Propranolol diminished severity of rat EAE by enhancing immunoregulatory/protective properties of spinal cord microglia

Ivan Pilipović, Zorica Stojić-Vukanić, Ivana Prijić, Nebojša Jasnić, Gordana Leposavić

ARTICLE INFO

Keywords:
- Experimental autoimmune encephalomyelitis
- Noradrenaline
- β-Adrenoceptor
- Microglia
- CX3CR1
- Nrf2/HO-1 axis

ABSTRACT

Sympathetic dysfunction is suggested to contribute to development of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) alike. Considering important role of microglia in development/resolution of neuroinflammation, contribution of noradrenaline, the key sympathetic end-point mediator, in modulation of microglial phenotypic and functional properties in rat EAE model was examined. The study showed that noradrenaline acting in neurocrine and autocrine/paracrine way might influence microglia during EAE. Propranolol treatment over the effector phase moderated EAE course. This was associated with the increased proportion of microglia expressing CX3CR1, the key molecule in their immunomodulatory/neuroprotective action, and up-regulation of CX3CR1 downstream Nrf2 gene. This correlated with the increased heme oxygenase-1 (HO-1) expression and phagocytic capacity of microglia, and their phenotypic changes mirrored in increased proportion of CD163- and CD83-expressing cells. The enhanced HO-1 expression was linked with the decreased proportion of microglial cells expressing IL-1β and IL-23, and possibly IL-6, followed by increased proportion of IL-10-expressing microglia, and downregulated MCP-1/CCL2 expression. Consistently, spinal cord infiltration with blood-borne myeloid and CD4+ T cells, as well as CD4+ T-cell reactivation/proliferation and differentiation into highly pathogenic IL-17+ cells co-producing IFN-γ and GM-CSF were decreased in propranolol-treated rats compared with saline-injected controls. The in vitro investigations of the effects of noradrenaline on microglia showed that noradrenaline through β-adrenoceptor may influence Nrf2 expression also via CX3CR1-independent route. The study suggests β-adrenoceptor–mediated neuroinflammation-promoting role of noradrenaline in EAE via modulation of microglial Nrf2 expression, and thereby forms the basis for further translational pharmacological research to improve multiple sclerosis therapy.

1. Introduction

Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous system (CNS), which is pathohistologically characterized by inflammation and neurodegeneration causing a wide spectrum of clinical manifestations, including autonomic dysfunction (AD) (Lassmann and van Horssen, 2011). AD observed in 45% to 84% of MS patients leads to the fatigue, and various cardiovascular, bladder, bowel, ocular and sexual symptoms affecting quality of life of patients with MS (Flachenecker et al., 2003; Kodounis et al., 2005; Haensch and Jörg, 2006). AD in MS has been related to inflammation and demyelination in specific structures within the CNS (Polak et al., 2011). Among...
these structures is locus coeruleus, a major noradrenaline source in the brain (whose activation, particularly during stress, leads to the sympathetic nervous system activation), and spinal cord (Haensch and Jörg, 2006; Polak et al., 2011). Additionally, AD is associated with altered catecholamine release from peripheral immune cells (Rajda et al., 2002). Specifically, higher adrenaline level in peripheral blood lymphocytes was found in first-attack MS patients than in healthy controls (Rajda et al., 2002). However, during remission in relapsing-remitting MS patients, noradrenaline levels in peripheral blood lymphocytes were lower than in healthy subjects (Rajda et al., 2002). Also, increased density of β-adrenoceptor on peripheral blood mononuclear cells from MS patients was reported (Karaszewski et al., 1990; Zoukos et al., 1992). Autonomic nervous system, particularly its sympato-adrenergic medullary branch, is the major pathway in the cross-talk between the CNS and the immune system (Elenkov et al., 2006; Nance and Sanders, 2007). Nevertheless, the significance of AD in the immunopathogenesis of MS has not yet been investigated in dedicated studies. Although target tissue critically determines autoimmune disease severity (Hill et al., 2007), data on β2-adrenoceptor expression on CNS cells involved in immunopathogenesis of MS are limited. There are only a few reports pointing to astrocyte β2-adrenoceptor deficiency in MS patients as a contributing factor to MS progression (Zeinstra et al., 2000; De Keyser et al., 2004).

Sympathetic/adrenergic dysregulation has also been observed in the development of experimental autoimmune encephalomyelitis (EAE) (del Rey et al., 1982; Mackenzie et al., 1989; Pilipović et al., 2019a), widely used group of experimental models mimicking various pathogenic and clinical aspects of MS (Robinson et al., 2014). Moreover, the role of β-adrenoceptor-mediated noradrenergic mechanisms in control of the primary immune responses in Dark Agouti (DA) rat EAE model has recently been described (Pilipović et al., 2019b). These data render the EAE model suitable for investigating the role of adrenergic mechanisms in development of MS.

