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ABSTRACT - Purpose: The application of artificial neural networks in the pharmaceutical sciences is broad, 
ranging from drug discovery to clinical pharmacy. In this study, we explored the applicability of counter-
propagation artificial neural networks (CPANNs), combined with genetic algorithm (GA) for prediction of 
topiramate (TPM) serum levels based on identified factors important for its prediction. Methods: The study 
was performed on 118 TPM measurements obtained from 78 adult epileptic patients. Patients were on stable 
TPM dosing regimen for at least 7 days; therefore, steady-state was assumed. TPM serum concentration was 
determined by high performance liquid chromatography with fluorescence detection. The influence of 
demographic, biochemical parameters and therapy characteristics of the patients on TPM levels were tested. 
Data analysis was performed by CPANNs. GA was used for optimal CPANN parameters, variable selection 
and adjustment of relative importance. Results: Data for training included 88 measured TPM concentrations, 
while remaining were used for validation. Among all factors tested, TPM dose, renal function (eGFR) and 
carbamazepine dose significantly influenced TPM level and their relative importance were 0.7500, 0.2813, 
0.0625, respectively. Relative error and root mean squared relative error (%) and their corresponding 95% 
confidence intervals for training set were 2.14 [(-2.41) - 6.70] and 21.5 [18.5 - 24.1]; and for test set were -
6.21 [(-21.2) - 8.77] and 39.9 [31.7 - 46.7], respectively. Conclusions: Statistical parameters showed 
acceptable predictive performance. Results indicate the feasibility of CPANNs combined with GA to predict 
TPM concentrations and to adjust relative importance of identified variability factors in population of adult 
epileptic patients.  
 
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For 
Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. 
_______________________________________________________________________________________ 
 
INTRODUCTION 
 
The application of artificial neural networks 
(ANNs) in the pharmaceutical sciences is broad, 
ranging from drug discovery to clinical pharmacy. 
The flexibility of the ANN models allows analysis 
of pharmacokinetic (PK) and pharmacodynamic 
(PD) data (1-3). Applicability of ANNs in 
predicting blood concentrations of several drugs 
has been reported previously (4-6). ANN 
algorithms have been successfully used for the 
prediction of peak and trough plasma levels of 
aminoglycoside antibiotics in patients (7, 8). In 
these studies, predictive performance of the ANNs 
was superior to the multiple linear regression 
analysis. Additionally, the results of several studies 
reported that the ANNs had predictive capability 
similar to or even better than nonlinear mixed 

effects modelling (NONMEM) performed by the 
software named after the approach (9-11). Besides 
that, Chow et al. showed capability of neural 
networks to capture relations between plasma 
tobramycin levels and patient-related factors from 
routinely collected sparse data (11). Moreover, in 
the study by Haider et al. ANN modelling was used 
to evaluate the relative significance of various 
covariates on the PK-PD characteristics of 
repaglinide (12). Finally, ANN approach was 
implemented in the decision making process of 
drug dosing (13).  
________________________________________ 
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The most often used ANNs for the prediction 
of drug levels are back-propagation artificial 
neural networks (BPANNs) primarily because of 
multi-layer architecture (9, 11, 14). Multi-layer 
networks have greater representational power for 
dealing with highly non-linear, strongly-coupled, 
multivariable systems. However, if BPANNs are 
not properly trained, they can develop models with 
bad generalization performances. On the other 
hand, the control of the generalization 
performances of counter-propagation artificial 
neural networks (CPANNs) is relatively easy 
compared to BPANNs (14). CPANNs can be 
considered as an extension of Kohonen maps and 
this algorithm has been widely used in chemistry 
and related sciences (14-16). Genetic algorithm 
(GA) might be used to optimize CPANN models. 
This algorithm may serve not only for variable 
selection, but also for finding the most suitable 
CPANN parameters, as well as for adjustment of 
the relative importance of various input variables 
(17-20). The advantage of the relative importance 
adjustment is the fact that it allows us to examine 
contributions of the individual descriptors 
(independent variables) which, makes the models 
and their interpretation easier (17, 19). 

