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With the very recent market approval of pitolisant (Wakix®), the interest in clinical

applications of novel multifunctional histamine H3 receptor antagonists has clearly

increased. Since histamine H3 receptor antagonists in clinical development have

been tested for a variety of different indications, the combination of pharmacological

properties in one molecule for improved pharmacological effects and reduced

unwanted side-effects is rationally based on the increasing knowledge on the complex

neurotransmitter regulations. The polypharmacological approaches on histamine H3

receptor antagonists on different G-protein coupled receptors, transporters, enzymes as

well as on NO-signaling mechanism are described, supported with some lead structures.
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INTRODUCTION

The idea of synthesizing multiple targeting compounds arises from the fact that the paradigm “one
drug—one target” or “single-target drug” is not sufficiently meeting the need for the treatment of
a large number of complex diseases caused by multifunctional pathophysiological processes. Since
central nervous system (CNS) disorders are characterized by diverse physiological dysfunctions
and deregulations of a complex network of signaling pathways, optimal multipotent drugs should
simultaneously and specifically modulate selected groups of biological targets. Polypharmacology
is a new scientific area focused on discovery, development, and pharmacological study of Multiple
Targeting Designed Ligands (MTDL) able to simultaneously modify the activities of several
interacting pharmacological targets (Hopkins, 2008).

This emerging approach suggests that multifactorial CNS diseases such as depression (Millan,
2014), schizophrenia (Ye et al., 2014), Parkinson’s disease (PD) and Alzheimer’s disease (AD;
Youdim and Buccafusco, 2005; Leon et al., 2013) can be treated with higher efficacy, lower toxicity,
less drug-drug interactions, and also with unified pharmacokinetic profile if a single drug molecule
is able to simultaneously interact with multiple targets (Anighoro et al., 2014; Huang et al., 2015).

Despite the positive effects of MTDL, there are several potential disadvantages, which need
to be taken into consideration. In order to identify multiple targeting hits, a more detailed and
extensive pharmacological characterization of current drug-target interactions is needed (Peters,
2013). In most previous cases, the need for a polypharmacology to reach a therapeutic effect
is discovered retrospectively. After finding a lead compound for a specific group of targets, the
optimization of complex structure-activity relationships (SAR) profile is one of the first challenging
tasks from amedicinal chemistry point of view.Most importantly, simultaneous targeting of several
receptors may lead to a wider and sometimes unpredictable spectrum of biological activities such
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as side effects. Therefore, a balance between polypharmacological
benefits and potential drawbacks brought by promiscuous
scaffolds needs to be evaluated at least as carefully as with all other
candidates, but based on a more complex behavior (Anighoro
et al., 2014). Herein we describe the current implementation of
target-oriented polypharmacological approaches with histamine
H3 receptor (H3R) ligands based on research findings (Figure 1).

H3R is a member of transmembrane class A of G protein–
coupled receptors (GPCR) family (Arrang et al., 1983; Schwartz
et al., 1991). It influences several intracellular pathways through
its coupling to Gαi/o (Bongers et al., 2007). Analysis of H3R
mRNA in rat (Héron et al., 2001) and human (Jin and Panula,
2005) brains showed that H3R is largely expressed on the
histaminergic neurons of the CNS (located presynaptically and
postsynaptically; Jadhav and Singh, 2013). As auto-receptor,
H3R plays an important role in histamine biosynthesis and
release and as hetero-receptor in the modulation of different
neurotransmitters release (e.g., acetylcholine, noradrenaline,
dopamine, GABA, glutamate, and serotonin; Schlicker et al.,
1989, 1990). A lower level of H3R is distributed in the
peripheral nervous system and is responsible for the regulation
of sympathetic effector systems and pain sensation (Héron et al.,
2001). Therefore, modulation of the H3R can potentially prevent
the activation of the negative feedback mechanism leading
to increased neurotransmitter release. Consequently, targeting
of H3R with antagonist/inverse agonist may have therapeutic
applications in CNS-related disorders, such as depression,
schizophrenia, PD, and AD (Esbenshade et al., 2008; Gemkow
et al., 2009; Chazot, 2010; Raddatz et al., 2010; Lin et al., 2011;
Ghasemi and Tavakoli, 2012) as well as in inflammatory and
gastrointestinal diseases (Vuyyuru et al., 1995; Ceras et al., 2012).
Recently, several substances have entered late clinical phases

FIGURE 1 | Multi-targeting designed ligands with H3R.

for the treatment of several CNS disorders (Sander et al., 2008;
Panula et al., 2015).

H3R/H1R

The drug Betahistine (N-methyl-2-(2-pyridyl)ethanamine),
indicated for the treatment of vestibular Morbus Menière, can be
considered as the first MTDL in this category by working as an
agonist at histamine H1 receptor (H1R) and antagonist at H3R
(Lian et al., 2014, 2016; Møller et al., 2015). The H3R antagonism
leads to inhibition of vestibular neurotransmission, central
vasodilatation with potential antipsychotic effects, whereas the
H1R agonism have an immune-regulatory effect (Dagli et al.,
2008; Zhou et al., 2013).