EAE is characterized by an ascending paralysis resulting from spinal cord infiltration with neuroantigen-specific CD4+ T lymphocytes, major instigators/drivers of neuroinflammation in EAE (Shin et al., 2012), and inflammatory monocytes during the early stages of lesion development, followed by activation of microglia and neuronal and oligodendrocyte damage (Kim et al., 2007). Activated microglia, apart from the synthesis of proinflammatory mediators and promoting tissue damage upon the first wave of encephalitogenic T-cell immigration, may assume other functions (i.e. phagocytosis, anti-inflammatory mediator and growth factor release), to limit the CNS damage and promote tissue recovery (Sosa et al., 2013; Thompson and Tsirka, 2017). Thus, microglia are thought to be the key player in control of the autoimmune neuroinflammation in MS/EAE (Shin et al., 2012; Thompson and Tsirka, 2017). Although expression of β2-adrenoceptor, the key adrenoceptor type involved in noradrenergic immunomodulation (Elenkov et al., 2000), on rodent spinal cord microglia (Tanaka et al., 2002; Hertz et al., 2010) and alterations in EAE rat spinal cord noradrenaline level (Leonard et al., 1990), have been revealed, there is no data on the role of noradrenaline in modulation of spinal cord inflammation and damage. However, substantial evidence obtained in immunized animals suggests that catecholamines may contribute to development of microglial proinflammatory phenotype (Walker et al., 2013; Frank et al., 2019).

Hereby reported study was undertaken to examine the putative β-adrenoceptor-mediated role of central noradrenaline in modulating neuroinflammation in EAE. In the first set of experiments, the influence of immunization for EAE on spinal cord noradrenaline level and β2-adrenoceptor expression on microglia in DA rats was examined. In the second set of experiments, DA rats immunized for EAE (EAE rats) were treated with propranolol, a β-adrenoceptor antagonist crossing the blood-brain barrier (Neil-Dwyer et al., 1981), from the 8th day post immunization (d.p.i.) over the effector phase of EAE (Prop rats). Microglial cells and CD4+ T cells recovered from Prop rats and saline-injected controls (Sal rats) at the peak of EAE were examined for phenotypic and functional properties.

2. Materials and methods

2.1. Experimental animals

Three-month-old female DA rats were used in this study. The animals were bred in the animal facility of the Immunology Research Centre “Branislav Jankovic” and maintained under standard laboratory conditions (3 rats/cage, 12-h light/dark cycle, controlled temperature and humidity), with free access to rat chow and tap water. Animal health was monitored daily by the animal care staff and a veterinarian. All experimental procedures and animal care were in accordance with the Directive 2010/63/EU of the European Parliament and of the Council on the protection of animals used for scientific purposes. The study protocol was approved by the Ethical Committees of the Institution and of the Republic of Serbia (Ministry of Agriculture, Forestry and Water Economy of the Republic of Serbia - Veterinary Directorate; permit no. 323-07-01577/2016-05/14). All experiments complied with ARRIVE guidelines for reporting animal research.

2.2. Induction and clinical evaluation of EAE

For EAE induction, 100 μl of emulsion comprising equal volumes of rat spinal cord homogenate in phosphate-buffered saline (PBS) and complete Freund’s adjuvant (CFA) containing 1 mg/ml of heat-killed and dried Mycobacterium tuberculosis H37Ra (Sigma-Aldrich Chemie GmbH, Taukirchen, Germany) was administered, followed by a subcutaneous injection of 5 × 106 Bordetella pertussis (Institute “Torlak”, Belgrade, Serbia) saline suspension, as previously described in detail (Nacka-Aleksic et al., 2015). To minimize animal suffering, the rats were anesthetized before immunization using an intraperitoneal injection of 50 mg/kg body weight (BW) of ketamine (Ketamidor, Richter Pharma AG, Wels, Austria; 100 mg/ml) and 5 mg/kg BW of xylazine (Xylased, Bioveta, Ivanovoce na Hané, Czech Republic; 20 mg/ml). Starting from the 1st d.p.i., the animals were daily monitored for neurological deficit by two experienced independent observers: 0, no clinical signs; 0.5, distal tail atony; 1, complete tail atony; 2, paraparesis; 3, paraplegia; 4, tetraplegia or moribund state. Facilitated access to mashed food and water was provided for all the animals which exhibited clinical signs of EAE. Rats were sacrificed through transcardial perfusion, following the deep anesthesia induced by intraperitoneal injection of ketamine/xylazine cocktail (80 mg/kg BW/8 mg/kg BW).

2.3. Experimental design

Two sets of experiments were performed. In the first set of experiments, spinal cords of EAE rats and non-immunized controls were examined for either (i) tissue noradrenaline level and tyrosine hydroxylase mRNA expression, or (ii) microglial β2-adrenoceptor expression and microglial/CD4+ T-cell tyrosine hydroxylase expression. EAE rats were sacrificed in the inductive phase and at the peak of the disease, on the 8th and the 14th d.p.i., respectively. Six rats per group per experiment were used. The second set of experiments was initiated by a preliminary study examining the effects of non-selective β-AR antagonist propranolol treatment over the effector phase of EAE on the clinical picture of the disease. Starting from the 8th d.p.i., rats were subcutaneously administered with 10 mg/kg of propranolol [(±)-propranolol hydrochloride; Sigma-Aldrich Chemie GmbH] or saline twice daily, and monitored for clinical signs of EAE until the full recovery (9 rats per group). Aside from capacity to block all β-AR receptors without toxic effects (Robinson et al., 2011), the dose of propranolol was selected considering our previous study suggesting that it may act at the spinal cord level to influence clinical EAE development in DA rats (Pilipović et al., 2019b). Follow-up experiment was performed to
eluclide cellular/molecular mechanisms of propranolol action on clinical EAE, by assessing phenotypic/functional properties of spinal cord microglia and infiltrating CD4+ T cells recovered at the peak of EAE from Prop and Sal rats (6 rats per group). Additionally, in vitro effects of noradrenaline and/or propranolol on spinal cord microglia were examined in an experiment encompassing 6 rats sacrificed at the peak of EAE.

