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Abstract 

Stimuli-sensitive hydrogels are used as carriers for modified release of pharmaceuticals. 

The synthesis of thermo-sensitive hydrogels poly(N-isopropylacrylamide), p(NIPAM), 

and poly(N-isopropylacrylamide-co-2-hydroxypropyl methacrylate), p(NIPAM-HPMet), 

is performed. The synthesized hydrogels are characterized using FTIR and SEM methods 

and swelling properties and applied for modified release of ellagic acid (EA). This work 

presents selective extraction of EA, as natural antioxidant, from the aerial parts of 

Alchemilla vulgaris L. EA and A. vulgaris extract are incorporated into p(NIPAM) and 

p(NIPAM-HPMet) hydrogels and characterized by FTIR method. The EA content in the 

extract by the UHP\LC-DAD-HESI-MS/MS method is determined (0.64 mgcm
-3

). The 

total flavonoids content in the A. vulgaris extract was determined by the 

spectrophotometric method. Antioxidant activity of the A. vulgaris extract and EA is 

examined using the DPPH assay. The p(NIPAM-HPMet) shows a better incorporation 

and release at 37°C of EA standard and A. vulgaris extract (98.87 and 96.45% 

respectively), compared with a p(NIPAM). 

https://crossmark.crossref.org/dialog/?doi=10.1080/00914037.2017.1354202&domain=pdf&date_stamp=2017-07-20
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1. INTRODUCTION 

The hydrogels belong to polymeric materials, which have the ability to absorb large 

quantities of water or physiological fluids, retaining their structure. Hydrogels properties 

(swelling degree, mechanical properties, etc.) can be controlled by selecting the 

monomers and synthesis conditions. Thus, the resulting hydrogels respond to a various 

external stimuli (temperature and pH value) by changing any of specified characteristics 

(e.g. degree of swelling) and that was the reason why they got the name "intelligent gels". 
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Hydrogels resemble the living tissues due to the high water content, elastic and soft 

consistency [1]. Because of the favorable properties, they have variety of applications in 

medicine and pharmacy, mainly thermosensitive poly(N-isopropylacrylamide), 

p(NIPAM). The hydrogels capacity to absorb and release different sizes of molecules was 

applied in drug carrier systems for modified release of pharmaceutically active 

substances [2,3]. Most frequently, the component in the hydrogel synthesis is 

thermosensitive N-isopropylacrylamide (NIPAM) which copolymerizes with a specific 

amount of an anionic monomer (acrylic, methacrylic, maleic or itaconic acid) in order to 

obtain hydrogels sensitive to changes in temperature and pH [4–6]. The lower critical 

solution temperature (LCST) of copolymers containing NIPAM with acid component is 

shifted to the higher temperatures, as compared to the LCST of p(NIPAM). By designing 

the copolymer composition, LCST can be moved closely to the physiological body 

temperature, which was especially important for modified release of drugs [7–9].
 
These 

results were a part of wider investigation of hydrogels [10] as drug carriers [11,12]. 

 

Ellagic acid, (EA) 4,4′,5,5′,6,6′-hexahydroxydiphenic acid-2,6,2′,6′-dilactone, C14H6O8, 

represents a dilactone of hexahydroxydiphenic acid, with molar mass of 302.197 g mol
-1

. 

EA was discovered by the chemist Braconnot in 1831 [13]. This is a natural phenolic 

antioxidant that can be found in many plant species. EA shows antioxidant properties in 

vitro and in vivo [14–16]. Antiproliferative properties of EA can be attributed to 

possibility to directly inhibit the binding of certain carcinogens to DNA [17,18]. EA has a 

chemopreventive effect in cellular models by reducing oxidative stress. It shows 

antimutagenic and antiinflammatory activity [19,20]. EA is effective in the treatment of 
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various tumors, eg. tumors of pancreas, lung, or colon [21–23].
 
Soh and colleague found 

the effectivness of EA against malaria parasites and in vitro potentiation of the effect of 

antimalarial drugs [24]. 

 

In this study, Alchemilla vulgaris L. was selected as a plant material for the isolation of 

EA, as important anticancer agens. This is a herbaceous plant of the rose family 

(Rosaceae). Traditionally, it is used to treat ulcers, eczema and skin rashes, because of 

established anti-inflammatory properties. It helps in solving some symptoms, caused by 

menopausal and adolescent conditions. As the drug, above-ground part of the plant in 

bloom was used (Alchemillae herba), less frequently leaves, which have a low bitter and 

astringent taste. It was known that the plant contains: tannins, gallic acid, ellagic acid, 

bitter glycosides, saponins, flavonoids (quercetin and luteolin and their glycosides), and a 

bit essential oil [25–28].
 
Also, it contains polyphenols which contributed to the main 

pharmacological activity of the plant [26]. Its active ingredients acts on the blood vessels, 

inhibiting degradation of the intracellular matrix by proteases [27,29] and they are 

important anti-oxidants [30]. Flavonoids are the subject of numerous studies especially 

for biological and pharmacological effects, especially in malignant diseases [31].  

 

The aim of this study was extraction of the A. vulgaris aerial parts and their 

characterisation. Also, the total flavonoids content in A. vulgaris extract, as well as the 

antioxidant activities of the extract and EA were defined. Homopolymer p(NIPAM) and 

copolymer poly(N-isopropylacrylamide-co-2-hydroxypropyl methacrylate), p(NIPAM-

HPMet), were synthesized and characterized. Because EA is highly insoluble molecule, 
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obtained hydrogels were applied as carriers for their modified release in purpose of better 

solubility and distribution. 
 