Currently, the main focus on polypharmacological targeting
of H3R/H1R is to develop dual agonist or dual antagonist
ligands. Dual acting H3/H1 receptor (H3R/H1R) antagonists
were synthesized for the treatment of allergic diseases. These
diseases are associated with the degranulation of the mast
cell and histamine release which can activate H1R and
consequently stimulates phospholipase C that ultimately liberate
inositol-1,4,5-trisphosphate and Ca2+; thereby improves mucus
secretion and vasodilatation (McLeod et al., 1999; Bakker et al.,
2002).

H1R antagonists play a key role in the treatment of
allergic rhinitis; however, there are several limitations to their
clinical use. The first generation of H1R antagonists (e.g.,
Diphenhydramine, Chlorpheniramine) show sedative effects
whereas second generation H1R blockers (e.g., Loratadine,
Mizolastine) have poor penetration to the CNS, thus generating
non-sedating antihistaminic activity (Cowart et al., 2004; Stark
et al., 2004). However, the second generation H1R blockers
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are often combined with α-adrenergic agonists to stimulate
normal vascular tone and to reduce nasal congestion. Such
combination is associated with serious cardiac side effects (QT
time prolongation, ventricular arrhythmia).

These findings have encouraged several research groups to
consider if other histamine receptor subtypes may contribute
to the histamine-induced nasal congestion. Several studies
confirmed that H3R may play an important role in histamine-
induced nasal congestion because the vasodilatation is caused
by activation of H3R in peripheral post-sympathetic ganglionic
neurons (Hey et al., 1992). The activation of the H3R hetero-
receptors located on neighboring noradrenergic neurons (Berlin
et al., 2011) modulates the release of the neurotransmitter
noradrenaline in the nasal blood vessel. Therefore, a compound
that antagonizes H1R on one hand and inhibits H3R on the
other hand may treat allergic diseases without having nasal
congestion.

Based on first and second generations of H3Rantagonists,
imidazole and non-imidazole H3R/H1R ligands were designed.
Several imidazole-derivatives taking Chlorphenamine 1 (hH1R
Ki = 2 nM) as an additional pharmacophore for the introduction
of H1R antagonist activity show dual H3R/H1R inhibitory affinity
(Wieland et al., 1999). Limited variations of the linker in both
sides of the aliphatic amino moiety provided compounds with
good H3R binding affinity. Like all aminergic GPCR, H1R,
and H3R contain an aspartate residue in the transmembrane
domain III, that is involved in electrostatic interaction with
protonated amino functionality (Wieland et al., 1999). Therefore,
replacement of the basic amino linker by a neutral linker such
as amide or urea, resulted in activity loss on the H1R. However,
incorporating a tertiary amine led to the synthesis of the most
potent dual inhibitor in that series (compound 2, Figure 2) that

displays affinities at low nanomolar concentration range for both
H1R and H3R.

Further structural optimization was conducted by replacing
the imidazole ring with different heterocycles in order to avoid
potential interactions with CYP450 enzymes. In one of the
trials, the non-imidazole heterocycles were combined with a
benzothiazole structure (Walczyński et al., 1999). In vitro results
of this series from guinea pig ileum system showed increasing
H3R antagonist potency in the presence of an alkyl-substituted
azepane (compound 3, Figure 2). However, this compound
showed weak H1R antagonist activity, with pA2 value of 5.77.
A similar approach was applied in designing H3R/H1R dual
inhibitors by combining nitrogen-containing heterocycles, with
a benzylphthalazinone (GSK-1004723), compound 4 (Figure 2),
or a quinoline structure (GSK-835726) (Slack et al., 2011; Daley-
Yates et al., 2012), andWO-094643 (Norman, 2011). Compounds
4 andGSK-835726 were potent H3R/H1R antagonists in vitro and
in vivo systems. Compound 3 has a major advantage associated
with its long duration of action (t1/2 of 1.2–1.5 h, Table 1) which
allows once a day intranasal dosing for the treatment of allergic
rhinitis. GSK–1004723 completed phase II of clinical trials for the
treatment of allergic rhinitis.

H3R/H2R

Limited efforts have been conducted so far for the designing
of dual H3R/H2R ligands. However, guanidine-based
histamine H2R ligands demonstrate additional H3R antagonist
potencies. Recently, Buschauer et al. investigated dimeric
carbamoylguanidine derivatives for the synthesis of potent
H2R agonists (Kagermeier et al., 2015). Compounds containing
two imidazole moieties, display selectivity for H3R and H2R in

FIGURE 2 | Structures and biological activities of selected H3R/H1R ligands.
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TABLE 1 | Selected pharmacokinetic data of preclinical candidates (Ly et al., 2008; Slack et al., 2011; Daley-Yates et al., 2012).