2.4. Isolation of mononuclear cells

Following perfusion, spinal cords were removed and dissociated on a 70-μm nylon cell strainer (BD Biosciences, Erembodegem, Belgium) in ice-cold RPMI 1640 medium containing 5% fetal calf serum (FCS; Capricorn Scientific GmbH, Ebdsorfergrund, Germany). Spinal cord single-cell suspensions were then further fractioned on a discontinuous 40/70% Percoll (Sigma-Aldrich Chemie GmbH) gradient at 1000 g for 50 min. The cells collected from the interface were enumerated using Neubauer chamber and 0.2% trypan blue dye to exclude non-viable cells.

2.5. Mononuclear cell cultures

All cultures were set up using complete RPMI 1640 medium containing 2 mM l-glutamine (Serva, Heidelberg, Germany), 1 mM sodium pyruvate (Serva), penicillin (100 units/ml)/streptomycin (100 μg/ml) solution (Sigma-Aldrich Chemie GmbH), 50 μM β-mercaptoethanol and 10% FCS. For analyses of in vitro effects of noradrenaline (arterenol) and/or propranolol, the medium was further supplemented with 100 μM of ascorbic acid. The cells were cultivated at a density of 10^6/ml in a 5% CO2 humidified atmosphere at 37°C.

2.5.1. Restimulation for intracellular cytokine staining

For intracellular cytokine staining, freshly isolated cells were restimulatated for 4 h with 200 ng/ml of phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich Chemie GmbH) and 400 ng/ml ionomycin (Sigma-Aldrich Chemie GmbH) in the presence of 3 μg/ml of brefeldin A (eBioscience).

For assessing neuroantigen-specific production of IL-17, to the cells cultivated overnight in the absence or in the presence of 20 μg/ml of myelin basic protein (MBP, Sigma-Aldrich Chemie GmbH) (recall test), brefeldin A was added for the last 4 h of culture.

2.5.2. Assessment of noradrenaline and/or propranolol effects on microglia in culture

Cells from EAE rats were incubated in the RPMI 1640 medium alone or pretreated with 10^{-6} M of arterenol ([±]-noradrenaline[+]-bitartrate salt, Sigma-Aldrich Chemie GmbH) for 1 h, or 10^{-5} M of propranolol for 15 min. When both agonist and antagonist were used, arterenol was added 15 min after propranolol. The dose of arterenol was chosen considering that (i) supraphysiological (i.e. ≥ 10^{-6} M) noradrenaline concentrations are required for functional changes in immune cells in vitro (Pedro and Sanders, 2014), and (ii) 10^{-6} M of noradrenaline effectively modulates rat microglial functions (Tanaka et al., 2002). Following pretreatment, the cells were either (i) assayed for phagocytosis, or (ii) stimulated overnight with 1 μg/ml of lipopolysaccharide (LPS; Sigma-Aldrich Chemie GmbH) for measurements of supernatant cytokine concentrations by enzyme-linked immunosorbent assay (ELISA), or cell gene expression analysis by reverse transcription-quantitative polymerase chain reaction (RT-qPCR).

2.6. Noradrenaline measurement

For high performance liquid chromatography (HPLC) analysis, spinal cords were snap-frozen in liquid nitrogen and immediately stored at −70 °C. Tissue samples were homogenized in DEPROT solution (1 mg: 20 μl) containing 2% ethylene glycol tetraacetic acid, 0.1 N HClO4 and 0.2% MgCl2, then sonicated and centrifuged (30 min, 18,000 rpm, +4°C). Collected supernatants were injected with the autosampler of a Dionex UltiMate 3000 HPLC system (Thermo Scientific, Sunnyvale, CA, USA) equipped with a Hivar 125–4 LiChrospher100 RP-18 (5 μm) HPLC column (Merck Millipore, Darmstadt, Germany). Chromeleon7 Chromatography Data System (Thermo Scientific) was used for instrument control and data acquisition. The mobile phase consisted of 98% ammonium formate buffer (Fisher Scientific, Cambridge, UK, pH 3.6) and 2% methanol (J.T.Baker, Griesheim, Germany) and its flow rate was set at 500 μl/min. The potential for electrochemical measurements was set at +850 mV and the separation temperature at 25 °C. Noradrenaline standard solutions (DL-noradrenaline hydrochloride) were made from the stock standard solution (1 mg/ml of noradrenaline in methanol) in DEPROT, with concentration range 0.5–25 μg/ml. If not stated otherwise, all the chemicals were provided by Sigma-Aldrich Chemie GmbH.

2.7. RT-qPCR

Snap-frozen spinal cord tissue samples and mononuclear cells lysed/homogenized in TRIzol extraction reagent (Invitrogen Life Technologies, Carlsbad, CA, USA) were stored at −70 °C until RNA purification. Total RNA extraction was performed using TRIzol reagent according to the manufacturer’s instructions. The RNA concentration and purity were determined by spectrophotometric analysis (OrionTM AquaMate 8000 from Thermo Scientific, Waltham, MA, USA). For cDNA synthesis, a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) was used, as suggested by the manufacturer. RT-qPCR reaction mixtures contained 5 μl of cDNA template, 1× TaqMan Gene Expression Master Mix with Uracil-DNA glycosylase (UDG) (Applied Biosystems) and 1× mix of premade primer and hydrolysis probe sets (TaqMan Gene Expression Assays, Applied Biosystems) in a total volume of 25 μl. Reactions in triplicate were performed under the default Applied Biosystems 7500 Real-Time PCR System conditions. TaqMan Gene Expression Assays detailed in Supplementary Table 1 were used to analyze the expression of tyrosine hydroxylase, IL-6, heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2 (herein referred to as Nrf2), inducible nitric oxide synthase (iNOS), arginase 1 (Arg-1), monocyte chemoattractant protein-1/C-C motif chemokine ligand 2 (MCP-1/CCL2) and β-actin. Target mRNA expression was assessed using the SDS v1.4.0. software (Applied Biosystems) and comparative threshold cycle (dCt) method, with β-actin as a reference gene. The difference between threshold cycle values of the target and reference gene (dCt = Ct target − Ct reference) in each sample was calculated and the target gene expression relative to the reference gene was expressed as 2^{ΔCt} value. The ratio of iNOS to Arg-1 expression was calculated as follows: 2^{ΔCt} iNOS/2^{ΔCt} Arg-1 (Brown et al., 2009).

