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Abstract

In this article, retention modeling of eight aminopyridines (synthesized and characterized at the

Faculty of Pharmacy) in reversed-phase high performance liquid chromatography (RP-HPLC) was

performed. No data related to their retention in the RP-HPLC system were found. Knowing that, it

was recognized as very important to describe their retention behavior. The influences of pH of the

mobile phase and the organic modifier content on the retention factors were investigated. Two the-

oretical models for the dependence of retention factor of organicmodifier content were tested. Then,

the most reliable and accurate prediction of log k was created, testing multiple linear regression

model—quantitative structure–retention relationships (MLR-QSRR) and support vector regression

machine—quantitative structure–retention relationships (SVM-QSRR). Initially, 400 descriptors

were calculated, but four of them (POM, logD,M-SZX/RZX andm-RPCG) were included in the models.

SVM-QSRR performed significantly better than the MLR model. Apart from aminopyridines, four

structurally similar substances (indapamide, gliclazide, sulfamethoxazole and furosemide) were

followed in the same chromatographic system. They were used as external validation set for the

QSRRmodel (it performed well within its applicability domain, which was defined using a bounding

box approach). After having described retention of eight aminopyridines with both theoretical and

QSRR models, further investigations in this field can be conducted.

Introduction

At an early stage of drug discovery, a vast number of new chemical
substances pass through high-throughput screening to reveal their
properties. In pharmaceutical industry, getting as many information
as possible from relatively small set of substances is of great impor-
tance. As for retention behavior investigation, reversed-phase high
performance liquid chromatography (RP-HPLC) is the most widely
used technique. Even though it is well described, retention mechanism
is not yet fully understood. Therefore, there is always a need for inves-
tigation of newly synthesized entities in order to describe their retention
behavior. In this article, retention behavior of eight aminopyridines is

investigated for the first time. All aminopyridines have been synthesized

in the laboratory at the Faculty of Pharmacy. Two of the substances

(PJ47 and PJ51) represent completely new entities (never been synthe-

sized before), while six others are already known (PJ11, PJ13, PJ15,

PJ44, PJ45 and PJ46). However, retention behavior of all eight of

them is for the first time investigated in this article. Among studied

aminopyridine structures, therewere benzene sulfonamide, benzene car-

boxamide and N-phenylurea derivatives, and their chemical structures

are presented in Figure 1.
Aminopyridines as pharmacophores are present in many biologi-

cally active compounds or aminopyridines themselves show a various
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physiological properties. They are capable of modulating the activity
of various kinases most likely by mimicking their natural ligand, aden-
osine triphosphate (ATP). As planar compounds with potential to devel-
op hydrogen bonding interactions which resemble ATP, they represent a
good starting point to design novel ATP competitive inhibitors.

Taking into account ionizable characteristics of the substances,
and the fact that they have never been investigated in RP-HPLC system
before, it was important to establish relationships between retention and
mobile phase properties. In the literature, there are several articles deal-
ingwith retention behavior of ionizable substances in RP-HPLC systems
(1–4). They point out the importance of describing the type of depen-
dence between retention factor and pH of the mobile phase, as well as
the concentration of the organic modifier. In the first part of this report,
several theoretical models that explain these dependences were tested,
while in the second part, a quantitative structure–retention relationships
(QSRR)model was created. It provided insights into the relationship be-
tween retention behavior of substances and their molecular properties.

A number of models have been proposed for predicting the reten-
tion behavior of ionizable solutes at varying mobile phase composi-
tions (5). One of the earliest approaches of this kind suggested
introducing additional terms into the linear solvation energy relation-
ship (LSER), which would account for either the apparent solute pKa

under the conditions studied (6), or the degree of ionization combined
with an additional retention-derived factor, which is specific for a
given chromatographic system (7). As an alternative to models re-
quiring several empirical parameters, QSRR models developed using
computational molecular descriptors present a convenient way of es-
timating retention times and can also provide mechanistic insights into
the retention mechanism in the chromatographic system under study
(8). In a conventional QSRR approach, prior to descriptor calculation,
the major microspecies at pH of interest are identified and optimized.
However, if the pH is <2 units apart from the pKa value, the distribu-
tion of microspecies may be such that the solute is represented in sev-
eral forms in approximately equal amounts. The choice of a single
microspecies to use in subsequent QSRR analysis may therefore be

highly arbitrary, and given that values of most descriptors deviate con-
siderably depending on the molecule’s formal charge, the quality of
the derived models could be significantly affected. To address this
issue, in this study we attempted to take into account the structural
properties of both the major microspecies at a given pH and the
next most dominant microspecies. By using this approach, we were
able to derive a simple, interpretable QSRRmodel which is applicable
in a range of pH values and mobile phase compositions, to solutes
containing both basic and acidic ionizable groups. After the model
was established and its applicability domain defined, external valida-
tion was carried out using retention data for four additional com-
pounds: furosemide, indapamide (benzene sulfonamide, benzene
carboxamide), gliclazide (benzene sulfonamide, urea) and sulfame-
thoxazole (benzene sulfonamide).