Code Cmax blood Cmax brain t0.5 F Cl Vss Koff Kon

4 – – 1.2–1.5 h – – – 0.007 ± 0.001min−1 4.76 ± 0.69× 108

GSK-835726 0.747µM – 15.5 h – – – 0.802 ± 0.010min−1 3.04 ± 0.14× 109

26 1µM 1µM 16.1 ± 0.9 h 93% 10.2 ± 1.0mL/min/k 13.0 ± 1.2 L/kg – –

radioligand competition binding studies, whereas compound
5 (Figure 3) shows high H2R affinity with simultaneous high
H3R inhibitory affinity. Since the brain penetration of these
compounds is quite low, they can mostly be used on cells and
isolated tissues.

H3R/H4R

Similarly, dual targeting is also often applied on histamine
H3R and H4 receptors (H4R). Because of the relative high
H4R homology with H3R (37% in entire sequence, 68% within
transmembrane domains) many potent histamine H3R ligands
containing imidazole moieties (6–8; Figure 4) show off-target
affinity at H4R (Neumann et al., 2013). The human H4R
is the last receptor subtype that has been identified in the
histamine receptor family (Corrêa and Fernandes, 2015). The
H4R is mainly located on cells of hematopoietic origin and,
therefore, may be a promising target for the treatment of
inflammatory diseases like allergic rhinitis, asthma, and pruritus
(Thurmond et al., 2008). The expression of H4R in the CNS
is a controversial topic because immunostaining methods are
critically discussed and inconsistent mRNA screening results
were obtained (Panula et al., 2015). Dual H3R/H4R ligands
could be promising targets for pain and cancer since it is
likely that these two targets contribute to the development of
pain sensation and itching as well as cell-proliferation-associated
effects (Medina and Rivera, 2010). However, further investigation
is required to fully understand and evaluate their functions for
therapeutic applications.

Clobenpropit (7), a potent reference H3R antagonist, was
identified as a template for dual H3R/H4R ligands. Variations
in substituents of the phenyl moiety as well as in the length
of the alkyl chain between the central core isothiourea and
the lipophilic aromatic residue were performed (Lim et al.,
2009). Elongation of the spacer and introduction of bulky
groups in the east part of these molecules such as diphenyl
residue led to moderate affinity for both H3R and H4R.
Nevertheless, most of these compounds showed moderate to
high affinity at both H3R and H4R in a similar concentration
range [human H3 receptor (hH3R) Ki=2.5–79.4, hH4R Ki= 1.6–
158.4]. Compounds with a halogen substituent at the 4-position
of the benzyl moiety showed the best binding affinities at both
receptors. Further structural modifications were performed to
expand the SAR on imidazole-containing histamine receptor
ligands. Changing the polarity of the central core isothiourea by
introducing different moieties such as amide, carbamate, urea,
ester, ketone, and ethers was exploited (Kottke et al., 2011).
Amide derivatives were unsuccessful because they had poor

FIGURE 3 | Structures and biological activities of selected H3R/H2R

ligands.

affinity at the hH3R. In contrast, all the other moieties bound
to both receptors in a comparable concentration range, showing
that these central cores of the alkyl imidazole can be used as
a lead structure for dual acting H3R/H4R ligands. Among the
carbamate series, the presence of a cycloalkyl moiety in the east
part is important to have Ki values for both receptors below
200 nM. Cyclohexylmethyl derivative 9 (Figure 4) is the most
potent H3R/H4R antagonist in that series (Wicek et al., 2011). It
must be stressed that the affinity is not the only criteria for the
MTDL selection. Some compounds may have similar affinities,
but different efficacies. In this respect, replacing the carbamate
function with a thioether group led to the synthesis of a potent
dual H3R antagonist and H4R partial agonist 10 (Figure 4).
These compounds are potent dual H3R/H4R ligands that can be
optimized for further pre-clinical trials; however, no further work
has been reported. Therefore, efficacy and not only affinity data
has to be considered for the pharmacological profile evaluation
of new drugs.

H3R AND NON-HISTAMINERGIC GPCRs

In addition to combined properties with other histamine
receptor subtypes, other aminergic GPCRs have also been
addressed with polypharmacological targeting of H3R.Dopamine
is an important neurotransmitter in the human brain. It
affects almost all mental functions, such as movement control,
motivation, emotion, learning, and memory. Dysregulations
of dopamine neurotransmitter system of the CNS may cause
schizophrenia and related mood disorders (Schlicker et al.,
1993; Witkin and Nelson, 2004). Neuroleptics used for
the treatment of schizophrenia usually inhibit dopamine
D2-like receptors and other aminergic receptors, such as
serotonin 5-HT2A receptor, dopamine D1 receptor (D1R)
receptors, and other serotonin receptor subtypes (Remington,
2003). The most important side effects of these neuroleptics
are extrapyramidal side effects and weight gain problems
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(Vuyyuru et al., 1995; Deng et al., 2010; Lian et al.,
2016). These side effects are related to their antagonistic
properties at the dopamine D2-like and H1R, respectively
(Kroeze et al., 2003; Von Coburg et al., 2009). Additionally,
schizophrenic patients usually showed a significantly high level
of N-methylhistamine in cerebral cerebrospinal fluid (Ligneau
et al., 2007). There are several studies showing an interaction
between histamine H3R and dopamine D2 receptors (D2R) as
well as H3R and D1R as oligomeric hetero-receptors (Humbert-
Claude et al., 2007; Ferrada et al., 2008). Furthermore, H3R
inverse agonists/antagonists showed a reduction of undesirable
side effects like weight gain, somnolence, and cognitive
impairment in several rodent models of schizophrenia while
displaying a significant inhibitory activity (Ligneau et al.,
2007). Combining the known H3R antagonists pharmacophore
4-(3-piperidinopropoxy)phenyl with known neuroleptics may
provide novel multi-acting antipsychotic drugs with an improved