2.8. Flow cytometry analysis

2.8.1. Antibodies and immunoconjugates

For immunolabeling, the following antibodies (Abs) and second step reagents (detained in Supplementary Table 2) were used according to manufacturers’ instructions. Unconjugated anti-tyrosine hydroxylase from EMD Millipore (Billerica, MA, USA). Unconjugated anti-β2-adrenoceptor (H-73), unconjugated anti-CD83 (N-15) and phycoerythrin (PE)-conjugated donkey anti-goat IgG from Santa Cruz Biotechnology (Dallas, TX, USA). Fluorescein isothiocyanate (FITC)-conjugated anti-CD11b and PE-conjugated anti-CD45 from Serotec (Oxford, UK). Biotin-conjugated anti-CD45, biotin-conjugated anti CD11b, PE-conjugated anti-ED2 (CD163), PE-conjugated anti-IL-10, FITC/PE-conjugated anti-CD4, peridinin-chlorophyll-protein (PerCP)-conjugated anti-TCRβ, PE-conjugated anti-IL7A, FITC-conjugated anti-IFN-γ, FITC-conjugated goat anti-rabbit IgG, PE-conjugated F(ab’)2 donkey anti-rabbit IgG and PE-conjugated anti-Ki-67 from BD Biosciences Pharmingen (Mountain View, CA, USA). Unconjugated anti-CX3CR1 from Abcam
(Cambridge, UK) and unconjugated anti-IL-23 from Bioss (Woburn, MA, USA). Alexa Fluor 647 (AF647)-conjugated anti-TCRα and PerCP-conjugated streptavidin from BioLegend (San Diego, CA, USA). FITC-conjugated anti-Foxp3, allophycocyanin-conjugated anti-CD4 and PerCP-eFluor 710-conjugated anti-CD25 from eBioscience (San Diego, CA, USA). AF647-conjugated anti-GM-CSF and unconjugated anti-IL-1β from Novus Biologicals (Littleton, CO, USA).

2.8.2. Surface and intracellular antigen immunolabeling
Aliquots of freshly isolated cells (for surface antigen immunostaining) or cells fixed/permeabilized for intracellular antigen immunostaining according to eBioscience protocol (http://www.ebioscience.com/resources/best-protocols/flow-cytometry-protocols.htm) were incubated with saturating concentrations of fluorochrome-labeled Abs or biotin-conjugated/unconjugated Abs (30 min, 4 °C, if not stated otherwise). When biotin-conjugated/unconjugated Abs were used, the cells were washed following the incubation and the appropriate second step reagents were applied. Immunolabeling of intracellular cytokines was carried out at room temperature (RT).

To determine cell apoptosis, after labeling of the surface markers, spinal cord cells were washed with PBS and then with 1 × Annexin V binding buffer (BD Bisciences Pharmingen). The cells were then incubated with Annexin V-FITC (BD Bisciences Pharmingen) for 15 min at RT and collected for flow cytometry analysis.

2.8.3. Phagocytosis of latex beads
Yellow-green fluorescent carbonylated polystyrene latex beads used for phagocytosis assay (1 μm diameter, Sigma-Aldrich Chemie GmbH) were sonicated in an ultrasound bath for 90 min at 37 °C. Excess dextran was removed by washing the cells in ice-cold PBS supplemented with 2% FCS at RT and collected for flow cytometry analysis.

2.8.4. Endocytosis of FITC-dextran
Spinal cord cells were incubated in complete RPMI 1640 medium with 5% FCS containing 1 mg/ml FITC-conjugated dextran (Sigma-Aldrich Chemie GmbH) for 90 min at 37 °C. Excess dextran was removed by washing the cells in ice-cold PBS supplemented with 2% FCS and 0.1% NaNO₃ and the cells were stained for surface antigens. Cells incubated at 4 °C were used to determine the positive/negative cut-off for latex-containing (Latex +) cells in flow cytometry analysis.