Various factors may affect the 
pharmacokinetic profile of topiramate (TPM), and 
consequently its concentration and possible 
therapeutic response. On the other hand, epilepsy 
is episodic disease and it is challenging to monitor 
efficacy of antiepileptic drugs, including TPM. 
Hence, identification of variability factors 
important for its prediction can be supportive in 
dosage regimen optimisation. In this study, we 
investigated the applicability of CPANNs 
combined with GA for prediction of TPM serum 
levels based on selected factors important for its 
prediction. To our knowledge, this is the first study 
that explores the application of CPANN approach 
as an alternative to the traditional, compartmental 
pharmacokinetics analysis of TPM data obtained 
from adult epileptic patients. 
 
METHODS 
 
Data Set 
The study was performed on 118 TPM 
measurements obtained from 78 adult epileptic 
patients treated at Clinic of Neurology, Clinical 
Centre of Serbia, University of Belgrade - Faculty 
of Medicine. Patients’ data were collected during 
therapeutic drug monitoring. Patients were on 
mono- or co-therapy with TPM and other 
antiepileptic drugs (carbamazepine (CBZ), 
valproic acid, lamotrigine, levetiracetam, 

phenobarbital, pregabalin) or psychoactive drugs 
(benzodiazepines, risperidone). TPM was 
administered once to three-times a day in the form 
of 25, 50 or 100 mg tablets (Topamax®, Cilag AG, 
Switzerland). Patients were on stable dosing 
regimen for at least 7 days; therefore, steady-state 
was assumed. Data collection and analysis were 
approved by the Ethics Committee of the Clinical 
Centre of Serbia. All patients gave written 
informed consent before enrolment in the study.  

Patients’ data were collected from medical 
records and during the interviews with medical 
staff. These information included demographic 
characteristics (gender, age, body weight, height), 
smoking status, pathological characteristics 
(diagnosis and history of disease, comorbidities), 
characteristics of therapy. Biological material (1-2 
blood samples) was taken from patients in steady 
state, mostly just before administration of the 
morning dose and/or 1-6 h after. TPM serum 
concentration was determined by high 
performance liquid chromatography with 
fluorescence detection following precolumn 
derivatization using 4-chloro-7-nitrobenzofurazan 
(NBD-Cl) for fluorescence labelling, with some 
modification of the method previously described 
by Bahrami and Mohammadi (21). In addition, 
serum was used for biochemical analysis (aspartate 
aminotransferase (AST), alkaline phosphatase 
(ALP), cholinesterase, bilirubin, albumin, total 
protein concentration and serum creatinine). 
Estimated glomerular filtration rate (eGFR) was 
calculated by Modification of diet in renal disease 
formula (22).  

Each of the 118 TPM measurements along 
with its corresponding clinical information and 
dosing regimens was treated as a new input and 
output data pair. In order to perform proper 
validation of the model, data were randomly 
divided into a training and test set. Categorical 
covariates considered to influence TPM 
concentration included: smoking status, co-therapy 
with lamotrigine, levetiracetam, valproic acid, 
CBZ, benzodiazepines and risperidone. 
Continuous covariates considered for testing 
included: daily TPM dose, renal function (eGFR), 
liver enzymes (AST, ALP and cholinesterase), 
bilirubin, albumin, total protein concentration, 
daily CBZ dose. Missing covariate data were 
substituted by the median value. 

Prior to optimization of the models based on 
CPANNs the experimental data were pre-
processed. Auto-scaling was used for this purpose. 
In addition to this, in the cases of variables where 
the intervals span for more than two orders of 
magnitude, first the logarithm of the original 
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variable(s) was calculated, and the obtained data 
were auto-scaled. 
 