pharmacological profile and reduced side effects by decreasing
H1R affinity and introducing H3R activity while maintaining
D2R/D3R affinity (Humbert-Claude et al., 2007; Von Coburg
et al., 2009). For this approach 4-(3-piperidinopropoxy)phenyl
was linked to several known neuroleptics. Resulting compounds
showed high H3R affinity with Ki values between 4.90 nM and
42 pM while simultaneously reduced the H1R affinity by a factor
of 10–600 as off-target and maintained the D2-like receptor
subtypes affinity (Figure 5; Deng et al., 2010). Compound 11

(Figure 5) with a good overall profile and high H3R affinity
was synthesized by merging 4-(3-piperidinopropoxy)phenyl
fragment with amitriptyline 12 (Figure 5). This compound was
selected for an early in vivo screening for central H3R antagonist
potency on male Swiss mice. To determine the in vivo potency,
an increase in N-methylhistamine level in the brain 90min
after the oral application of the compound was measured (Von
Coburg et al., 2009). Unfortunately, this compound seems to be

FIGURE 4 | Structures and biological activities of selected H3R/H4R ligands.

FIGURE 5 | Structures and biological activities of selected H3R/D2R ligands.
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inactive (ED50 > 10mg/kg p.o.) with unclear reasons mostly for
absorption, distribution, or metabolism.

Using pharmacophore-based virtual screening, Lepailleur
et al. identified an interesting additional target activity while
analyzing the screening hits (Lepailleur et al., 2014). A series
of tricyclic derivatives have high serotonin 5-HT4 receptor (5-
HT4R) affinity. There is a connection between different serotonin
receptor subtypes, especially on 5-HT1AR, 5-HT4R, and 5-HT6R
and emerging AD therapies (Sabbagh, 2009; Mangialasche et al.,
2010; Herrmann et al., 2011) and other degenerative disorders
connected to an impaired cholinergic function (Esbenshade
et al., 2008; Sander et al., 2008; Gemkow et al., 2009). 5-
HT4R provide symptomatic alleviation of cognitive impairments
and neuroprotection by reducing amyloid-β (βA) generation
and toxicity (Lezoualc’h, 2007). 5-HT4R activation improves
cognitive processes such as learning and memory (Lelong et al.,
2001, 2003; Levallet et al., 2009; Hotte et al., 2012). Combined
with the beneficial effects of H3R on neurodegenerative diseases,
dual targeting of H3R and 5-HT4R would therapeutically be
useful. One of the identified hits, compound 13 (Figure 6)
showed high affinities with Ki values of 41.6 nM at H3R
and 208 nM at 5-HT4R and significant selectivity over 5-
HT1AR and 5-HT6R. Compound 13 was able to reverse the
scopolamine-induced cognitive impairment partially at 1mg/kg
and completely at 3mg/kg in a spatial working memory
experiment (Klinkenberg and Blokland, 2011). Scopolamine is
a nonselective muscarinic antagonist, which partially blocks
the cholinergic neurotransmission and is used to examine the
cognitive enhancing effects of potential compounds (Snyder
et al., 2005; Fredrickson et al., 2008). These results reveal the
potential of combined H3R antagonist/5-HT4R agonist profiles
in one multi-targeting compound to modify symptomatic effects
in Alzheimer’s disease.

Recently, different combinations between melatonin and
another neuroprotection agent, e.g., curcurmin derivatives, have
shown that melatonin may have a therapeutic potential in
the treatment of cognitive disorders and neurodegenerative
pathologies like AD (Chojnacki et al., 2014). Different H3R
antagonists also showed neuroprotective actions (Brioni et al.,
2011). Therefore, the synthesis of ligands able to bind at
both H3R and melatonin receptors could be useful for the
treatment of the diseases mentioned above. Pala et al. have

FIGURE 6 | Structure and biological activity of the selected H3R/5-HT4
ligand.