2.8.5. Data acquisition and analysis
For analyses, 50,000 events per sample were acquired on FACSVerse or FACSCalibur flow cytometer (Becton Dickinson, Mountain View, CA, USA). FlowJo software version 7.8. (TreeStar Inc., Ashland, OR, USA) was used to determine the frequency of marker positive cells and/or mean fluorescence intensity (MFI), expressed as MFI ratio (MFI of an-}.
Fig. 1. Changes in spinal cord noradrenaline concentration and microglial tyrosine hydroxylase/β2-adrenoceptor expression during EAE development. (A) Scatter plots indicate (left) noradrenaline concentration and (right) tyrosine hydroxylase mRNA expression in spinal cord tissue samples retrieved from rats immunized for EAE (EAE rats) on the 14th and the 8th d.p.i., or non-immunized control animals (Non-imm). Relative mRNA expression levels were determined by RT-qPCR and shown as 2-ΔΔCt value relative to β-actin. (B) Flow cytometry density plots indicate CD45 immunostaining of CD11b+ spinal cord cells retrieved from EAE rats at distinct stages of the disease and non-immunized control animals. The gating boundary between CD11b+CD45lo/int (R1 region) and CD11b+CD45hi cells (R2 region) was settled based on (left density plot) CD11b vs CD45 immunostaining of spinal cord cells from non-immunized healthy rats. Black flow cytometry histogram indicates the gating strategy for CD11b+ cells, based on (shaded histogram) FMO control incubated with isotype control antibody (Ab) instead of anti-CD11b Ab. (C, D) Black flow cytometry histograms indicate the frequencies of (C) tyrosine hydroxylase+ and (D) β2-adrenoceptor+ cells among spinal cord CD11b+CD45lo/int microglia retrieved from EAE rats at distinct stages of the disease and non-immunized control animals. The gating boundaries for (C) tyrosine hydroxylase+ and (D) β2-adrenoceptor+ cells were settled using (shaded histograms) FMO controls without corresponding primary Abs, incubated with secondary Abs alone. Scatter plots indicate (left) the frequency of (C) tyrosine hydroxylase+ and (D) β2-adrenoceptor+ cells among CD11b+CD45lo/int microglia, and (right) (C) tyrosine hydroxylase and (D) β2-adrenoceptor MFI in/on the corresponding cells from EAE rats at distinct stages of the disease and non-immunized control animals. The data are shown as mean ± SEM (n = 6 rats/group). Horizontal bars in scatter plots indicate mean values. * p ≤ .05; ** p ≤ .01; *** p ≤ .001.
3.2. The second set of experiments: influence of propranolol treatment during the effector phase of EAE on clinical manifestations of the disease and underlying immunopathogenic mechanisms

3.2.1. Propranolol administration over the effector phase of EAE decreases the severity of the disease and reduces the number of mononuclear cells retrieved from spinal cord at the peak of the disease

In the second set of experiments, the influence of propranolol treatment over the effector phase of EAE on the clinical manifestations of the disease was investigated. Prop rats, as Sal controls, developed acute monophasic disease reaching the peak between the 13th and the 14th d.p.i. (Fig. 2A). Prop rats developed milder disease than Sal animals, judging by lower \(p < .05 \) mean maximum neurological score (Fig. 2A). Additionally, shorter \(p < .05 \) duration of the clinical disease and decreased \(p < .05 \) clinical severity index (i.e. cumulative clinical score of each rat divided by the number of days with clinical EAE) were found in Prop rats than in Sal ones (Fig. 2A).

In the second experiment, which was settled to examine the influence of propranolol on immunological parameters, similar clinical picture of EAE was observed. Spinal cord mononuclear cells recovered at the peak of EAE were examined for the number and phenotypic and functional properties. In accordance with milder disease, fewer \(p < .05 \) mononuclear cells were retrieved from spinal cord of Prop rats compared with Sal controls (Fig. 2B).

3.2.2. Propranolol increases the frequency of CX3CR1-expressing microglial cells and proportion of microglia with immuoregulatory/protective properties in spinal cord at the peak of EAE

Next, the effects of propranolol on phenotypic and functional properties of spinal cord microglia were examined. Given that signaling mediated through CX3-C motif chemokine receptor 1 (CX3CR1), unique receptor for fractalkine (FKN, formally known as CX3CL1), expressed on microglia has the crucial role in limiting neuroinflammation (Wolf et al., 2013), CX3CR1 surface expression on microglia was examined. Prop rats exhibited higher \(p < .001 \) frequency of CX3CR1+ cells among microglia than Sal controls (Fig. 3A). Additionally, greater \(p < .001 \) density of CX3CR1 was found on microglia from Prop rats compared with Sal rats (Fig. 3A). Given that CX3CR1-mediated signaling is shown to be the key regulator of the Nrf2 transcription factor expression (Lastres-Becker et al., 2014), Nrf2 mRNA expression level in spinal cord cells was also investigated. Indeed, greater \(p < .001 \) amount of Nrf2 mRNA was found in spinal cord cells of Prop rats compared with Sal controls (Fig. 3B).

Given that Nrf2 stimulates the expression of TAM (Tyro3, Axl, and Merck) receptors (CastrO-Sánchez et al., 2019) essential in regulation of phagocytosis (Ji et al., 2015), microglial cells were examined for phagocytosis of fluorescent latex beads. The frequency of Latex+ cells was higher \(p < .001 \) among microglia from Prop rats compared with Sal controls (Fig. 3C). Considering that noradrenaline via \(\beta \)-adrenoceptor may affect phagocytosis without affecting CX3CL1/CX3CR1 axis (Rossi et al., 1998), and that CX3CL1 expression is confined to certain neurons, but not to mononuclear cells (Wolf et al., 2013), the influence of noradrenaline (arterenol) on phagocytic capacity of microglial cells from EAE rat spinal cord mononuclear cell cultures was also examined. Compared with spinal cord mononuclear cell cultures grown in the medium alone (Control), in arterenol-supplemented cultures the frequency of Latex+ cells among microglia \(p < .001 \) was decreased (Fig. 3D). In the co-presence of propranolol, arterenol was inefficient in this respect (Fig. 3D). Notably, the frequency of Latex+ cells among microglia from spinal cord mononuclear cell cultures was increased \(p < .01 \) in the presence of propranolol alone (Fig. 3D), supporting catecholamine production by immune cells (Laukova et al., 2013; Staedtke et al., 2018; Pilipović et al., 2019a).