 

2. EXPERIMENTAL 

2.1 Reagents 

N-isopropylacrylamide, 2,2’-azobis(2-methylpropionitrile) and 2-

hydroxypropilmethacrylate were purchased from Acros Organics (USA). Ethyleneglycole 

dimethacrylate was purchased from Fluka (Switzerland). Cyclohexane, 99.5% aluminium 

chloride, potassium acetate, 2,2-diphenyl-1-picrylhydrazyl, ellagic acid, 95%, methanol 

70% and 99.9% HPLC grade were purchased from Chromasolv (Germany). Potassium 

bromide, KBr, 99% (IR grade), dichloromethane and rutin 95%, was purchased from 

Merck (Germany). Aceton, AC, 99.5%, ethanol, 96% and BHT were purchased from 

Centrohem (Serbia). Acetonitrile and water (LC-MS and HPLC grade) were supplied 

from Fisher Chemical (Germany). Formic acid was purchased from Carlo Erba (France). 

 

2.2 Plant Material 

Alchemilla vulgaris L. was purchased from Adonis (Serbia), stored on the dried and cold 

place without direct exposed to the sunlight, then, grinded to small sizes in a laboratory 

mill. 

 

2.3 Synthesis Of Hydrogels 

By the radical polymerization of monomers NIPAM and 20 mol% of HPMet with 0.5 

mol% of crosslinker EGDM, a copolymer p(NIPAM-HPMet) was synthesized. AC was 
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used as a suitable solvent. The p(NIPAM) was synthesized by radical polymerization of 

NIPAM with 0.5 and 2 mol% EGDM. Both reactions were initiated by 2,2’-azobis(2-

methylpropionitrile). The polymerization was thermally initiated according to following 

regime: 30 min at 70°C, 120 min at 80°C and 30 min at 85°C. After cooling, obtained 

p(NIPAM) and p(NIPAM-HPMet) hydrogels were separated from the glass tubes and cut 

into small discs. The hydrogels (0.5 g) were treated with methanol (30 cm
3
) for 72 h in 

order to remove all compounds which did not react. After that, hydrogels were immersed 

in a solutions of methanol/distilled water 75/25, 50/50, 25/75 and 0/100% (v/v), per 24 h, 

in order to gradual elution of methanol from hydrogels and then dried for 2 h at 40°C. In 

order to protect the hydrogel structures, the samples were dried in a desiccator at 25°C to 

a constant mass. 

 

2.4 Extraction Of EA From A. Vulgaris  

The aerial parts of commercial sample of A. vulgaris (245 g) were extracted with 

cyclohexane two times at the solid to liquid ratio of 1:5 (m/v) and room temperature for 

48 h. After the extraction, the liquid was separated from a solid matrix by filtration with 

Büchner funnel. The same extraction procedure was repeated using dichloromethane and 

70% (v/v) methanol. The obtained extracts were evaporated under vacuum by rotary 

evaporator. After the evaporation of solvents, the yield of methanol extract was 24.93 g. 

The extract were dried and stored in a desiccator before analysis. 

 

2.5 Characterization 

2.5.1 Infrared Spectroscopy With Fourier Transformation (FTIR) 
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The FTIR spectra of reactants, synthesized xerogels p(NIPAM) and p(NIPAM-HPMet), 

EA standard, A. vulgaris extract with EA content, xerogels of p(NIPAM) and p(NIPAM-

HPMet) with incorporated EA and A. vulgaris extract, were recorded using the KBr 

method. The transparent tablets were prepared by compression of samples (0.7 mg) and 

KBr (150 mg) under a pressure of 200 MPa. Recordings were performed on FTIR 

spectrophotometer Bomem MB-100 (Hartmann & Braun, Canada) in the wavenumber 

range of 4000-400 cm
-1

. The interpretation of FTIR spectrа was carried out using the 

software Win-Bomem Easy. 

 

2.5.2 Scanning Electron Microscopy (SEM) 

Scanning electron microscopy (SEM) was used to examine the morphology of the 

synthesized xerogels, pure and with loaded EA. Before cutting, samples were submerged 

in liquid nitrogen in order to avoid deformation and breakage. The conductive layers, 

gold/palladium alloy (15/85) were coated on surface samples by using a JEOL JFC-

1100E Ion Sputter to prevent the electronic charge formation. Scans were performed on 

the JEOL Scanning Microscope JSM-5300 (JEOL Co., Japan). 

 

2.5.3 Equilibrium Hydrogel Swelling  

The xerogel samples were immersed in a solution with a pH 7.40 at 37°C. Swelling 

process was monitored gravimetrically by measuring the mass of samples at specific time 

intervals. The swelling degree, αt was calculated according to equation (1): 

0

0

m

mmt
t

      (1) 

wherein: m0 xerogels mass, mt mass of the swollen hydrogel at time interval t.  
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2.5.4 Thermosensitivity Hydrogels Testing  

The process of the hydrogel contraction and the phase transition was accompanied by the 

loss of water through the hydrogel depending on the time at temperatures 10-50°C. 