synthesized compounds that can interact simultaneously with
the H3R and melatonin T1 receptor (MT1R) and melatonin T2

receptor (MT2R; Pala et al., 2014). Melatonin is a methoxyindole-
derived hormone secreted mainly by the pineal gland. The
activation of MT1R and MT2R is not only important for the
regulation of cardiac rhythms, but also for having antioxidant
and neuroprotective effects (Srinivasan et al., 2006). For
the synthesis of this melatonergic/histaminergic ligands the
classical pharmacophore showed for potent H3R antagonists
such as Ciproxifan and its analogs, was combined with an
anilinoethylamide to have comparable binding affinity with the
indol-3-ylrthylamide moiety of the melatonin (Figure 7). The
length of the alkyl chain influences more the binding affinities
at hMT1R and hMT2R than that at hH3R. Compounds with
a short spacer such as a propyl or ethyl chain did not show
affinity toward both MT1R and MT2R. One good dual acting
ligand was obtained by elongating the alkyl chain between the
imidazole ring and the melatonin moiety with a pentyl linker.
The introduction of a six methylene unit improved the Ki values
for both hMT1R and hMT2R. The elongation of the spacer can
store the imidazole in a more peripheral region of the melatonin
receptors. In that region, negative interactions with positively
charged amino groups are weakened. Therefore, compounds (14,
15; Figure 7) able to bind to both melatonin and histamine
H3R with affinity in the micromolar concentration range were
designed. The optimization of these ligands can be the next step
for discovering newmultiple targeting compounds that belong to
the new melatonin-histamine combination.

H3R AND TRANSPORTERS

Selective serotonin reuptake inhibitors (SSRI) have been the
drugs of choice to treat depression. However, the efficacy of
these drugs is noticeable only after weeks of treatment and do
not improve cognitive functions of depressive patients, which
prompt many physicians to co-prescribe stimulants with SSRI to
provide subjective relief. H3R antagonists produce wakefulness
in animals without releasing dopamine or producing behavioral
activation. Such activation has been avoided due to the risk
of allowing patients to act on their suicidal ideation (Menza
et al., 2000; Stahl, 2001). Combined H3R/SERT inhibition would
provide symptomatic relief for the fatigue during the first weeks
of treatment and afford immediate relief from some of the
symptoms of depression with possible concurrent cognitive
enhancement (Schlicker et al., 1998; Barbier et al., 2007; Nikolic
et al., 2014).

Until now, most of the medicinal chemistry effort to
develop new dual H3R/SERT inhibitors was conducted by
Johnson & Johnson Pharmaceutical Research and Development
group. Their effort was started with the identification of lead
compounds with desirable SERT affinity, which could then
be used as a template to introduce H3R antagonist activity.
Two SSRI templates were designated, the first based on
fluoxetine, which is the third most prescribed antidepressant
drug (16, Figure 8; Wong et al., 1995), and the second
based on the hexahydropyrroloisoquinoline scaffold represented
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FIGURE 7 | Structures and biological activities of selected H3R/melatonin receptor ligands.

by JNJ-7925476 (17, Figure 8), identified by high-throughput
screening (Aluisio et al., 2008). Four templates of potent and
selective H3R antagonists were considered to develop dual
H3R/SERT inhibitors evaluated pre-clinically (18–21, Figure 8;
Letavic et al., 2006). Starting from fluoxetine template, the
tertiary benzyl amines of 18–21were replaced with the fluoxetine
template, so that the known SSRI would serve as both, the
lipophilic core and one of the basic amines. Several H3 amine
side moieties were initially 3- or 4-substituted on both phenylene
rings of fluoxetine (rings A and B). All the regioisomers had
high affinity for the hH3R, but the 3-piperidinyl-propyloxy
derivative provided the highest affinity for both the rat serotonin
transporter (rSERT) and human serotonin transporter (hSERT)
(e.g., compound 22, Figure 8; Stocking et al., 2007). The
4-(trifluoromethyl) substituted phenoxy (B) ring derivatives
have no discrepancy between rSERT and hSERT, however, a
decrease in affinity for hSERT over rSERT was observed for
the unsubstituted derivatives. Electron donating substituents
on B ring is associated with 5 to 30-fold decrease in hSERT
affinity, however, electron withdrawing substituents displayed a
good correlation between rSERT and hSERT (Stocking et al.,
2007).

The same approach was applied for designing of
hexahydropyrroloisoquinolines-derived dual H3R antagonists
and SERT inhibitors. The overlap of the H3R antagonist 17 and
SERT inhibitor 16 was pictured as exemplified in compound
23 (Figure 8). This approach generated a series of high affinity
H3R antagonists with the SERT affinity dependent on aryl
ring (A) substitution. Nevertheless, unlike the fluoxetine
scaffold, most simple substitutions on the aryl ring (A) of
the hexahydropyrroloisoquinoline scaffold provided similar
rSERT and hSERT affinity (Keith et al., 2007c). On the other
hand, the hydroxyl and the heterocyclic derivatives displayed
a slightly higher affinity for rSERT than hSERT. Two high
affinity compounds, the 4-methoxy derivative and the 3-pyridyl
derivatives demonstrated good in vivo activities in serotonin
potentiated head twitch model for SERT inhibition and blockade
of imetit-induced drinking model for the H3R inhibition.
However, this series showed unsatisfactory pharmacokinetics
with low oral bioavailability, long t1/2 and a slow onset of
action. In addition, these structures still retained affinity for the