Counter Propagation Neural Networks  
Data analysis was performed in Matlab 6.5. The 
CPANNs program used in this work is based on 
SOM Toolbox (23). CPANNs are consisted of two 
layers: (1) a Kohonen and (2) an output (Grosberg) 
layer. Kohonen layer performs the mapping of the 
multidimensional input data into, most often, two-
dimensional plane of neurons. The mapping is 
performed by competitive learning, called 
“winner-takes-it-all” strategy (14, 16, 24). 

The optimization of CPANNs is performed 
similarly to Kohonen self-organizing maps (24). 
Vectors that represent all the variables 
(independent and dependent ones) are 
simultaneously presented to the neurons in both 
layers of the CPANNs. The main distinction is in 
the separate treatment of the dependent and 
independent variables (1) during the search of the 
winning neuron and (2) the correction of the 
weights (14, 16, 23, 24). When CPANN are trained 
the winning neuron is selected by comparing the 
independent variables with the corresponding 
weight levels from the Kohonen layer. After that, 
the correction of the weights is performed 
simultaneously in both layers. Adjustment is 
performed according to the distances between the 
weights of the corresponding variables 
(independent and dependent ones) of a particular 
object. The procedure is repeated predetermined 
number of times (training epoch), until weights are 
stabilized and the network is considered as trained. 

The objects with similar input vectors are 
positioned close to each other and it is expected 
that will have similar values for their output 
variables. These characteristics make the CPANNs 
appropriate for classification and modelling 
purposes.  
 
Genetic Algorithm 
GA was used to find CPANN parameters that 
would produce models with optimal performances. 
Specifically, the CPANNs parameters which were 
optimized by GA were: (1) variable selection, (2) 
search of the optimal network size, (3) the most 
suitable number of epochs for their training and (4) 
for automatic adjustment of the relative importance 
of the input variables (20).  

First step in GA is to generate initial 
population. New generation is created using 
simulated evolution. Each new generation consists 
of 2 parent and 2 offspring chromosomes. The 
offspring chromosomes are obtained by coupling 
parent chromosomes using genetic operations 

(crossover and mutation). The newly created 
offspring chromosomes will replace chromosomes 
with worst performances in the current generation. 
This process of simulated evolution using elitist 
strategy is repeated for a predefined number of 
generations.  

As previously stated, we used GA for selection 
of CPANN models with best possible 
performances. Therefore, the best CPANN models 
were searched among the final populations 
obtained after repeating GA several times.  
 
STATISTICAL ANALYSIS 
 
Statistical measures used to assess predictive 
performance were: relative error (%), root mean 
square relative error (RMSRE), and their 
corresponding 95% confidence intervals. Relative 
error was used to describe accuracy (bias), while 
RMSRE to describe the precision of the 
predictions. In addition, relationship between the 
relative error and predicted concentrations for 
training and test set was done (25-27). All indices 
of model performance were calculated from test 
and training set using Microsoft Office Excel 
2003® and SPSS® software (version 17, Chicago, 
Illinois, USA). 
 
RESULTS 
 
Characteristics of input data are presented in Table 
1. Data for training included 88 measured TPM 
concentrations, while 30 TPM concentrations were 
used for validation. 

Procedure for finding the best CPANN 
architecture and training epochs was repeated 
several times. GA optimization was used for the 
selection of the independent variables, for 
determination of the training parameters as well as 
for the determination of the size of the CPANNs. 
Additionally, GA optimization was used for 
adjustment of relative importance of the 
independent variables. Predictive performances of 
the models during the optimization were checked 
using cross-validation procedure. The size of the 
CPANNs, the number of epochs used in training 
phase and the selected independent variables for 
the best model are presented in Table 2. 

Predictive performance of the final model was 
summarized in Table 3. Calculated 95% 
confidence interval of relative error included 0 
indicating accuracy of the model prediction, while 
RMSRE indicated acceptable prediction error. 
Mean relative error indicates that in the training set 
observed TPM concentration on average was 
2.14% higher than the predicted concentration, 
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while in the test set the measured concentration 
was on average 6.21% lower (Table 3). 

