

antagonist showed no significant effect of XLi093 on grip

strength [F(2,30) = 2.46, NS], but showed a significant

diazepam�XLi093 interaction [F(2, 35) = 6.18, P < 0.01];

the differences between groups that received diazepam +

XLi093 (10 and 20 mg/kg) and the group that received

diazepam were statistically significant (Fig. 3c; P < 0.002

and P < 0.005, respectively).

Zolpidem significantly decreased grip strength

[F(3,20) = 10.34, P < 0.001]. Muscle relaxation was

significant with 5 mg/kg zolpidem (P < 0.001), whereas

the two lower doses (1 and 2 mg/kg) were at the control

level (Fig. 4a). When the combination 5 mg/kg zolpi-

dem + 10 mg/kg XCCt was assessed, significant effects of

Fig. 1
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zolpidem [F(1,15) = 19.74, P < 0.001], bCCt F(1,15) =

16.11, P < 0.001] and their interaction [F(1,18) = 27.53,

P < 0.001] were found. Although bCCt itself did not alter

grip strength, its addition to zolpidem reversed the zolpidem-

induced muscle relaxation (Fig. 4b; P < 0.001, compared

with 5 mg/kg zolpidem).

Discussion
Studies on genetically modified mice, in which a distinct

a subunit of GABAA receptors is rendered insensitive to

diazepam, represent valuable tools in revealing which

receptor subtype is necessary for the expression of a

specific behavioral response. These experiments pointed

toward a1-GABAA receptors as the main subtype in

eliciting ataxia in mice (McKernan et al., 2000). In the

present study, diazepam-induced and zolpidem-induced

ataxia on the rotarod in rats was successfully antagonized

with the a1-selective antagonist bCCt. Because of its

20-fold selectivity for a1-GABAA receptors compared with

a2-GABAA and a3-GABAA receptors, bCCt is one of the

most selective BZ-site ligands identified to date (Cox

et al., 1995; Huang et al., 2000). In many behavioral

studies, bCCt successfully reversed the effects of BZs

related to the a1-GABAA receptor subtype, such as ataxia,

sedation, and anticonvulsant activity (Griebel et al.,
1999; Platt et al., 2002; Savić et al., 2009). However, not

Fig. 2
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all experiments using bCCt as the a1-selective ligand

have reported antagonism of the diazepam-induced ataxia

in mice or rats. Such discrepancies may have resulted

from differences in the experimental design. Shannon

and colleagues, (1984) reported that administration of

30 mg/kg bCCt did not attenuate the diazepam-induced

ataxia in mice. The degree of motor impairment was

assessed using an inverted-screen test, where the

concomitant myorelaxation was likely to influence the

performance of the test. Another study found that motor

incoordination engendered by diazepam, triazolam, and

zolpidem in mouse pups was not sensitive to bCCt

(Rowlett et al., 2001). However, motor impairment was

related to rolling motions, as opposed to normal

locomotor activity of mouse pups, and probably involved

a predominantly spinal mechanism and engagement of

a2-GABAA and a3-GABAA receptor subtypes (McKernan

and Whiting, 1996). In the present study, the dose of

bCCt needed to antagonize zolpidem-induced ataxia was

substantially lower than the dose that antagonized the

effect of diazepam (5 vs. 20 mg/kg). This implies that

an effect of diazepam, possibly myorelaxation, mediated

by receptors other than the a1-GABAA receptor, may have

contributed to the influence of diazepam, but not

zolpidem, on rotarod test performance. In this scenario,

the dose of 20 mg/kg of bCCt may have either blocked

the a1-GABAA receptor population more completely or

started to prevent binding of diazepam to non-a1-GABAA

receptors.

The possibility that the a5-GABAA receptor subtype plays

a modulatory role in behavioral effects predominantly

conferred by the a1 subunit, such as sedation, tolerance

development, and memory impairment, has been pre-

viously proposed (van Rijnsoever et al., 2004; Savić et al.,
2008; Savić et al., 2009). Hence, we tested the ability of

the a5 selective antagonist XLi093 to influence the

diazepam-induced ataxia. At the dose of 20 mg/kg, which

was previously shown to intensify diazepam-induced

sedation (Savić et al., 2009), XLi093 did not significantly

affect the motor-impairing effect of diazepam. This

means that ataxia, as assessed in the rotarod test in

rats, is not dependent on the activation of a5-GABAA

receptors.