dopamine transporter (DAT; Keith et al., 2007c). Consequently,
simpler templates from hexahydropyrroloisoquinoline were
attempted, initially, by removal of the fused pyrrolidine ring and
one chiral center to obtain the tetrahydroisoquinolines (Letavic
et al., 2007a). Structural optimization of tetrahydroisoquinolines
derivatives was conducted using a large number of amines
in order to improve the binding affinity at H3R, varying
the physical properties of the resulting compounds and
maintaining SERT affinity (Keith et al., 2007b). Several
modifications were attempted on the pendant piperidine ring;
morpholine and substituted piperidines usually resulted in high
affinity compounds. Replacing the piperidine with piperazine
afforded compounds that have variable affinity for the hH3R,
depending greatly on the basicity of the terminal nitrogen. For
example, small alkyl substituents on the piperazine provided
compounds with high affinity for the H3R, but decreasing the
basicity of the terminal nitrogen by addition of bulky groups
lowered the affinity for the H3R. Among the large number of
derivatives that were synthesized, compound 24 (Figure 8),
which was afforded by removal of the pyrrolidine ring of 23
together with the replacement of the piperidine ring with a
morpholine, has improved rat pharmacokinetics and improved
pharmacodynamics with a head twitch response (Keith et al.,
2007a).

Further simplification was conducted by removing one carbon
on the tetrahydroisoquinoline, which deleted the last remaining
stereocenter to provide the benzyl amine derivatives (e.g., 25,
Figure 8). The benzylic carbon of tetrahydroisoquinolines was
replaced with an oxygen in order to improve overall physical
properties (Letavic et al., 2007b). The 3-piperidinyl-propyloxy
derivatives were not used in this series; instead, they used the
alkyne and amide side chains corresponding to the known H3R
antagonists 19 and 21. The later modification was important
to avoid any potential metabolic problems associated with 1,4-
hydroxyquinone. The SAR of alkynes was generally similar to
that of the tetrahydroisoqinolines and most of the compounds
have high affinity toward H3R and SERT. Selected compounds
had good brain penetration in rat with brain levels of above
1µM when dosed at 10mg/kg p.o. (Letavic et al., 2007b). The
benzamides benzyl amine derivatives were very potent with
good selectivity over the norepinephrine transporter (NET) and
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FIGURE 8 | Structures and biological activities of selected H3R/SERT ligands.

DAT. One of the compounds, 26 (Figure 8), was extensively
profiled in vivo and was found to have good rat pharmacokinetic
and pharmacodynamics properties (Table 1; Ly et al., 2008).
Although not yet tested on humans, inhibition of the H3R makes

it an attractive combination with SERT blockade in order to
create a novel antidepressant treatment.

The serotonin/norepinephrine reuptake inhibitor (SNRI)
duloxetine 27 (Figure 9) is used in therapeutic off-label treatment
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FIGURE 9 | Structures and biological activities of selected H3R/NET ligands.

of neuropathic pain (Fishbain et al., 2006). The inhibition of NE
uptake is essential for the pain efficacy (Leventhal et al., 2007).
H3R antagonists Thioperamide 6 and GSK-189254 28 (Figure 9)
have been reported to be active in models of pain (Farzin et al.,
1994; Medhurst et al., 2008). Using these results Altenbach
et al. designed a series of molecules combining pharmacophores
of H3R antagonism and NET inhibition in one molecule. An
H3R pharmacophore was linked to duloxetine analogs, cf. 28
(Figure 9). Resulting compounds 29–31 (Figure 9) showed low
nanomolar affinity at H3R and NET, where 29 additionally had
SERT affinity (Ki = 7.6 nM) comparable to that of 28 (Ki =

2.4 nM; Bymaster et al., 2003). This affinity was reduced to Ki >

70 nM in compounds 30, and 31 providing a better selectivity.
Compound 29 was also found to be potent in osteoarthritis pain
model in rats with efficacies of 70 and 93% at doses of 3 and
10mg/kg, respectively (Anighoro et al., 2014).

H3R AND ENZYMES

Histamine level in the CNS is controlled not only by the
receptors but also by the inactivating enzyme histamine
N-methyltransferase (HMT; Parsons and Ganellin, 2006).
Ligands with dual inhibitory activities on both H3R and
HMT could increase intersynaptic histamine levels in
the CNS and may lead to beneficial procognitive effects
in psychiatric and neurodegenerative diseases (Apelt
et al., 2002; Sander et al., 2008). Even if they have low
or missing in vivo activity, such ligands could greatly
enhance histaminergic neurotransmission via inhibition of

histamine H3 auto-receptors and reduce the catabolic rate for
histamine degradation via HMT inhibition (Grassmann et al.,
2003).