 

2.5.5 UHPLC-DAD-HESI-MS/MS Analysis 

UHPLC-DAD-HESI-MS/MS analysis was performed by Thermo Scientific liquid 

chromatography system (UHPLC) composed of a quaternary pump with a degasser, a 

thermostated column compartment, an autosampler, and a diode array detector connected 

to LCQ Fleet Ion Trap Mass Spectrometer (Thermo Fisher Scientific, USA) equipped 

with heated electrospray illipore (HESI). Xcalibur (version 2.2 SP1.48) and LCQ Fleet 

(version 2.7.0.1103 SP1) software were used for instrument control, data acquisition and 

analysis. Separations were performed on Hypersil gold C18 column (50 2.1 mm, 1.9 

µm) obtained from Thermo Fisher Scientific. The mobile phase consisted of (A) 

water+0.1% formic acid and (B) acetonitrile. A linear gradient program at flow rate of 

0.350 cm
3
 min

-1
 was used 0–2 min from 10 to 20% (B), 2–4.5 min from 20 to 90% (B), 

4.5–4.8 min 90% (B), 4.8–4.9 min from 90 to 10% (B), 4.9–12.0 min 10% (B). The 

injection volume was 5 µL and temperature column of 25ºC. Spectral data from all peaks 

were recorded at 256 and 367 nm. The mass spectrometer was operated in negative mode. 

HESI-source parameters were as follows: source voltage 4.5 kV, capillary voltage -31.00 

V, tube lens voltage -110.40 V, capillary temperature 300ºC, sheath and auxiliary gas 

flow (N2) 32 and 12 (arbitrary units). MS spectra were acquired by full range acquisition 

covering 150–700 m/z. For fragmentation study, a data dependant scan was performed by 
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deploying the collision-induced dissociation (CID). The normalized collision energy of 

the collision-induced dissociation (CID) cell was set at 25 eV. 

 

Preparation Of Samples For MS Analysis 

Basic solutions of EA standard and A. vulgaris extract were made by dissolving 10 mg of 

sample in 10 cm
3
 of methanol. Subsequently, the basic solutions (1 mgcm

-3
) were diluted 

to a concentration of 5 gcm
-3

 and injected to a MS spectrometer. 

 

2.5.6 DPPH Assay 

The ability of the compound to scavenge free DPPH radicals was determined by so-

called, DPPH assay [32–34]. The series of different concentrations were prepared from 

the stock solution of EA standard (0.1 mgcm
-3

), A. vulgaris extract (1.0 mgcm
-3

) and 

BHT (0.5 mgcm
-3

). 1 cm
3
 of the ethanolic solution of DPPH radical (3·10

-4
 moldm

-3
) was 

added in all samples of different concentrations of EA and extract (2.5 cm
3
). The 

absorbance of the ethanolic solution of DPPH radical obtained by dilution of DPPH 

radical stock solution (1 cm
3
) with addition of 2.5 cm

3
 еthаnоl was measured under the 

same conditions. Samples were incubated in dark at room temperature for 30 min. The 

absorbance of samples were measured compared with 96% (v/v) ethanol at 517 nm and 

room temperature using Varian Cary-100 Conc. Instrument. The quartz cuvettes (1×1 

cm) were used for scanning. The inhibition of DPPH radicals was calculated using the 

equation (2): 

C

B

A

AAs
radicalsDPPHofinhibition 1100(%)  (2) 
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where АS is absorbance of samples (samples еthanolic solution with addition of DPPH 

radicals), АB is absorbance of blank (samples еthanolic solution without DPPH radicals), 

АC is absorbance of the control solution (the diluted еthanоlic solution of DPPH rаdicals, 

3·10
-4

 moldm
-3

) [35,36]. 

 

2.5.7 Determination Of Total Flavonoids  

The spectrophotometric method with aluminum chloride was used for determination of 

total flavonoid content in A. vulgaris extract. This method presents the modified 

procedure of Woisky and Salatino [37,38]. The total flavonoids content was expressed as 

rutin equivalents. The stock solution of rutin was prepared by dilution of rutin standard 

(10 mg) in 96% (v/v) ethanol. The series of different rutin concentrations was prepared 

from the stock solution. 1.5 cm
3
 of 96% (v/v) еthаnоl, 0.1 cm

3
 of aluminium chloride 

(10%) and 0.1 cm
3
 of potassium acetate (1 moldm

-3
) and 2.8 cm

3
 of distilled water were 

added into each of the solutions (0.5 cm
3
). After incubation at room temperature of 30 

min, the absorbance was measured at 415 nm. Instead the aluminium chloride, the 

equivalent amount of distilled water was added in the blank solution. 

 

The series of different A. vulgaris extract concentrations were prepared by dilution of the 

stock solution of 1 mgcm
-3

. In order to form aluminum chloride complex with flavonoids, 

per 0.5 cm
3
 of the prepared A. vulgaris extract solutions was taken and then samples were 

treated by the same procedure as rutin during the calibration curve construction. 

 

2.5.8 Incorporation Of EA And A. Vulgaris Extract In The Hydrogels 
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Solutions of the EA standard and the A. vulgaris extract, 1 mg cm
-3

 in the methanol 

(99.9%), were prepared for their incorporation in synthesized p(NIPAM) and p(NIPAM-

HPMet). Then, xerogel samples of p(NIPAM) and p(NIPAM-HPMet) were weighed (per 

0.050 g) and perfused by 1.5 cm
3
 of prepared solutions and left to swell for 48 h. 