Because there are no data in the literature dealing with retention
behavior of aminopyridines and they have vast biological potential,
it was recognized as very important to describe retention behavior
of these potentially active pharmaceutical compounds and provide
deep insight into their behavior in reverse phase system. That means
that for the first time, some theoretical models were investigated,
and relationships between retention and mobile phase properties
were established. Furthermore, by creating a simple QSRR model
with good predictive capabilities, further investigations in this field
are much facilitated, because for any novel, chemically similar sub-
stance (that fits into applicability domain) this QSRR model can be
used in order to predict retention behavior and eventually reduce
time needed for method development.

Methodology

Synthesis of eight aminopyridines

Synthesis of benzamide derivates (PJ15 and PJ46)
Compound PJ15 (9) was synthesized by the Buchwald–Hartwig ami-
dation of 2-chloro-6-phenylpyridine with benzamide in dioxane using

Figure 1. Structures of the newly synthesized substances.
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Pd(OAc)2, Xantphos as a ligand and K2CO3 as a base (Scheme 1). The
product was isolated in good yield (71%).

Related amide PJ46 (10) was obtained via a standard procedure
employing 6-methylpyridin-2-amine and benzoyl chloride in the pres-
ence of pyridine as a base (Scheme 2). The amide was isolated after
column chromatography in 66% yield.

Synthesis of benzenesulfonamide derivates (PJ11, PJ13 and PJ45)
Compounds PJ11 (11), PJ13 (12) and PJ45 (13) were synthesized by
the condensation reaction of p-toluene sulfonyl chloride with different
substituted amino pyridines in the presence of pyridine in dioxane as
solvent (Scheme 3). All products were isolated in moderate yield.

Synthesis of urea derivates (PJ44, PJ47 and PJ51)
Urea derivatives PJ44 (14), PJ47 and PJ51 were prepared by a reaction
of amino pyridines and phenyl carbamate in tetrahydrofuran (THF) in
the presence of 4-dimethylaminopyridine (DMAP) (Scheme 4). The
products were isolated in 52–77% yields.

Influence of pH and solvent composition on retention

factors of analyzed substances

Influence of pH
Horvath et al. (15) first described sigmoidal dependence between
retention factor log k and pH in a specific RP-HPLC column. That
function was later verified experimentally in several articles (2, 16–
18). The following equation shows the relationship between reten-
tion factor of a monoprotic solute HA and the mobile phase pH:

k ¼ ðkHA þ kA × 10ðpH�pkAÞÞ=ð1þ 10ðpH�pkAÞÞ; where kHA and kA
stand for retention factor of protonated and deprotonated
substance, respectively.

Influence of solvent composition
There are several models in the literature describing influence of organ-
ic solvent concentration on retention behavior of a substance (19).
Usually, it is suspected that the dependence between retention factor
and organic modifier concentration is linear: log k = log kw – Sφ,
where log kw is the intercept (hypothetical retention factor in the
mobile phase consisting solely from water), S is the slope of the
equation and φ is concentration of the organic modifier (20).

But it was proved several times that this relationship is linear only
in very narrow range of organic modifiers. The more complex nonlin-
ear model proposed in the literature is called “polarity parameter
model” (21–24), which creates relationship between log k and the mo-
bile phase parameter ðPN

mÞ, a solute parameter (p) and two chromato-
graphic system parameters [PN

s and (log k)0]. This model is supposed
to show better correlation than the previous one (25), because the
relationship between organic modifier and polarity parameter is not
linear, which is why it is included in our article.

This model is based on the equation: logk ¼ ðlog kÞ0þ
pðPN

m � PN
s Þ; where (log k)0 is the retention factor of a solute eluting

from a hypothetical mobile phase which has the same polarity as the
stationary phase ðPN

m ¼ PN
s Þ. PN

m and PN
s are normalized polarity

parameters for the mobile phase and the stationary phase, respectively.
A variation of this model was proposed (25). In it, the solute is char-
acterized by two parameters (p and q), according to the following

Scheme 1. Coupling of 2-chloro-6-phenylpyridine with benzamide catalyzed by Pd(OAc)2.