To assess if this effect of arterenol involves Nrf2, the expression of its transcript in LPS-stimulated spinal cord mononuclear cell cultures (LPS cultures) supplemented with arterenol and/or propranolol was explored. In the presence of LPS, Nrf2 mRNA expression was downregulated \(p < .05 \) compared with that in control cultures with medium alone (Fig. 3E). In arterenol-supplemented LPS cultures, Nrf2 mRNA expression was decreased \(p < .001 \) compared with those with LPS alone (Fig. 3E). In the co-presence of propranolol, arterenol did not significantly influence Nrf2 mRNA expression (Fig. 3E). Thus, it may be assumed that noradrenaline influences Nrf2 expression in both CX3CR1-dependent and CX3CR1-independent manner.

Given that the expression of CD163 on microglia is associated with phagocytosis of cellular debris and apoptotic/necrotic cells (Zhang et al., 2011), its expression on microglial cells was examined as well. The frequency of CD163+ cells among CD11b+CD45R/0 microglial cells, and the density of CD163 on their surface, were greater \(p < .001 \) in Prop rats than in Sal controls (Fig. 4A). Given that CD163-expressing cells are shown to be alternatively activated cells expressing the mannose receptor (Mammana et al., 2018), microglia was assayed for mannose receptor-dependent endocytosis of dextran. Indeed, the frequency of Dextran+ cells was higher \(p < .001 \) among...
microglia from Prop rats compared with Sal controls (Fig. 4B).

Given that vesicles derived from apoptotic cells trigger strong CD83 upregulation on microglia (Fehr et al., 2013), CD83 surface expression on microglial cells was also investigated. The frequency of CD83+ cells was higher (p < .001) within CD11b+CD45lo/int microglia from Prop rats (Fig. 4C). Additionally, CD83 surface density was increased (p < .01) on CD83+ cells from Prop rats compared with Sal controls (Fig. 4C).

3.2.3. Propranolol promotes development of microglia with anti-inflammatory properties

Considering that Nrf2 exerts anti-inflammatory effects by triggering HO-1 expression (Cuadrado and Rojo, 2008; Lastres-Becker et al., 2014), its expression in spinal cord cells was also determined. In Prop rats, the expression of HO-1 mRNA (p < .001) was enhanced (Fig. 5A). Activation of CX3CR1/Nrf2/HO-1 pathway is associated not only with upregulation of anti-inflammatory cytokines, but also with prevention of transcriptional upregulation of proinflammatory cytokines, and thereby with skewing of microglia towards pro-resolution M2 phenotype (Limatola and Ransohoff, 2014; Dinkova-Kostova et al.,...
Accordingly, microglia was assayed for cytokine profile. Considering the crucial role of IL-10 produced by M2 microglia in the restriction of inflammation, restoration of homeostasis and promotion of tissue reparation (Lobo-Silva et al., 2016), microglia was examined for IL-10 production. In keeping with the expression of CX3CR1, Nrf2 and HO-1, the frequency of IL-10-producing cells was higher \((p < .001) \) among CD11b+CD45lo/int microglia from Prop rats compared with Sal ones (Fig. 5B).

Microglial synthesis of IL-1\(\beta \) and IL-23 was also explored. The frequency of cells producing IL-1\(\beta \), the cytokine whose downregulation is central for CX3CR1-mediated microglial neuroprotection (Bhaskar et al., 2010), was lower \((p < .001) \) among spinal cord microglia from Prop rats compared with Sal rats (Fig. 5C). Besides, propranolol reduced \((p < .001) \) the frequency of IL-23-producing cells among spinal cord microglia (Fig. 5D).

Overall, our findings indicated that propranolol could promote microglial immunomodulatory/neuroprotective functions, at least partly, independently of CX3CL1 signaling. Hence, the production of IL-10 and IL-1\(\beta \) in LPS-stimulated spinal cord mononuclear cells supplemented with propranolol/arterenol was also examined. Compared with control cultures, the concentration of both cytokines was increased \((p < .001) \) in LPS-stimulated cultures (Fig. 5E). The addition of arterenol to these cultures decreased \((p < .001) \) and increased \((p < .001) \) the concentrations of IL-10 and IL-1\(\beta \), respectively (Fig. 5E). The effects of arterenol were completely abrogated in the presence of propranolol (Fig. 5E). Propranolol alone increased \((p < .001) \) the concentration of IL-10, but decreased \((p < .001) \) that of IL-1\(\beta \) (Fig. 5E), thereby further supporting the synthesis of noradrenaline in microglia.

Furthermore, immunomodulatory/neuroprotective role of CX3CR1-expressing microglia may also be accomplished indirectly, through modulation of activity of astrocytes (Limatola and Ransohoff, 2014). As astrocytes are the major source of IL-6 in the CNS during inflammation (Gruol and Nelson, 1997), IL-6 mRNA in spinal cord tissue was also explored. Propranolol administration decreased \((p < .01) \) the expression of IL-6 transcript in spinal cord tissue (Fig. 5F).

Finally, spinal cord mononuclear cells were investigated for the expression of mRNA for iNOS, a bona fide marker of the classically activated proinflammatory M1 microglia (Mammana et al., 2018) and mRNA for Arg-1, a typical marker of anti-inflammatory M2 microglia (Shin et al., 2012; Thompson and Tsirka, 2017). Additionally, iNOS mRNA/Arg-1 mRNA expression ratio, as an indicator of regeneration in spinal cord injury (Kigerl et al., 2009), was calculated. The expression of iNOS mRNA was downregulated \((p < .01) \) (Fig. 6A), whereas that of
Arg-1 mRNA was upregulated (p < .05) in spinal cord mononuclear cells from Prop rats compared with Sal controls (Fig. 6B). Hence, iNOS mRNA/Arg-1 mRNA expression ratio was shifted (p < .001) towards Arg-1 in spinal cord mononuclear cells of Prop rats (Fig. 6C).