Available quantity of EA for incorporation into the hydrogel was 30 mggxerogel
-1

. After 

reaching the equilibrium swelling state of hydrogels, the excess solutions were separated 

by decanting. Hydrogels were washed with distilled water to remove the excess amount 

of EA or A. vulgaris extract from the surface. In order to calculate the efficiency of EA 

incorporation, the mass of all samples were weighted. The EA release from hydrogels 

under conditions which simulating the intestinal fluid was examined in vitro. 

 

2.5.9 The EA Release From The Hydrogels 

Standard solutions of EA in methanol in the range 0.001-0.1 mg cm
-3 

were prepared. 

Based on the dependency of peaks area and the known EA concentrations, a calibration 

curve was constructed. The released EA amounts were calculated using the equation for 

the calibration curve. Samples of swollen hydrogel with incorporated EA were topped 

with 5 cm
3
 of aqueous solution of pH=7.40 and then thermostated at 37°C with vigorous 

magnetic stirring for 24 h. The released amount of EA was monitored using UHPLC-

DAD-HESI-MS/MS method in time intervals (0, 0.5, 1, 1.5, 2, 4 and 24 h). The injected 

volume of samples was 20 μl. The solutions were diluted with acetonitrile up to 2 cm
3
 

and then filtered through a 0.45 μm millipore filter (Econofilters, Agilent Technologies, 

Germany) before injecting the samples into the system.  
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3. RESULTS AND DISCUSSION 

In this study, the p(NIPAM-HPMet) hydrogel with 0.5 mol% of EGDM was chosen from 

a series of synthetized hydrogels for incorporation of EA and A. vulgaris extract due to 

the best swelling properties at 37°C and pH 7.40 [11]. The p(NIPAM) hydrogel with 0.5 

mol% of EGDM was omitted from further investigation because of liquid consistency. 

 

3.1 FTIR Analysis 

In the FTIR spectrum of the NIPAM (Figure 1), a high intensity band at 3284 cm
-1

 

originating from the (NH) was present. The band at 3072 cm
-1

 corresponding to 

as(=CH) of the vinyl groups. Amide I band appears at 1658 cm
-1

, indicating the 

secondary amide was associated. Amide II band originates from δ(NH) that is coupled 

with (CN) vibrations and gives the band at 1556 cm
-1

, which was derived from trans-

form of acyclic secondary amides. Another indication that a trans-form of the secondary 

acyclic amide gives band at 1306 cm
-1

 was attributable to amide III band, of (CN) 

coupled to δ(NH) from the amide group, appeared at 1300 cm
-1

. A terminal double-bond, 

(C=C), gives the band at 1622 cm
-1

. The confirmations of monosubstituted double-

bonds existence were two high intensity bands of (CH) at 992 and 964 cm
-1

, which is in 

accordance with literature [39]. The presence of (C=C) and (CH) bands in NIPAM 

spectrum are important for polymerization process monitoring. 

 

In the FTIR spectrum of the synthesized p(NIPAM) the bands from (C=C) at 1622 

cm
-1

 and (=CH) at 992 and 964 cm
-1

 are not present (Figure 1). This indicates that the 

polymerization of NIPAM was made through a double-bond of vinyl groups forming a 
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main chain and the residues from NIPAM monomers present the homopolymer side 

chains. In regard to the amide groups present in p(NIPAM) side chains, the formation of 

hydrogen bonds between the C=O and NH groups of the adjacent side chain is possible. 

The hydrogen bonds formation between the above mentioned side-chain of p(NIPAM) 

were indicated by the (NH) and (C=O) bands shifting in the p(NIPAM) spectrum, in 

comparison to the same bands in the NIPAM monomer spectrum. In p(NIPAM) 

spectrum, (NH) band was shifted by 5 unit to the higher wavenumbers and appears at 

3289 cm
-1

, amide I band, (C=O), which occurs at 1648 cm
-1

, was shifted by 10 units to 

lower wavenumbers, compared to same bands in NIPAM spectrum, which is consistant 

with literature [40]. 

 

FTIR spectrum of synthesized p(NIPAM-HPMet) (Figure 1) also, has no absorption 

band of (C=C) in the area 1620-1640 cm
-1

, confirming that polymerization was achieved 

via double-bond from vinyl groups of monomers. A broad band with two clearly 

separated saddle, at 3319 cm
-1

 and 3438 cm
-1

, originate from (NH) of NIPAM and 

(OH) from 2-hydroxypropilmethacrylate (HPMet). There has been a shift of (NH) 

band for 16 units to the higher wavenumbers, compared to their position in the NIPAM 

spectrum. Also, δ(OH) band at 1460 cm
-1

 was shifted for 5 units to higher wavenumbers 

compared to the FTIR spectrum of HPMet. This shift and the presence of a wide band in 

the area around 3400 cm
-1

 indicate the formation of hydrogen bonds between the side 

chains of the copolymer via OH and NH groups, which was consistent with literature data 

[41]. The amide I band (C=O) was present at 1650 cm
-1 

in the copolymer spectrum. Its 

shifting to 8 units to lower wavenumbers in the copolymer, compared to the same band in 
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NIPAM spectrum, indicates that C=O groups participated in formation of hydrogen 

bonds. In p(NIPAM-HPMet) spectrum there was (C=O) band of the ester group at 1728 

cm
-1

, a band of δ(NH) at 1544 cm
-1

, as well as a band of s(CO) at 1173 cm
-1

. 