Scheme 2. Synthesis of benzamide PJ46 from 2-aminopyridine.

Scheme 3. Reactions of substituted amino pyridines with p-toluene sulfonyl chloride.
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equation: log k ¼ qþ pPN
m. For the acetonitrile–water mobile phases,

the polarity parameter of the mobile phase can be calculated from the
following equation (25, 26): PN

m ¼ 1:00� 2:13φ=ð1þ 1:42φÞ.

Computational methods

Structure optimization and descriptor calculation
Protonation states of each analyte were analyzed using the Calculator
Plugin of MarvinSketch 6.0.3 (27), which provides predictions of mi-
crospecies distribution in a range of pH values. If the percentage of the
major microspecies was <90% at any of the considered pH values,
structures of both the major microspecies and the next most prevalent
form of the analyte were considered in further calculations. After pro-
tonation state adjustment, a conformational search was conducted by
using distance geometry constraints to generate 300 random conform-
ers of each structure, as implemented in RDKit (28). Each conformer
was optimized to energy convergence using the MMFF94s forcefield.
The lowest energy conformer was then selected and further optimized
in MOPAC 7 (29), using the AM1 Hamiltonian.

Optimized structures were used as input for calculating over 400
molecular descriptors in CODESSA (30). Values of all descriptors
were exported from CODESSA, apparent distribution coefficient
(logD) predictions from MarvinSketch were added and further
QSRR analysis and modeling were then carried out using NumPy
(31), SciPy (32) and Scikit-learn (33) Python libraries. For each observa-
tion (i.e., log k measurement), descriptors of both relevant microspecies
were treated as independent variables. All descriptor values were first
range scaled to an interval between 0 and 1. The initial descriptor pool
was reduced by: (i) removing descriptors with missing or all-zero values;
(ii) removing descriptors whose coefficient of variation did not exceed
0.05; (iii) removing descriptors which had a coefficient of correlation
to the dependent variable smaller than 0.1 and (iv) by removing highly
correlated descriptors (R > 0.8); if several descriptors were highly inter-
correlated, only the one with the best correlation to the dependent vari-
able was kept. After this preprocessing step, 50 descriptors remained.

QSRR modeling
QSRR model development was based on 168 log k measurements for
the eight aminopyridines. This set was divided into training (n = 125,
≈75%) and test sets (n = 43, ≈25%) using the k-means clustering al-
gorithm, as implemented in SciPy. The number of clusters was set to
42, equaling the number of test set points. After clustering, the point

nearest the centroid of each cluster was placed into the test set, and all
the remaining points were assigned to the training set.

To select the descriptors that would be used in the final model, an
iterative multiple linear regression approach was used. Two indepen-
dent variables were included in all descriptor combinations that were
tested: percentage of cosolvent in the mobile phase and logD at pH
corresponding to the mobile phase pH at which the measurement was
made. First, all possible 3-parameter MLR models were established
using training set data points. Ten top-ranked descriptor combinations,
as evaluated by coefficient of determination (R2) values, were retained
and then combined with an additional descriptor to give all possible
4-parameterMLRmodels. This cyclewas repeated up to five descriptors
in a model. The final choice of descriptors was made by comparison of
adjusted R2 values from best 3-, 4- and 5-parameter models.

The final model was established using Scikit-learn’s implementation
of epsilon support vector regression with a radial basis function (RBF)
kernel. Optimal choice of SVM hyperparameters was made by compar-
ing 5-fold cross-validation root mean squared errors for models obtained
by exhaustively varying the soft-margin constant (C) and the RBF gamma
(34). C was varied on a logarithmic scale in the range between 10−2 and
105, and gamma on a logarithmic scale from 10−5 to 10. Performance of
the final model was validated using an external test set of substances.

Applicability domain definition
The applicability domain of the final model was defined using a
bounding box approach (35). Ranges of descriptor values used in
training the final model were used as reference. If any of the relevant
descriptor values for analytes from the external test set deviated by
more than 15% from the reference range, it was considered that the
prediction is outside the model’s applicability domain. Having said
that, it is evident that the QSRR model created in this article could
be used in further chromatographic investigations of aminopyridines
or chemically similar substances that are within applicability domain,
with the great certainty of good prediction of retention behavior.