Most of the HMT inhibitors have a 4-aminoquinoline moiety
in common (e.g., tacrine, 32, Figure 10). Therefore, the synthetic
effort to develop novel and dual H3R\HMT inhibitors started
from coupling of different 4-aminoquinolines with different
spacers to the piperidine, the basic component that is essential for
binding at theH3R. Variation of the spacer structure provides two
different series of compounds. The first series have an alkylene
spacer separating the basic center from the 4-aminoquinoline.
These compounds showed potent HMT inhibitory activities
with moderate to high H3R affinity. The second series, which
possessed a p-phenoxypropyl spacer, showed a strong inhibitory
activity on HMT and the H3R affinity, exceeding that of the
first series. One of the compounds, FUB 836 (33, Figure 10),
combines a high H3R affinity with a high HMT inhibitory
activity and exhibited high H3R selectivity when compared
to H1R and H2R (Apelt et al., 2002). Similar approach was
applied in designing H3R/HMT dual inhibitors by combining
imidazole heterocycle, which is an integral part of potent
H3R antagonists, with several aromatic carbo- or heterocyclic
structures (e.g., aminoquinoline or tetrahydroacridine moieties)
of standard HMT inhibitors by different alkyl and alkenyl
spacers. One interesting compound, 34 (Figure 10), showed
a high H3R affinity with a high HMT inhibitory activity
(Grassmann et al., 2003). Replacing imidazole head with a
piperidine ring accompanied by a methylation of the amino
functionality improved the inhibitory activity against HMT
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FIGURE 10 | Structures and biological activities of selected H3R/HMT ligands.

(e.g., compounds 35 and 36; Figure 10; Grassmann et al.,
2004).

Another approach was attempted on FUB 836 (33) by
replacing the aminoquinoline with different heterocycles (e.g.,
nitro- or amino-substituted pyridines, quinolines, benzothiazole,
or pyrroline) in order to improve its dual H3R/HMT affinities. In
contrast to the aminoquinoline, the reported compounds showed
moderate to good dual affinities. Whereas, some compounds
showed potent HMT inhibitors, they only showed a moderate
H3R affinity and vice versa (Apelt et al., 2005). The most potent
compound in this series was 4-(3-piperidinopropyl)phenylether
with substituted alkylaminopyridine (37, Figure 10).

Tacrine (32) mentioned above is an acetylcholinesterase
(AChE) inhibitor. Together with the symptomatically acting
N-methyl-D-aspartate (NMDA) blocker memantine, tacrine
represents the only therapeutic treatment of AD currently
available. AD is a complex neurodegenerative disorder and the
most common form of dementia. Patients show a degeneration
of cholinergic neutrons in the basal forebrain according to
cholinergic hypothesis and aggregation of βA through an
interaction with the peripheral anionic site (PAS) of the AChE
(Davies and Maloney, 1976; Giacobini, 2000). H3R antagonists
showed an ability to increase acetylcholine (ACh) but unlike the
AChE, H3R antagonist will raise acetylcholine levels mostly in
the brain, since H3R is mainly located in the CNS (Clapham and
Kilpatrick, 1992; Darras et al., 2014). Therefore, the combination

of both activities in a single molecule may offer the desired
therapeutic effect with fewer unpleasant side effects considering
acetylcholine release in the periphery (Fang et al., 2015; Guzior
et al., 2015).

Using available crystal structure information and applying
pharmacophore modeling and docking simulations Bembenek
et al. proposed compound 38 (Figure 11) and similar structures
to have activity on both AChE and H3R. Moreover, the used
models suggest a possible interaction for this series of compounds
with the PAS of the AChE (Bembenek et al., 2008). Some
additional in vitro an in vivo studies with these compounds
could be of interest to verify the calculated results. In 2008
Morini et al. introduced a class of symmetric and asymmetric
4,4′−biphenyl H3R antagonists with a moderate ability to
inhibit rat brain cholinesterase (Morini et al., 2008). This
class is characterized by a rigid biphenyl scaffold and displays
nanomolar binding affinities at human and rodent H3R. The
compound 39 (Figure 11) showed low nanomolar affinity to the
H3R and low micromolar activity to inhibit AChE. Docking
the compound 39 into the catalytic cavity of mouse AChE
showed similarity to the binding mode, earlier reported for 38,
confirming that more rigid and bulky biphenyl scaffolds are
tolerated by the AChE active site. Interaction with PAS of the
AChE is suggested for 39 as well as for 38. In 2012 Bajda et al.
presented a new class of diether derivatives of homo substituted
piperidine with 40 (Figure 11) being the most active compound,
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FIGURE 11 | Structures and biological activities of selected H3R/AChE ligands.

showing low nanomolar affinity for the hH3R and micromolar
inhibitory potency toward both cholinergic receptors (Bajda
et al., 2012). In 2014 Darras et al. presented new tetracyclic
nitrogen-bridge headed compounds showing balanced affinities
as hAChE inhibitor and hH3R antagonist with UW-MD-71 (41,
Figure 11). It showed the best activity in two digit nanomolar
area for both targets and greater than 200-fold selectivity over
the other histamine receptor subtypes. This compound was
tested on acquisition, consolidation and retrieval in a model of
dizocilpine-induced amnesia. Test results indicated that using
multiple targeting ligands lead to pharmacological and behavioral
profiles different from interaction with the respective single target
ligands. Furthermore, a potential applicability in the modulation
of the memory impairment could be shown (Khan et al., 2016).