 

In the EA standard FTIR spectrum (Figure 1) a sharp medium intensity band at 3557 cm
-1

 

was attributed to the valence vibrations of phenolic hydroxyl groups, (Ar-OH), which 

was in accordance with literature [42]. Also, bands of δ(OH) and γ(OH) were present in 

the EA spectrum at 1448 and 923 cm
-1

, respectively. The complex absorption band in the 

area 3500-2750 cm
-1 

with peaks at 2929, 2813, 2326 cm
-1

 was attributable to (CH) from 

an aromatic part of the structure [43]. Bands at 3140 cm
-1

 and 3093 cm
-1

 could be 

attributed to the valence vibration of intramolecular hydrogen bond in the EA molecule 

[44]. The band at 1701 cm
-1

 was attributed to s(C=O) [45,46]
 
and bands at 1621, 1583 

and 1509 cm
-1

 originate from (C=C)Ar. Bands at 1195 and 1057 cm
-1

 derived from 

(CO) from the ester part of structure dilactone [47]. The band at 760 cm
-1

 was the 

consequence of γ(Ar-C-H). 

 

FTIR spectrum of A. vulgaris extract (Figure 1) was different from the EA standard FTIR 

spectrum, as expected, because in the extract there are some other compounds, especially 

from the phenolics, besides the EA. In FTIR spectrum of the extract, the bands occurring 

at 3431, 1448 and 919 cm
-1

 of (Ar-OH), δ(OH) and γ(OH), respectively, confirm EA 

presence in the extract. Confirmation of aromatic parts in the structure were bands at 

2929 cm
-1

 of (CH), at 1355 and 1230 cm
-1

 of the δ(Ar-CH) and the wider, complex, 

weaker intensity γ(Ar-CH) band at 751 cm
-1

. The band at 1728 cm
-1

 was attributed to 
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s(C=O) from the keto group of the lactone structure, which were present as a part of EA 

structure in the extract, whereas (CO) in this part of the structure giving the bands at 

1193 and 1048 cm
-1

. Also, there are (C=C) bands from the aromatic ring were present in 

the extract spectrum at 1618 and 1511 cm
-1

 and can be attributed to the EA.  

 

3.1.1 FTIR Analysis Of The P(NIPAM) With Incorporated The EA And The A. 

Vulgaris Extract 

After incorporation of the EA, or the A. vulgaris extract in the p(NIPAM), interaction by 

the type of the hydrogen bond between the phenolic –OH groups of EA with the oxygen 

in the C=O and CO groups of p(NIPAM) side chains are expected. Also, the C=O groups 

of EA can form hydrogen bonds with the NH group in the side chains of p(NIPAM). The 

FTIR spectrum of the synthesized p(NIPAM) with incorporated EA standard, or A. 

vulgaris extract (Figure 1) had the band δ(OH) at 1461 cm
-1

 which was shifted for 10 

units to the higher wavenumbers in comparison to the spectrum of EA and extracts. The 

band of (NH) was shifted for 14 and 24 units toward higher wavenumbers (3303 and 

3313 cm
-1

) in the spectrum of p(NIPAM) with incorporated EA, or extract, respectively. 

FTIR spectrum of p(NIPAM) with EA has a shift of δ(NH) for 12 units toward lower 

wavenumbers (1546 cm
-1

) in compared with the FTIR spectrum of p(NIPAM). The 

aforementioned facts indicates that the shifts of phenolic OH groups from EA, or extract, 

as well as NH groups from homopolymer side chains were mostly included in the 

hydrogen bonds formation. 
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3.1.2 FTIR Analysis Of The P(NIPAM-Hpmet) With Loaded EA And The A. Vulgaris 

Extract 

The band of (OH) in the FTIR spectrum of a p(NIPAM-HPMet) with incorporated EA 

or extract (Figure 1) were shifted for 3 units toward lower wavenumbers and 7 units to 

higher wavenumbers, respectively, compared to the copolymer spectrum. Also, there was 

a movement of the bands from δ(OH) to higher wavenumbers for 3 unit compared to the 

copolymer spectrum (1462 cm
-1

) and 14 units compared to the spectrum of A. vulgaris  

extract, or EA. The bands of (NH) in the spectrum of copolymer with EA and extract 

were appeared at 3301 and 3395 cm
-1

, respectively, and they were shifted to 15 and 21 

units toward lower wavenumbers, compared to their position in the copolymer. Also, 

band of δ(NH) in FTIR spectrum of copolymer with EA, or extract, at 1551 cm
-1

, were 

shifted for 3 units toward lower wavenumbers, compared to their position in the 

p(NIPAM-HPMet) spectrum. The bands of (C=O) in the p(NIPAM-HPMet) with EA, or 

A. vulgaris extract, were occured at 1718 cm
-1

 and 1716 cm
-1

, respectively. They were 

shifted for 9 units to the lower wavenumbers compared to their position in the p(NIPAM-

HPMet) spectrum. The above analysis of the FTIR spectra indicated that, in a p(NIPAM-

HPMet) with EA, i.e. A. vulgaris extract, the hydrogen bonding interactions occurred 

over the respective groups. 