Materials and methods

Physico-chemical characterization of synthesized

compounds

The NMR spectra were recorded on a Varian Gemini 2000
(200 MHz) spectrometer. The chemical shifts are given in parts per

Scheme 4. Synthesis of urea derivates.
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million (δ) downfield from tetramethylsilane as the internal standard,
deuterochloroform were used as solvents. The mass spectral data were
recorded using an Agilent MSD TOF spectrometer coupled with Agi-
lent 1200 HPLC or an Agilent Technologies 5975C MS coupled with
Agilent Technologies 6890N GC. The IR spectra were recorded on an
IR Thermo Scientific NICOLET iS10 (4950) spectrometer. Silica gel
60 (230–400) mesh was employed for the flash chromatography
while thin layer chromatography was realized using alumina plates
with 0.25 mm silica layer (Kieselgel 60 F254, Merck).

PJ15, N-(6-phenyl-2-pyridinyl)benzamide (9)
A mixture of 2-chloro-6-phenylpyridine (40 mg, 0.2 mmol), benza-
mide (31 mg, 0.25 mmol), Pd(OAc)2 (5 mg, 0.02 mmol), Xantphos
(22 mg, 0.04 mmol) and K2CO3 (41 mg, 0.3 mmol) in dioxane
(10 mL) was refluxed under a nitrogen atmosphere for 48 h. After sol-
vent evaporation, the residuewas purified by flash column chromatog-
raphy (SiO2).

Flash chromatography (SiO2, 8 : 2 v/v petroleum ether–ether) af-
forded the product as a white solid (m.p. 75°C) in 71% yield. IR:
2159, 2030, 1977, 1678, 1567, 1441 cm−1. 1H NMR (CDCl3,
200 MHz) δ 8.73 (bs, 1H, NH), 8.36 (d, J = 7.8 Hz, 1 H), 7.98–
7.91 (m, 4 H), 7.86–7.78 (t, J = 7.8 Hz, 1H), 7.61–7.37 (m, 7H).
13C NMR (CDCl3, 50 MHz) δ 165.8, 156.0, 151.3, 139.2, 138.7,
134.3, 132.2, 129.1, 128.8, 128.7, 127.2, 126.8, 116.7, 112.4.

PJ46, N-(6-methyl-2-pyridinyl)benzamide (10)
To a mixture of 6-methylpyridin-2-amine (200 mg, 1.85 mmol) and
pyridine (0.18 mL, 2.2 mmol) in 5 mL of dioxane was added benzoyl
chloride (0.24 mL, 2.0 mmol) and the mixture was stirred under a ni-
trogen atmosphere for 2 h at room temperature. Dichloromethane
(10 mL) was then added, and the resulting mixture was extracted
with water (3 × 10 mL). The organic layers were dried over anhydrous
Na2SO4, filtered and concentrated in vacuo, the residue was purified
by flash column chromatography (SiO2).

Flash chromatography (SiO2, 7 : 3 v/v petroleum ether–ether) af-
forded the product as a white solid (m.p. 79–80°C) in 66% yield.
IR: 2526, 2159, 1670, 1576, 1452, 1302 cm−1. 1H NMR (CDCl3,
200 MHz) δ 8.88 (bs, 1H, NH), 8.23 (d, J = 8.0 Hz, 1H), 7.96–7.90
(m, 2H), 7.67–7.59 (t, J = 7.8 Hz, 1H), 7.54–7.41 (m, 3H), 6.92 (d,
J = 7.8 Hz, 1 H), 2.40 (s, 3 H). 13C NMR (CDCl3, 50 MHz) δ

165.7, 156.8, 150.9, 138.7, 134.4, 132.0, 128.6, 127.2, 119.4,
111.0, 23.7.

General procedure for the synthesis of benzenesulfonamide derivates
To a mixture of pyridin-2-amine (1 mmol) and pyridine (1.2 mmol) in
5 mL of dioxanewas added tosyl chloride (1.2 mmol) and the mixture
was stirred under a nitrogen atmosphere for 24 h at 90°C. Water
(10 mL) was then added, and the resulting mixture was extracted
with dichloromethane (3 × 10 mL). The organic layers were dried
over anhydrous Na2SO4, filtered and concentrated in vacuo, and the
residue was purified by flash column chromatography (SiO2).