3.2.4. Propranolol decreases the expression of MCP-1/CCL2 in spinal cord mononuclear cells

Activation of Nrf2 is shown to prevent transcriptional upregulation of chemokines, including MCP-1/CCL2 (Dinkova-Kostova et al., 2018). As MCP-1/CCL2 expressed by microglia (Semple et al., 2010) is involved in the spinal cord infiltration with blood-derived inflammatory monocytes and Th17 cells (Jiang et al., 2016), its expression in spinal cord mononuclear cells was also explored. Propranolol administration downregulated (p < .01) the expression of MCP-1/CCL2 mRNA (Fig. 7A). Consistently, the frequency of blood-borne myeloid cells identified as CD11b+CD45hi cells (Almolda et al., 2009), was lower...
lymphocytes from Prop rat spinal cord was also reduced (p < .001) compared with Sal controls (Fig. 8C).

On the other hand, the frequency of Annexin V+ apoptotic cells among spinal cord-infiltrating CD4+ T lymphocytes was comparable between Prop rats and Sal controls (Fig. 8D).

Considering altered expression of the key cytokines driving/main-

Considering the plasticity of Th17 cells (Cosmi et al., 2014;

4. Discussion

The study showed changes in the spinal cord noradrenaline level

4.1. Influence of immunization for EAE on the spinal cord noradrenaline level and expression of β2-adrenoceptor on microglia

This study confirmed the previous findings indicating that noradrenaline concentration in spinal cord declines during EAE course (White et al., 1983; Krenger et al., 1986; Polak et al., 2011). AD in MS is connected with advanced stages of disease (Vlcek et al., 2018). It is suggested to contribute to disease progression and occurrence of relapses (Racosta and Kimpinski, 2016). The reduction in spinal cord noradrenaline level in EAE was ascribed to local, spinal cord, nora-

Fig. 6. Propranolol decreases iNOS/Arg-1 mRNA expression ratio in spinal cord mononuclear cells. (A, B) Scatter plots indicate (A) inducible nitric oxide synthase (iNOS) and (B) arginase (Arg-1) mRNA expression in spinal cord mononuclear cells retrieved from rats immunized for EAE (EAE rats) on the 14th d.p.i., after propranolol (Prop) or saline (Sal) administration starting from the 8th d.p.i. Relative mRNA expression levels were determined by RT-

Fig. 7. Propranolol decreases the MCP-1/CCL2 mRNA expression in spinal cord mononuclear cells. (A) Scatter plot indicates MCP-1/CCL2 mRNA expression in spinal cord mononuclear cells retrieved from rats immunized for EAE (EAE rats) on the 14th d.p.i., after propranolol (Prop) or saline (Sal) administration starting from the 8th d.p.i. Relative mRNA expression levels were determined by RT-qPCR and shown as 2^ΔΔCt values relative to β-actin. (B) Scatter plot indicates the frequency of CD11b+CD45hi cells among CD11b+ spinal cord cells. Gating strategy for CD11b+CD45hi cells is shown in Fig. 1B. The data are shown as mean ± SEM (n = 6 rats/group). Horizontal bars in scatter plots indicate mean values. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.

(p < .001) among CD11b+ cells from Prop rats compared with Sal controls (Fig. 7B).

3.2.5. Propranolol decreases reactivation/proliferation of spinal cord-infiltrating CD4+ T cells and their differentiation into highly pathogenic Th17 cells at the peak of EAE

We found lower (p < .01) frequency of CD4+ T cells among mononuclear cells retrieved from spinal cord of Prop rats compared with Sal controls (Fig. 8A). Additionally, fewer (p < .001) spinal cord CD4+ T cells were isolated from Prop than Sal rats (Fig. 8A). Next, CD4+ T cells infiltrating EAE rat spinal cord were analyzed for the expression of activation/proliferation markers and the proin-

Fig. 8. Propranolol decreases the frequency of CD4+ T cells among spinal cord mononuclear cells retrieved from rats immunized for EAE (EAE rats) on the 14th d.p.i., after propranolol (Prop) or saline (Sal) administration starting from the 8th d.p.i. Relative mRNA expression levels were determined by RT-qPCR and shown as 2^ΔΔCt values relative to β-actin.
Indeed, the central (locus coeruleus) noradrenaline depletion modulates clinical course of chronic relapsing rat EAE, so that each new attack is milder than the preceding ones (Krenger et al., 1986). Adding to the complexity, our findings showed the increase in expression of tyrosine hydroxylase in microglia with EAE development. This is consistent with data indicating that stimulation of myeloid cells with LPS or bacteria activates intrinsic synthesis of catecholamines to provide a self-amplifying feed-forward loop (Staedtke et al., 2018). This loop contributes to dysregulation of proinflammatory cytokine secretion leading to augmentation of