 

3.2 SEM Analysis 

The morphological appearance of the p(NIPAM) and the p(NIPAM-HPMet) xerogels 

were amorphous-crystalline (Figure 2a and 2b, respectively). Comparing the surface 

structure of the p(NIPAM-HPMet) with p(NIPAM), does not show significant differences 
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in morphology, especially taking into consideration the lack of uniformity of shape and 

pore size. Within the hydrogels structure, free ends of molecule parts with bulky side 

groups and pores built an amorphous area. The surface morphology of p(NIPAM) and 

p(NIPAM-HPMet) were changed after loading EA into the hydrogels (Figure 2c and 2d, 

respectively). 

 

3.3 Swelling Properties Of Hydrogels 

3.3.1 Equilibrium Hydrogel Swelling 

Equilibrium swelling of p(NIPAM) and p(NIPAM-HPMet) hydrogels at 37°C and pH 

7.40, which simulate intestinal condition, was monitored for 24 h and obtained results are 

shown in Figure 3. 

 

Synthesized p(NIPAM-HPMet) hydrogel reached a higher swelling degree than 

p(NIPAM) at 37°C. The swelling degree was intensively increased from the starting 

moment to the first 4 h. It was observed that p(NIPAM-HPMet) reached a swelling 

degree at 6.76 (1 g of a sample can absorb a 6.76 g of water). The p(NIPAM) achived a 

lower swelling degree than the p(NIPAM-HPMet) and 1 g of a sample absorbs only 2.42 

g of water. The water transport into p(NIPAM) and p(NIPAM-HPMet) hydrogels was 

analyzed based on the sorption kinetics nature of the initial swelling data fitted to the 

exponential Ficks equation (3):  

n

e

t kt
M

M
 (3) 

where Mt/Me is the fractional sorption, Mt and Me are the amounts of the absorbed solvent 

at time t and equilibrium, respectively; k is a kinetic constant incorporating characteristic 
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of the network structure, n is the diffusion exponent [10]. Ficks equation is only valid for 

the first 60 % of the fractional uptake. The logarithmic form of Ficks equation was used 

to determine the values of n and k, from slope and intercept the plots of ln(Mt/Me) versus 

ln t for hydrogels. If n is less than 0.5 the swelling process is controlled by the Fickian 

diffusion mechanism, whereas n varies between 0.5 and 1 indicates an anomalous non-

Fickian type diffusion. The values of n greater than 1 are described as Case III. The 

diffusion coefficient D, were calculated from the equation (4):  

5,0

25,0

4

l

Dt
e

t

M

M

   (4) 

where l is the thickness of the dried sample. The values for equilibrium swelling degree 

and kintetic parameters for the linear dependence of ln(Mt/Me) on ln t of synthetised 

hydrogels at 37°C were presented in Table 1. 

 

The calculated values for diffusion exponents, n, increased from 0,831 to 0,884, so 

p(NIPAM-HPMet) and p(NIPAM) were classified as hydrogels with anomalous transport 

behavior i.e. non-Fickian diffusion, which is intermediate between Fickian and Case II 

(n=1). Their swelling process was controlled by the solvent diffusion and the relaxation 

of polymer chains.  

 

3.3.2 Thermosensitivity Of Synthesized Hydrogels  

Thermosensitivity of p(NIPAM) and p(NIPAM-HPMet) by swelling degree changing in 

dependence of temperature was studied and these results were shown in Figure 4. 

p(NIPAM-HPMet) has reached a greater value of swelling degree compared to the 
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p(NIPAM) in distilled water. This increase of hydrophilicity can be explained by the 

lower crosslinkers content and addition of HPMet into the p(NIPAM) network. An 

important “intelligent” reaction was observed in adjusting the hydrogels swelling degree 

with a temperature change. p(NIPAM) has a LCST at 32°C and show a less expressive 

phase transition, while p(NIPAM-HPMet) has a phase transition detected at 34°C and 

expressed better thermosensitivity [48,49] close to the human body temperature. This is 

important for the hydrogel application for modified release of drugs. 

 

3.4 Identification Of EA From A. Vulgaris Extract 

In order to identify the presence of EA in the methanol extract of UHPLC-DAD-HESI-

MS/MS method was used. Before analyzing of extract, EA standard was also subjected to 

LC-MS analyze. EA was identified at retention time of 7.01 min (Figure 5a) and mass 

peak at m/z 337.51. After MS fragmentation two ion fragments at m/z 301.22 and 257.01 

were present there (Figure 5b). 

 

Ion fragment at m/z 301.22 represent a molecular ion of EA and ion fragment at m/z 

257.01 is characteristic ion fragment of EA [50]. Based on this it can be concluded that 

identified compound at 7.01 min with mass at m/z 337.51 represent ellagic acid with two 

added molecules of water. After that, A. vulgaris extract was subjected to UHPLC-DAD-

HESI-MS/MS analysis and obtained result was present at Figure 5c. By looking at LC-

MS chromatogram of A. vulgaris extract it can be noted the presence of one peak at 7.07 

min. Based on retention time, mass peak at m/z 337.53 and ion fragments at m/z 301.21 

and 257.02, it can be concluded that this peak represent EA. In addition, results from LC-
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MS analysis were shown that extraction of A. vulgaris herb was a pretty selective for EA. 