Figure 1 illustrates the relationship between 
the relative error and predicted TPM 
concentrations for the training and test sets. 
Lowess fit shows no significant trend of over- or 
under-prediction with a change in TPM 
concentrations.   
 
DISCUSSION  
 
This work represents capability of CPANNs 
combined with GA to predict TPM serum 
concentrations based on factors important for its 
prediction. To our knowledge, this is the first study 
that explores the application of CPANN approach 
as an alternative to the traditional, compartmental 
PK analysis of TPM data obtained from adult 
epileptic patients.  

In this study predictability was checked using 
test set and by appropriate diagnostic plot and 
statistical parameters. Parameters in Table 3 
showed acceptable precision and accuracy of 
prediction. Calculated 95% confidence interval of 
relative error included 0 indicating accuracy of the 
model prediction. Figure 1 illustrates adequate 
prediction for whole TPM concentration range. 
The results confirmed that CPANNs are reliable 
predictive tool using simulated evolution for 
modelling the nonlinear relationships. As 
documented in several previous studies, 
predictability obtained by the ANN modelling, 
were similar to or even better than those obtained 
by a standard NONMEM modelling (5, 9-11). 
However, in this case, it was difficult to compare 
obtained model with our previous NONMEM 
model, since internal validation was performed and 
different size of data set was used for model 
development (28). 

 
 

Table 1. Characteristics of input data 
Characteristic Training set (N=88) Test set (N=30) 
aTPM serum concentration (mg/l) 7.69 ± 4.04 7.62 ± 5.78 
aTPM dose (mg/day) 313.1 ± 128.5 355.8 ± 252.5 
bMale (%) 62.5% 43.33% 
aAge (years) 36.88 ± 10.48 38.90 ± 11.14 
aWeight (kg) 74.4 ± 14.56 78.48 ± 16.01 
aHeight (cm) 173.7 ± 9.74 173.0 ± 12.91 
aSerum creatinine (μmol/l) 81.72 ± 14.09 77.73 ± 15.09 
aBilirubin (μmol/l) 7.75 ± 3.57 6.99 ± 2.27 
aTotal protein concentration (g/l) 74.15 ± 4.94 74.17 ± 4.98 
aAlbumin (g/l) 44.79 ± 4.25 44.93 ± 4.65 
aAST (U/l) 20.32 ± 4.66 20.43 ± 5.54 
aALP (U/l) 75.82 ± 21.36 80.63 ± 23.43 
aCholinesterase (U/l) 8534 ± 1902 8481 ± 2071 
bPositive smoking status 21.6% 26.7% 
bCBZ  
aCBZ dose (mg/day) 

25% 
995.5 ± 383.6 

33.3% 
1080 ± 494.0 

bValproic acid  45.5% 50% 
bLamotrigine 65.9% 60% 
bLevetiracetam 37.5% 43.3% 
bBenzodiazepines 22.7% 6.67% 
bRisperidone 9.1% 0 
a Continuous data presented as mean ± Sd  
b Categorical data presented as percent (%) 
TPM, topiramate; AST, aspartate aminotransferaze; ALP, alkaline phosphatase; CBZ, carbamazepine 

 
 
 

Table 2. The size of the CPANNs, the number of training epochs and selected descriptors for the model 
Size of CPANNs Training epochs in training phase Selected descriptors and their relative importance 

(scale 0-1)  
Length Width Rough Fine DTPM eGFR DCBZ 

9 11 18 63 0.7500 0.2813 0.0625 
CPANNs, counter-propagation artificial neural networks; DTPM, topiramate daily dose; eGFR; estimated glomerular 
filtration rate calculated by MDRD (modification of diet in renal disease) formula; DCBZ, carbamazepine daily dose 
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Table 3. Statistical measures of the performance  
 Training set [95% CI] Test set [95% CI] 
Relative error (%) 2.14 [(-2.41) - 6.70] -6.21 [(-21.2) - 8.77] 
Root mean square relative error (%) 21.5 [18.5 - 24.1] 39.9 [31.7 - 46.7] 
CI, confidence interval  

 
 

 
 
Figure 1. Relationship between relative error (%) and predicted concentrations (mg/l); dash-dotted line - mean relative 
error, dotted line - 95% limits of agreement, solid line - lowess fit. 