PJ11, 4-Methyl-N-(5-chloro-2-pyridinyl)-benzenesulfonamide (11)
Flash chromatography (SiO2, 4 : 6 v/v, petroleum ether–ether) afford-
ed the product as a white solid (m.p. 173°C) in 45% yield. IR: 2159,
2028, 1976, 1592, 1494, 1377 cm−1. 1H NMR (CDCl3, 200 MHz) δ
11.12 (bs, 1H, NH), 8.49 (d, J = 2.2 Hz, 1H), 7.72–7.65 (m, 2H), 7.61
(m, 1H), 7.46 (d, J = 9.0 Hz, 1H), 7.25 (d, J = 8.4 Hz, 2H), 2.39
(s, 3H). 13C NMR (CDCl3, 50 MHz) δ 149.7, 147.0, 144.3, 139.1,
136.3, 129.9, 127.1, 126.9, 112.9, 21.5.

PJ13, 4-Methyl-N-(5-methyl-2-pyridinyl)-benzenesulfonamide (12)
Flash chromatography (SiO2, 2 : 8 v/v petroleum ether–ether) afforded
the product as awhite solid (m.p. 190–191°C) in 42% yield. IR: 2159,
2027, 1976, 1605, 1362, 1274 cm−1. 1H NMR (CDCl3, 200 MHz) δ
14.00 (bs, 1H, NH), 8.18 (s, 1H), 7.81 (d, J = 8.4 Hz, 2H), 7.52–7.47
(m, 1H), 7.36 (d, J = 9 Hz, 1H), 7.25 (d, J = 7.8 Hz, 2H), 2.37 (s, 3H),
2.19 (s, H). 13C NMR (CDCl3, 50 MHz) δ 153.5, 143.8, 142.5,
139.1, 138.9, 129.4, 126.7, 123.9, 114.6, 21.3, 17.1.

PJ45, 4-Methyl-N-(6-methyl-2-pyridinyl)-benzenesulfonamide (13)
Flash chromatography (SiO2, 2 : 8 v/v petroleum ether–ether) afforded
the product as a white solid (m.p. 107°C) in 38% yield. IR: 2159,
2027, 1977, 1607, 1360, 1260 cm−1. 1H NMR (CDCl3, 200 MHz)
δ 11.00 (bs, 1H, NH), 7.84 (d, J = 8.0 Hz, 2H), 7.50 (m, 1 H), 7.26
(d, J = 8.4 Hz, 2 H), 7.17 (d, J = 8.4 Hz, 1 H), 6.63 (d, J = 7.4 Hz, 1
H), 2.47 (s, 3H), 2.38 (s, 3H). 13C NMR (CDCl3, 50 MHz) δ

153.3, 152.2, 143.0, 140.8, 138.6, 129.4, 126.8, 115.2, 112.3,
21.7, 21.4.

General procedure for the synthesis of urea derivates
A mixture of phenyl-N-phenyl carbamate (0.5 mmol), pyridin-2-
amine (0.55 mmol) and DMAP (0.1 mmol) in THF (5 mL) was re-
fluxed for 18 h. After solvent evaporation, the residue was purified
by flash column chromatography (SiO2).

PJ44, N-(6-methyl-2-pyridinyl)-N′-phenyl-urea (14)
Flash chromatography (SiO2, 4 : 6 v/v petroleum ether–ether) afforded
the product as awhite solid (m.p. 182–183°C) in 69% yield. IR: 2994,
2159, 2028, 1652, 1578, 1410 cm−1. 1H NMR (CDCl3, 200 MHz) δ
12.09 (bs, 1H, NH), 7.58–7.54 (m, 2 H), 7.43–7.18 (m, 3H), 7.12–
6.98 (m, 1H), 6.81 (d, J = 8 Hz, 2H), 2.53 (s, 3H). 13C NMR
(CDCl3, 50 MHz) δ 154.9, 152.1, 138.8, 128.7, 123.2, 122.6,
119.8, 119.7, 119.1, 116.4, 108.8, 23.6.

PJ47, N-(5-iodo-3-methyl-2-pyridinyl)-N′-phenyl-urea
Flash chromatography (SiO2, 1 : 1 v/v petroleum ether-ether) afforded
the product as a white solid (m.p. 207°C) in 52% yield. IR: 2432,
2159, 2028, 1668, 1500, 1411 cm−1. 1H NMR (CDCl3, 200 MHz)
δ 11.79 (bs, 1H, NH), 8.33 (d, J = 1.6 Hz, 1H), 7.76 (m, 1H), 7.56–
7.49 (m, 2H), 7.40–7.28 (m, 2H), 7.14–7.06 (m, 1H), 2.26 (s, 3H).
13C NMR (CDCl3, 50 MHz) δ 196.0, 149.1, 146.6, 137.7, 128.8,
123.7, 122.0, 120.3, 120.2, 82.4, 16.4. HRMS (ESI): calculated for
C13H12IN3O (M+H) + 354.00978, found 354.01007.