In other words, results from LC-MS analysis showed that the content of other compounds 

were under the limit detection. This result gives a good basis for tracking of kinetics 

release of EA which was extracted from A. vulgaris. Determined EA content in A. 

vulgaris extract was 41 mg g
-1

 of dry extract, based on calibration curve. 

 

3.5 Dpph Assay 

The radical scavenging activity of EA standard and A. vulgaris extract were determined 

using DPPH assay and compared with the activity of synthetic antioxidant butylated 

hydroxytoluene (BHT). The functional dependency between the inhibition of 2,2-

diphenyl-1-picrylhydrazyl (DPPH) radicals and the concentrations of the investigated 

samples was presented in Figure 6. Increasing the EA concentration leads to an increase 

in inhibition of DPPH radicals. Maximum value of inhibition of DPPH radicals (86.85%) 

was achieved at the EA concentration of 6.25 μgcm
-3

. Unlike the EA standard which 

shows satisfactory antioxidant activity at the lower concentrations of solutions (0.2–100 

μgcm
-3

), the A. vulgaris extract and BHT shows the same activity at the higher 

concentrations (0.2–1000 μgcm
-3

) (Figure 6). 

 

The IC50 values of EA standard, A. vulgaris extract and BHT were found to be 0.987 

μgcm
-3

, 23.12 μgcm
-3

 and 36.6 μgcm
-3

,
 
respectively. After release of EA and A. vulgaris 

extract from p(NIPAM), the calculated IC50 values were 1.349 and 22.727 μgcm
-3

,
 

respectively. The calculated IC50 values for released EA and A. vulgaris extract from 

p(NIPAM-HPMet) were 1.968 and 23.218 μgcm
-3

,
 
respectively. The IC50 presents the 
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concentration of investigated solution that is necessary to reduce the initial concentration 

of DPPH radicals to 50%. Based on the obtained results of IC50, it can be concluded that 

the EA standard has better free DPPH radical scavenging activity in compared with the A. 

vulgaris extract and BHT. The analysis of IC50 values for released EA and A. vulgaris 

extract from p(NIPAM) and p(NIPAM-HPMet) indicated the satisfactory antioxidant 

properties. 

 

3.6 The Total Flavonoids Content 

In order to determine the total flavonoids content in A. vulgaris extract, the calibration 

curve for rutin was construct. Linear dependency of the calibration curve, equation (5), 

was obtained in the concentration range of 5-80 μgcm
-3

 (with a linear correlation 

coefficient of 0.9978). 

0652000180415 .c.A rutin  (5) 

The calculated coefficient of determination R
2
 = 0.9956 indicates a well-fitting model, 

i.e. that 99.56% of absorbance variation can be explained by the proposed model. This 

claim was confirmed based on obtained results for analysis of variance (ANOVA), where 

F-value model of 915.63 was greater than the critical F(0,05,1,4) value of 7.71. The 

determined total flavonoids content was found to be 0.303 g per g of dried extract. The 

high total flavonoids content was probably the reason of high antioxidant activity of the 

A. vulgaris extract. 

 

3.7 Incorporation Of EA In Hydrogels 
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The content of EA in hydrogels p(NIPAM) and p(NIPAM-HPMet) was determined by 

measuring the samples mass before and after swelling in solutions of EA standard and A. 

vulgaris extract. In addition, the content of ellagic acid in the residual solutions was also 

confirmed by UHPLC-DAD-HESI-MS/MS method. The results showed a good 

correlation between the two methods of content analysis. The efficiency of incorporation, 

η, of EA into hydrogel was calculated by equation (6): 

100(%)
u

g

L

L
 (6) 

where Lg is mass of incorporated EA into hydrogel (mggxerogel
-1

) and Lu is an initial mass 

of EA incorporated into the solution for hydrogel swelling (mggxerogel
-1

). The obtained 

values of incorporated EA into p(NIPAM) and p(NIPAM-HPMet) hydrogels were shown 

in the Table 2. 

 

Based on the obtained results (Table 2), the highest incorporation efficiency was 

achieved with the EA standard (76.072 %) in p(NIPAM-HPMet). Also, the higher 

incorporation efficiency of A. vulgaris extract in p(NIPAM-HPMet) was achieved. 

p(NIPAM) showed satisfactory incorporation efficiency of EA standard and A. vulgaris 

extract, but less than p(NIPAM-HPMet) and achieved amounts were 64.264% and 

62.478%, respectively. The results of this analysis show better incorporation of EA in the 

p(NIPAM-HPMet), which is in accordance with the swelling degree of the synthesized 

hydrogels. 

 

3.8 Testing EA Release From Synthesized Hydrogels 
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A standard solution of EA in methanol in the concentration range 0.001-0.1 mgcm
-3

 was 

prepared. The calibration curve corresponds to linear equation (7) with a linear 

correlation coefficient of 0,9840: 

cA 5490.3682091539.110  (7) 

where A denotes the peak area (mAUs), and c is the EA content (mgcm
-3

). The results of 

released EA from the p(NIPAM-HPMet) and p(NIPAM) hydrogels at 37°C were shown 

in the Figure 7. 