In 2006, Petroianu et al. tested several compounds, containing
structural features of tacrine (32) for their inhibitory activities
on AChE and Butyrylcholinesterase (BuChE; Petroianu et al.,
2006). These compounds have previously shown combined
H3R antagonist and HMT inhibitory potencies (Apelt et al.,
2002; Grassmann et al., 2003). From this series of compounds

FUB833 (42, Figure 11) was the most promising four-target
compound, showing subnanomolar affinity for hH3R, low
nanomolar IC50 values for both cholinesterases and good affinity
for HMT. These compounds have shown only moderate effects
under in vivo conditions (Apelt et al., 2002). Furthermore,
these new compounds might serve as novel important tools
for further pharmacological investigations on histaminergic
neurotransmission and its regulatory processes.

H3R AND NO-RELEASING MOLECULES

Nitric oxide (NO) is an endogenous messenger, displaying
a variety of actions in our body (Kerwin et al., 1995). NO
is a key messenger in cardiovascular, immune, central, and
peripheral nervous systems (Szabo, 2010). Released in the CNS
after stimulation of excitatory NMDA, it diffuses in the adjacent
presynaptic nerve terminal and astrocytes. There it activates
the soluble guanylate cyclase (sGC) implying a number of
physiological roles like gastro-protective effect, control of food
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intake and learning and formation of memory. H3R antagonists
have also shown positive effects concerning learning andmemory
(Miyazaki et al., 1997; Komater et al., 2005). Combining
H3R antagonists with NO-releasing moiety could synergistically
contribute to a curative effect in pathologies like memory
and learning disorders. Bertinaria et al. synthesized and tested
some H3R antagonists with NO-donor properties by coupling
H3R antagonist SKF 91486 (43, Figure 12) with the furoxan
system (1,2,5-oxadiazole 2-oxide), which is able to release NO
under the action of thiol cofactors like cysteine (Schönafinger,
1999). Resulting compounds had similar or greater potency as
SKF 91486 (43). Derivative 44 (Figure 12) showed additional
NO-dependent muscle relaxation (Bertinaria, 2003; Bertinaria
et al., 2003). Another potent compound 45 is derived from
Imoproxifan 46 (Figure 12) by replacing the oxime moiety
with a five-membered NO-donor furoxan ring (Tosco et al.,
2005). As a further development, a new class of NO-donor H3R
antagonists with non-basic (thio)ether linker and furoxan (47)
or nitrooxy (48) NO-donor moieties is introduced (Figure 12).
These compounds are more appropriate to enter the CNS due to
a better lipophilic-hydrophilic balance (Tosco et al., 2004).

H3R AND DIFFERENT ANTISEIZURE
PHARMACOPHORES

Epilepsy is a common human brain disorder, affecting more than
60 million people worldwide. There is a need to discover an
effective and safer antiepileptic drugs (AED) since Phenytoin

(49) and recent AEDs like Loreclezole (50), Remacemide (51),
and Safinamide (52) (Figure 13) only show efficacy within a
maximum of 60–80% of patients and are responsible for many
unwanted side-effects, such as headache, nausea, anorexia, ataxia,
hepatotoxicity, drowsiness, gastrointestinal disturbance, gingival
hyperplasia, attention deficit, und cognitive problems leading to
additional discomfort (Sadek et al., 2014). There are indices for
histamine receptors to improve the development of convulsions
(Kasteleijn-Nolst Trenité et al., 2013). Seizure threshold can be
increased and seizure susceptibility to electrically and chemically
induced seizures can be decreased via activation of the central
histaminergic system (Zhu et al., 2007; Bhowmik et al., 2012).
Pitolisant has been tested in clinical trial phase II for patients
suffering from photosensitive epilepsy. Supported by these results
Sadek et al. designed some multiple-target ligands by combining
the known 3-piperidinopropoxy or (3-piperidinopropoxy)aryl
H3R pharmacophore with different AEDs on the market (49–
52) leading to a small series of compounds (53–56, Figure 13;
Sadek et al., 2014). These compounds showed moderate to good
affinity to H3R with Ki values in the range of 562–0.24 nM
and were tested in vivo for their anticonvulsive effect against
maximum electroshock (MES)-induced and pentylenetetrazole
(PTZ)-kindled convulsions in rats having phenytoin (55) as
the reference AED. Surprisingly the compound with the
lowest in vitro potency (55) was the only one to show the
ability to reduce convulsions in both in vivo models being
administered at 10mg/kg intraperitoneally. Still the results are
controversial and need new epilepsy models to elucidate the
pharmacological profile of the current multiple targeting class in

FIGURE 12 | Structures and biological activities of selected H3R/NO-donor ligands.
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FIGURE 13 | Structures and biological activities of selected H3R/antiseizure ligands.

order to develop suitable and clinically useful AEDs (Bertinaria,
2003).

CONCLUSION

Several combinations of different H3R pharmacophores with
pharmacophoric elements of other histamine subtypes, other
aminergic GPCRs, other transporters, other enzymes, and other
disease-modifying elements have been described. The increasing
knowledge on the complex interaction of the different signaling
pathways as well as on the complex mechanism of central
disorders, give promises for the development of optimized drugs
with synergistic pharmacological properties at multiple targets
and also reduced side effects. The different leads for MTDLs
described here, are very early or at best preclinical candidates.

Therefore, a lot of work on improvements has to be performed

before these designed multiple targeting approaches will get into
clinical trials.
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