PJ51, N-(3-bromo-5-methyl-2-pyridinyl)-N′-phenyl-urea
Flash chromatography (SiO2, 1 : 1 v/v petroleum ether–ether) afforded
the product as a white solid (m.p. 137°C) in 77% yield. IR: 3291,
2972, 2159, 2027, 1677, 1595, 1557, 1479 cm−1. 1H NMR
(CDCl3, 200 MHz) δ 11.58 (bs, 1H, NH), 7.95 (s, 1H), 7.63 (s, 1H),
7.47–7.43 (m, 2H), 7.34–7.17 (m, 2H), 7.04–6.97 (m, 1H), 2.19
(s, 3H). 13C NMR (CDCl3, 50 MHz) δ 224.5, 144.4, 142.3, 137.5,
128.7, 128.2, 123.6, 120.2, 120.1, 118.9, 106.2, 16.8. HRMS
(ESI): calculated for C13H12BrN3O (M +H)+ 306.02365, found
306.02353.

Chemicals

Working standards of furosemide, indapamide, sulfamethoxazole and
gliclazide were used. All reagents used were of an analytical grade.
Acetonitrile–HPLC gradient grade (J. T. Baker, The Netherlands)
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and water–HPLC grade were used to prepare a mobile phase. Ortho-
phosphoric acid (J. T. Baker, The Netherlands) and 0.1 M sodium-
hydroxide (Zorka Pharma, Sabac, Serbia) were used to adjust pH of
the mobile phase. The prepared mobile phases were filtered through a
Nylon membrane filter (0.45 µm Whatman, England).

Solutions

Stock solutions were prepared by dissolving each of the aminopyri-
dines, as well as furosemide, indapamide, sulfamethoxazole and gli-
clazide in acetonitrile, to the concentration of 1 mg mL−1.
Furthermore, the stock solutions were diluted up to the concentration
of 100 µg mL−1 in the adequate mobile phase to obtain solutions that
underwent the analysis.

Chromatographic conditions

The chromatographic system Waters Breeze consisted of a Waters
1525 Binary HPLC Pump, a Waters 2487 UV/VIS dual absorbance
detector and Breeze Software Windows XP for data collection. Sepa-
rations were performed under RP-HPLC mode on a ZORBAX
Extend-C18 column (150 mm× 4.6 mm, 5 µm particle size), Agilent,
USA. The samples were introduced through a Rheodyne injector valve
with a 20 µL sample loop. The flow rate was 1 mLmin−1 and the col-
umn temperature was 30°C. UV detection was performed at 254 nm.

The mobile phase consisted of acetonitrile and water, pH adjusted
with ortho-phosphoric acid or 0.1 M NaOH. The content of acetoni-
trile in the mobile phase varied from 40 to 70%, with the increment of
5%. Another factor varied was the pH of the mobile phase, which was
3.0, 7.0 and 10.0. In total, 21 mobile phases were prepared for the
analysis, according to the plan of experiments given in Supplementary
Table SI.

Results

After running all the experiments, the retention factors k and log k val-
ues were calculated. The plan of experiments and obtained results for
k and log k values are given in Supplementary Table SI. For the polar-
ity parameter model, the PN

m values also had to be calculated. Table I
shows obtained coefficients as well as correlation coefficients for both
models (linear solvation and polarity parameter) describing relation-
ship between retention factor and acetonitrile content. After investi-
gating theoretical models, QSRR study was performed. For that
purpose, first the descriptors that would be used in final models had

to be chosen, out of many that were calculated at the beginning.
The chosen descriptors and the corresponding MLR coefficients are
given in Table III. At the end, several models were created and com-
pared to find the one that has best performances. Table II shows com-
parison of SVR and the corresponding MLR model.