 
 

Usefulness of some ANN models with 
acceptable prediction can be limited in PK studies 
since models, considered as “black box”, may have 
lower interpretability. The understanding of model 
is difficult if the contribution of individual factors 
is unknown. CPANNs combined with GA allow 
adjustment of the input variables’ relative 
importance. Therefore, applying this approach we 
explored the influence of various demographic, 
biochemical parameters and the treatment 
characteristics of the patients on TPM 
concentrations and their relative importance. This 
information is valuable for a better understanding 
of the factors and comparing their relative effects 
on drug’s level. Among all factors tested, only 
some showed significant influence, which is in 
agreement with our previous findings (28). The 
results confirmed the importance of TPM dose, 
renal function (eGFR) and CBZ dose (Table 2). 
TPM given within recommended dosing range 

shows linear PK, and consequently the highest 
influence of TPM dose was detected (29). 
Influence of renal function (eGFR) is expected as 
TPM is excreted predominantly (up to 70%) 
unchanged through the kidneys. Also, it is well 
known that enzyme-inducing drugs, such as CBZ, 
enhance the TPM clearance, and consequently 
decrease TPM concentrations (29). Effects of other 
demographic, biochemical and co-therapy 
characteristics (Table 1) were not selected during 
the analysis. Patients’ age, weight, height, gender 
and serum creatinine are required for the 
calculation of glomerular filtration rate. Therefore, 
the independent impact of these factors was not 
appropriate to investigate. However, since model 
was developed only on adults patients, application 
to other populations probably would not be 
appropriate. 

Measured drug concentrations reflect 
influence of factors on drug disposition, and 
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therapeutic drug monitoring is useful approach for 
routine control in terms of drug efficacy and safety. 
Moreover, measured concentration may be used 
for developing neural networks model for drug 
level prediction by detecting factors important for 
its prediction. Identification of variability factors 
supports the optimization of dosage regimen. 
Developed model in this study, allows us to predict 
whether the drug concentration in a particular 
patient, taking into account significant patient 
factors and dose, will be within the reference range. 
This is especially useful for drugs like TPM, since 
difficulties to monitor effect of antiepileptic drugs. 

In general, ANNs allow modelling of the 
complex relations between dependent and 
independent variables, even in the cases where 
exists no previous knowledge about the exact 
relationship between input and output data. 
Moreover, these algorithms are recognized as 
useful predictive tool especially for data sets 
having nonlinear relationships (2, 11, 14). Based 
on our experience in this research, we can confirm 
that this approach is user-friendly, and that a priori 
knowledge of drug’s PK is not required. 
Nevertheless, neural networks and CPANNs, as its 
type of analysis, can be useful in predicting drug 
level by detecting factors important for its 
prediction. This approach can be used for initial 
screening of influential covariates. Factor’s 
relative importance significantly contributes to 
model interpretation and applicability. 

In conclusion, results of this study demonstrate 
the feasibility of CPANNs combined with GA to 
predict TPM concentrations and to adjust relative 
importance of important variability factors in 
population of adult epileptic patients. Developed 
final model showed acceptable predictive 
performance. The limitation of the study is small 
number of patients and higher relative error in the 
test set. Also, it would be useful to include in the 
analysis more patients with renal impairment for 
which used GFR equation is adequate. Possible 
effects of unmeasured and uninvestigated variables 
on TPM concentration and further refining of the 
model might be needed. Based on the available 
results of the studies in this field, more research is 
warranted in improving the application of neural 
network in PK analysis.  
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