 

The p(NIPAM-HPMet) showed the highest released EA content (22,701 mggxerogel
-1

, 

which was 98.87% compared to the incorporated amount in hydrogel) at 37°C. The 

hydrogels were contracted in body temperature (which was above the LCST) due to 

phase transition, intermolecular hydrogen bonds between the hydrogel and EA were 

broken and EA was released from the hydrogel. Тhе kinetic parameters (n, k and D) of 

the EA release mechanism from hydrogels were assessed by fitting experimental release 

data to Fick’s equation (3) and presented in Table 2. Based on the calculated EA release 

kinetic parameters, p(NIPAM) was classified as hydrogel with non-Fickian diffusion, i.e. 

with anomalous transport behavior, while p(NIPAM-HPMet) was classified as Case III, 

i.e. time-independent kinetics at 37°C. 

 

4. CONCLUSION  

FTIR analysis of the spectra of the monomer NIPAM, the synthesized p(NIPAM) and 

p(NIPAM-HPMet) confirm the successful polymerization reaction through the double 

bonds from the vinyl groups of monomers and crosslinker. The synthesized xerogels 
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p(NIPAM) and p(NIPAM-HPMet) were amorphous-crystalline. Better thermal sensitivity 

was achived by p(NIPAM-HPMet), while p(NIPAM) shows less pronounced phase 

transition. The p(NIPAM-HPMet) reached a higher swelling degree compared to the 

p(NIPAM) and they were classified as hydrogels with non-Fickian diffusion at 37°C. 

 

The shifts of maximum absorption bands in FTIR spectra of p(NIPAM) and p(NIPAM-

HPMet) with included EA indicating the formation of intermolecular hydrogen bonds 

between the chains of the EA and hyddrogels. EA standard in a lower solution 

concentration (0.2 gcm
-3

-0.1 mgcm
-3

) exhibiting satisfactory antioxidant activity, while a 

solution of A. vulgaris extract showed the same at higher concentrations. The IC50 values 

of EA standard, A. vulgaris extract and BHT were 0.987 μgcm
-3

, 23.12 μgcm
-3 

and 36.6 

μgcm
-3

,
 
respectively. The total flavonoids content was 0.303 g in 1 g of dry extract. 

Copolymer p(NIPAM-HPMet) at 37°C showed better incorporation efficiency with the 

EA standard (76.07%) and releasing of EA standard and A. vulgaris extract (98.87 and 

96.45%, respectively, compared to the incorporated EA amount), than p(NIPAM). The 

EA release process at 37°C was controlled by the non-Fickian diffusion from p(NIPAM) 

and the time-independent kinetics from p(NIPAM-HPMet). 
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Table 1. Equilibrium swelling ratio, α, and kinetic parameters of water diffusion into 

p(NIPAM) and p(NIPAM-HPMet) hydrogels at 37°C 

Hydrogel sample  α (g g
-1

) n k 10
3
 (min

–1/2
) R

2
 D (cm

2
 min

-1
) 

p(NIPAM) 2.42 0,884 0,624 0,981 5.198 10
-5

 

p(NIPAM-HPMet) 6.76 0.831 1.065 0,975 1.209 10
-4
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Table 2. Mass of incorporated EA (Lg), the efficiency of incorporation (η) the amount 

and percent of released EA; the EA release kinetic parameters (n, k and D) at 37°C, from 

p(NIPAM) and p(NIPAM-HPMet) hydrogels  

Sample p(NIPAM) 

with EA 

p(NIPAM-

HPMet) with EA 

p(NIPAM) with 

extract 

p(NIPAM-HPMet) 

with extract 

Xerogel mass (g) 0.0495 0.0497 0.0482 0.0494 

Lg  (mg gxerogel
-1

) 19.474 22.959 19.443 21.399 

 η (%) 64.264 76.072 62.478 70.476 

Released EA (mg 

gxerogel
-1

)  

17.745 22.701 16.730 20.639 

Released EA (%) 91.119 98.873 86.046 96.448 

N 1,472 0,758 1,897 0,905 

k 10
3
 (min

–1/2
) 0,763 2,555 0,101 1,177 

R
2
 0,995 0,998 0,993 0,996 

D 10
6 

(cm
2
 min

-1
) 0,457 5,126 0,080 1,088 
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Figure 1. FTIR spectra of EA standard, A. vulgaris extract, p(NIPAM), p(NIPAM) with 

EA standard, p(NIPAM) with A. vulgaris extract, p(NIPAM-HPMet), p(NIPAM-HPMet) 

with EA standard and p(NIPAM-HPMet) with A. vulgaris extract 
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Figure 2. Scanning electron micrographs of xerogels: a) p(NIPAM), b) p(NIPAM-

HPMet), c) p(NIPAM) with loaded EA, d) p(NIPAM-HPMet) with loaded EA 
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Figure 3. Equilibrium swelling of p(NIPAM) and p(NIPAM-HPMet) depending on time 

at 37°C 
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Figure 4. Change of the swelling degree for p(NIPAM) and p(NIPAM-HPMet) hydrogels 

depending on the temperature 
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Figure 5. a) LC-MS chromatogram of EA standard (tR=7.1 min), b) MS fragmentation of 

EA, c) LC-MS chromatogram of A.vulgaris extract 
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Figure 6. Antioxidant activity of EA and A. vulgaris extract before and after release from 

the p(NIPAM) and p(NIPAM-HPMet) hydrogels 
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Figure 7. The released EA from p(NIPAM-HPMet) and p(NIPAM) hydrogels at 37°C 

 