Discussion

Influence of pH and solvent composition on retention

factors of analyzed substances

For the description of chromatographic behavior, wide ranges of in-
vestigated factors were taken into consideration. As for the pH of
the mobile phase, the whole range that was acceptable considering

Table I. Comparison of Two Theoretical Models for the Influence of Organic Modifier on the Retention Behavior of the Substances

Substance log k = log kw – Sφ log k ¼ qþ pPN
m

log kw S R Q p R

PJ11 2.39 −0.04 0.9832 49.96 103.27 0.9971
PJ13 1.33 −0.03 0.9824 35.70 74.62 0.9968
PJ15 3.37 −0.05 0.9768 62.01 127.29 0.9971
PJ44 1.73 −0.03 0.9879 38.66 80.19 0.9977
PJ45 1.04 −0.02 0.9850 32.11 67.48 0.9960
PJ46 1.15 −0.02 0.9793 28.10 58.50 0.9967
PJ47 3.15 −0.04 0.9797 56.38 115.54 0.9970
PJ51 2.87 −0.04 0.9809 52.04 103.75 0.9971
Sulfamethoxazole 1.03 −0.03 0.9913 35.87 75.68 0.9918
Furosemide 1.69 −0.04 0.9860 47.31 99.06 0.9967
Gliclazide 2.37 −0.04 0.9797 49.15 101.61 0.9862
Indapamide 1.81 −0.03 0.9848 46.12 96.22 0.9968

Table II. Summary of the Final SVR Model Performance, with MLR

Model Performance for Comparison

Dataset SVR model
RBF kernel, C = 1,000, γ = 0.1

MLR model

Training set (n = 125)
R2 0.97 0.92
RMSE 0.1054 0.1591

Test set (n = 43)
R2 0.94 0.88
RMSE 0.1382 0.1841

External test set (n = 28)
R2 0.93 0.77
RMSE 0.2032 0.2950

Table III. Four Descriptors Included in the Final QSRR Model, with

the Corresponding MLR Coefficients

Descriptor
symbol

Description MLR
coefficients

POM Percentage of organic modifier in the
mobile phase

−0.9724

logD Apparent octanol–water distribution
coefficient

1.1362

M-SZX/RZX ZX shadow/ZX rectangle (dominant
microspecies)

0.5469

m-RPCG Relative positive charge (second
microspecies)

0.3345
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the column in use (ZORBAX Extend-C18) was investigated. For the
acetonitrile content, it was important that the substances are retain-
able, but do not exhibit excessive retention times. After preliminary
investigations, acetonitrile content from 40 to 70% was chosen.

Knowing the theoretically described dependence of retention fac-
tors of ionizable substances of pH of the mobile phase, it was the
first factor to be investigated. Even though the investigated substances
were all ionizable, most of them (PJ13, PJ15, PJ45, PJ47 and PJ51)
had the same retention behavior under these chromatographic condi-
tions (Figure 2A, the example of PJ51). On the other hand, PJ11, PJ44
and PJ46 did show different behavior under different pH values,
which can be seen in Figure 2B (the example of PJ44). At pH 3.0,
log k values of PJ44 and PJ46 are significantly different than those
at pH 7.0 and 10.0. As for PJ11, their log k values differ at pH
10.0. This is in compliance with the characteristics of the analytes,
namely their pKa values. It can be explained with the fact that PJ11
exists mainly as non-ionized molecule at pH 3.0 and pH 7.0, but as
anion at pH 10.0, which causes different retention. Unlike PJ11,
PJ44 and PJ46 exist as neutral molecules at pH 7.0 and 10.0, but as
cations at pH 3.0. This finding can be very helpful during the method
development process.

For describing the relationship between log k and organic solvent
concentration, two models were used (described in detail in ‘Method-
ology’). The linearity of the dependence was proved, with the multiple
R values above 0.97 for all 12 substances and both models (Table I).
As for the comparison between these two models, higher linearity was
discovered in a relationship between polarity parameter and retention
factors, then between acetonitrile concentration and retention factor
(for example on the substance PJ11, R for acetonitrile concentration
and polarity parameter were 0.9832 and 0.9971, respectively). By

obtaining better correlation coefficients for the polarity parameter
model, the non-linear relationship was once again proved in this
article. Figure 2 shows dependence of log k of all 12 substances, of
acetonitrile content, φ (C) and polarity parameter, PN

m (D).
After these relations have been discussed, it is possible to make

some conclusions which should help the future RP-HPLC analysis
of these newly synthesized aminopyridines or some novel entities
with similar structural characteristics. For example, after having calcu-
lated p and q values, the polarity parameter model can be used for pre-
dictions of retention behavior of structurally similar substances on the
same chromatographic column.

In the next part of the study, the QSRR model was created. The
model was created not only to describe retention behavior of amino-
pyridines as a function of their molecular characteristics, but also as a
tool for prediction of retention behavior of similar structures as inves-
tigated substances.