Although genetic studies did not detect any role of the a1

subunit in mediating muscle relaxation (Rudolph et al.,
1999; McKernan et al., 2000), the data from experiments

with subtype-selective ligands varied from one study to

another depending on the species used and the dose of

agonist or antagonist applied (Griebel et al., 1999; Elliot

and White, 2001; Licata et al., 2009). In a radiotelemetric

study in rats, zolpidem at the dose of 5 mg/kg, but not

2.5 mg/kg, induced a significant decrease in electromyo-

graphic activity, a parameter aimed to assess muscle

relaxation (Elliot and White, 2001). In the present study,

significant myorelaxation observed after both diazepam

and zolpidem administration was prevented by pretreat-

ment with bCCt. As the dose of zolpidem producing

myorelaxation (5 mg/kg) was substantially higher than the

minimal dose that induced ataxia (1 mg/kg), the possibi-

lity that zolpidem-induced myorelaxation is not mediated

by a1-GABAA receptors needs to be discussed. Despite its

binding preference for a1-GABAA receptors, zolpidem

also binds to and potentiates effects at a2-GABAA and

a3-GABAA receptors (Sanna et al., 2002). The in-vivo

selectivity of zolpidem for the a1-enriched cerebellum, in

contrast to a2/a3-enriched spinal cord, assessed through

the reduction in flumazenil binding, is generally less than

the a1 selectivity of this compound in vitro (Atack et al.,
1999). However, the displacement curve for zolpidem in

the spinal cord of rats (Benavides et al., 1992) and mice

(Atack et al., 1999) is relatively flat, and very high doses of

zolpidem (> 30 mg/kg in mice; Atack et al., 1999) are

Fig. 4
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needed for half-inhibition of radio-labeled flumazenil

binding in this region predominantly implicated in GABA-

mediated myorelaxation (Bohlhalter et al., 1996). Thus,

one can conclude that muscle-relaxant effect of zolpidem

at the dose of 5 mg/kg may not be exclusively mediated

by a2-GABAA receptors, the subtype largely responsible

for the muscle-relaxant effect of diazepam (Crestani et al.,
2001). In contrast, bCCt (30 mg/kg) reversed diazepam-

induced muscle relaxation in mice (Griebel et al., 1999),

and at the dose of 3 mg/kg, it attenuated the myorelaxant

properties of several nonselective benzodiazepine ago-

nists in squirrel monkeys (Licata et al., 2009). The

propensity of bCCt to antagonize some of the principally

non-a1-mediated effects of diazepam was also shown in

the elevated plus-maze and light-dark test of anxiety

(Griebel et al., 1999; Belzung et al., 2000). Nonetheless,

a potentiating effect of 30 mg/kg bCCt on the anxiolytic

actions of BZs in rats has also been repeatedly reported

(Savić et al., 2004, 2005), which cannot be a consequence

of putative antagonism on a2-GABAA receptors. Assess-

ment of the ability of 10 mg/kg bCCt (intraperitoneally)

to displace the radio-labeled flumazenil in mice indicates

that bCCt at the given dose level preferentially targets

the cerebellum, whereas it binds to less than 40% of

GABAA receptors, mainly of the a2-subtype, in the spinal

cord (Rowlett et al., 2005). Given the doses of zolpidem

and bCCt that we used, we hypothesize that under our

experimental conditions, the actions of these ligands may,

to a small extent, have involved the a2-GABAA receptor

subtype, in addition to the predominantly affected

a1-GABAA receptor subtype. In the presence of intense

activation of a1-GABAA receptors by a large dose of

zolpidem, the presumed small involvement of a2-GABAA

receptors may have been large enough to trigger muscle

relaxation.

The contribution of the a5 subunit in mediating the

muscle-relaxant effect of diazepam was observed in a5

(H105R) mutant mice (Crestani et al., 2002). Here, we

report on antagonism of the muscle-relaxant effect of

diazepam with the a5-selective ligand XLi093 in rats.

Nonetheless, muscle relaxation can be achieved without

the apparent activation of a5-GABAA receptors, as

demonstrated in experiments with zolpidem (Elliot and

White, 2001; Licata et al., 2009). Furthermore, an a2/a3

selective compound devoid of agonistic activity at the a5

subunit exerted muscle relaxation in monkeys (Licata

et al., 2005). These results suggest that the role of the a5

subunit in the BZ-induced myorelaxation could be

described as nondominant, but still significant, and

should be further investigated.

The present study demonstrates that a1-GABAA and

a5-GABAA receptor subtypes differentially contribute to

the motor-impairing effects of BZs in rats. Although

activation of a1-GABAA receptors is a prerequisite for

eliciting ataxia, these receptors are probably not directly

involved in mediating muscle relaxation but still may

contribute to the manifestation of this effect triggered by

a small fraction of activated a2-GABAA receptors. In

contrast, activation of a5-GABAA receptors contributes

significantly, although not dominantly, to muscle relaxa-

tion, but not ataxia. Thus, in the quest for ligands with an

improved pharmacological profile, it could be of impor-

tance to avoid substantial potentiation through a1

subunits, if ataxia is to be prevented, whereas a certain

level of activation at both a1 and a5 subunits could be

advantageous when muscle relaxation is required.
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