QSRR modeling

The iterative MLR procedure suggested several descriptor combina-
tions which have good predictive capabilities. Considering all the top-
performing MLR models, 16 of 30 contained descriptors calculated
for the second most dominant microspecies, suggesting that account-
ing for properties of all microspecies at a given pH has an important
effect on the predictive capabilities of the resultingmodels. By compar-
ing adjusted R2 values and the frequency of occurrence of individual
descriptors in the best performing MLR models, a 4-parameter model
was chosen for further study. Although several 5-parameter models
had slightly higher adjusted R2 values (0.02–0.03 better), this study
was confined to a simpler model, given that the number of structures

Figure 2. Plots of logarithm of retention factors of (A) PJ51 and (B) PJ44 as a function of φ at different pH values; logarithm k values for all eight PJ substances as a

function of (C) acetonitrile content, φ, and (D) polarity parameter, PN
m. This figure is available in black and white in print and in color at JCS online.
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used inmodel training was relatively small. The descriptors involved in
the final models are summarized in Table III, along with the coeffi-
cients from the MLR model. These four descriptors account for
both the properties of the mobile phase and those of the solutes
under study (eight aminopyridines synthesized at the Faculty of Phar-
macy). The significance of the percentage of organic modifier in the
mobile phase and of the apparent distribution coefficient is readily ap-
preciable in the context of retention mechanisms in RP-HPLC. De-
scriptor M-SZX/RZX is a geometrical descriptor calculated as the
surface ratio of a molecule’s projection on the ZX plane and the small-
est rectangle surrounding the projection. This descriptor accounts for
the shape of the solutes, with its values increasing with increasing
sphericity of a molecule. Consistent with the sign of the MLR coeffi-
cient for M-SZX/RZX, this suggests that irregularly shaped, asymmet-
rical molecules are less efficiently retained in the stationary phase,
whereas molecules with a more spherical surface projection tend to
be retained longer (e.g., PJ11 anion, SZX/RZX = 0.6426 vs. PJ47 neu-
tral form, SZX/RZX = 0.8146). Finally,m-RPCG descriptor is comput-
ed as the ratio of the maximal partially positive charge in the molecule
and the sum of all partially positive atomic charges. Structures with a
well-distributed positive charge would have smaller values of this de-
scriptor and consequently, larger partially positive surface areas (e.g.,
PJ45 cation, RPCG = 0.4919 vs. PJ47 cation, RPCG = 0.1285). It is,
therefore, likely that this descriptor accounts for the lower retention of
solutes which have a resonantly spread charge which explains the pos-
itive sign of the corresponding MLR coefficient. The predictive capa-
bilities of the final SVR model are summarized in Table II and are
illustrated in Figure 3.

As can be seen, the model performs significantly better than the
corresponding MLR model and has sustained predictive capabilities
in the test set. Its performance was also validated against four structur-
ally related drugs, specifically sulfamethoxazole, furosemide, glicla-
zide and indapamide. Of the 42 measurements that were available
for these compounds, 28 were within the defined applicability domain
of the 4-parameter SVR model. Within its applicability domain, the
SVR model performs well. A larger and more diverse dataset would
allow for further exploration of the possibility to establish a globally
applicable QSRRmodel for retention of ionizable solutes with varying
pH and mobile phase content.

Conclusion

The substances investigated in this article were eight aminopyridines,
namely PJ11, PJ13, PJ15, PJ44, PJ45, PJ46, PJ47 and PJ51. They are
potentially active pharmaceutical compounds, and their retention

behavior in the most commonly used RP-HPLC system was thorough-
ly investigated and described. The content of the organic modifier and
pH of the mobile phase were the investigated factors. Being all ioniz-
able substances, the pH of the mobile phase was expected to have big
influence on the retention, but the obtained results showed relatively
uniform behavior under these chromatographic conditions, except
for three substances which was explained using their pKa values. De-
pendence of the retention factor of polarity parameter was proven to
be linear. The polarity parameter model better fitted the behavior ac-
cording to obtained correlation coefficient (multiple R) values. After
general conclusions about retention behavior of the substances were
established, a simple SVR-QSRR model was created, using computa-
tional molecular descriptors. Its predictive abilities were tested using
four external substances which were all within the applicability do-
main, and the model performed well. Therefore, this article not only
addressed theoretical groundings of retention behavior in RP-HPLC,
but also created the QSRR model which can be used for accurate pre-
diction of retention behavior of the substances that are within the ap-
plicability domain.

Supplementary material

Supplementary materials are available at Journal of Chromatographic
Science (http://chromsci.oxfordjournals.org).
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