Fig. 8. Propranolol decreases the number of spinal cord-infiltrating CD4+ T cells, and the frequency of activated/proliferating cells among them. (A) Flow cytometry dot plot panel indicates the frequency of CD4+ TCRαβ+ (T) cells in spinal cords retrieved from rats immunized for EAE (EAE rats) on the 14th d.p.i., after (right) propranolol (Prop) or (left) saline (Sal) administration starting from the 8th d.p.i. Scatter plots indicate (left) the frequency and (right) the number of CD4+ T cells in spinal cords of Prop and Sal EAE rats. (B, C) Right flow cytometry dot plot panels indicate the frequencies of (B) CD25+ and (C) Ki-67+ cells among spinal cord CD4+Foxp3- cells retrieved from (right) Prop and (left) Sal EAE rats. FMO controls incubated with isotype control antibodies (Abs) instead of (B) anti-CD25 (-CD25 Ab) or (C) anti-Ki-67 (-Ki-67 Ab) Abs were used to settle the gating boundaries for CD25+ and Ki-67+ cells among CD4+ Foxp3- lymphocytes, gated as shown in (B, utmost left). Scatter plots indicate the frequencies of (B) CD25+ and (C) Ki-67+ cells among CD4+ Foxp3- lymphocytes from Prop and Sal EAE rats. (D) Right flow cytometry dot plot panel indicates the frequency of Annexin V+ cells among spinal cord CD4+ T cells retrieved from (right) Prop and (left) Sal EAE rats. CD4+ T cells were gated as shown in (A). FMO control without Annexin V (-Annexin V) was used to settle the gating boundary for Annexin V+ cells. Scatter plot indicates the frequency of Annexin V+ cells among CD4+ T cells of Prop and Sal EAE rats. The data are shown as mean ± SEM (n = 6 rats/group). Horizontal bars in scatter plots indicate mean values. * p ≤ .05; ** p ≤ .01; *** p ≤ .001.
inflammation and tissue injury (Staedtke et al., 2018; Flierl et al., 2007). It was also suggested that some other catecholamine-producing cells participate in this feed-forward loop (Staedtke et al., 2018). Consistently, we found augmented expression of tyrosine hydroxylase in CD4\(^+\) T cells recovered from EAE rat spinal cord compared with non-immunized animals (Supplementary Fig. 1). Similarly, the frequency of noradrenaline-synthesizing ("noradrenergic") cells in the target tissues increases with the development of collagen-induced arthritis (Capellino et al., 2012). This is suggested to be a mechanism contributing to compensation for the loss of sympathetic nerve fibers (Capellino et al., 2012). Central 6-hydroxydopamine-induced depletion of catecholamines before the immunization for EAE prevented the disease development (Abramsky et al., 1987; Konkol et al., 1990). Thus, it may be assumed that they have an important role in EAE pathogenesis. Consistently, propranolol administration initiated before the appearance of the clinical signs of EAE diminished the severity of neurological deficit and duration of the disease. However, in some other studies propranolol treatment over the effector phase of rat EAE either worsened the disease (Brosnan et al., 1985) or did not affect its severity (Chelmicka-Schorr et al., 1989). These inconsistencies may be related to

Fig. 9. Propranolol decreases the number of spinal cord-infiltrating IL-17 + TCR\(\alpha\beta\)+ cells, including the highly pathogenic IFN-\(\gamma\)/GM-CSF co-producing ones. (A) Right flow cytometry dot plot panel indicates the frequency IL-17+ TCR\(\alpha\beta\)+ (Th17) cells within spinal cord mononuclear cells retrieved from rats immunized for EAE (EAE rats) on the 14\(^{th}\) d.p.i., after (right) propranolol (Prop) or (left) saline (Sal) administration starting from the 8\(^{th}\) d.p.i. FMO control incubated with isotype control antibody (Ab) instead of anti-IL-17 Ab (-IL-17 Ab) was used to set the gating boundary for IL-17+ cells. Scatter plots indicate (left) the frequency and (middle) the number of Th17 cells in spinal cords, and (right) IL-17 MFI in Th17 cells of Prop and Sal EAE rats. (B) Right flow cytometry dot plot panel indicates the frequency of IL-17+ cells among CD4+ TCR\(\alpha\beta\)+ (T) lymphocytes in cultures of spinal cord cells retrieved from (right) Prop and (left) Sal EAE rats and grown overnight (lower) in the presence of MBP (MBP) or (upper) in its absence (Control) (see Materials and methods). FMO control incubated with isotype control Ab instead of anti-IL-17 Ab (-IL-17 Ab) was used to (lower) settle the gating boundary for IL-17+ cells among (upper) gated CD4+ T cells. Scatter plot indicates the frequency of IL-17+ cells among CD4+ T cells from MBP and corresponding Control spinal cord cell cultures from Prop and Sal EAE rats. Bar graph indicates the percentage of increase in the frequency of IL-17+ cells among spinal cord CD4+ T cells from MBP cultures over the corresponding Control cultures from Prop and Sal EAE rats. Two-way ANOVA (treatment \(\times\) culturing conditions) showed significant interaction between the factors for the frequency of IL-17+ cells among CD4+ T cells (\(F(1,20) = 4.38; \ p < .05\)). Bonferroni post-hoc test was used. (C) Right flow cytometry dot plot panel indicates the frequency of IFN-\(\gamma\)+GM-CSF+ cells among spinal cord Th17 cells retrieved from (right) Prop and (left) Sal EAE rats. Th17 cells were gated as shown in (A). FMO controls incubated with isotype control Abs instead of (left) anti-GM-CSF (-GM-CSF Ab) and (right) anti-IFN-\(\gamma\) (-IFN-\(\gamma\) Ab) Abs were used to set the gating boundaries for IFN-\(\gamma\)+GM-CSF+ cells. Scatter plots indicate (left) the frequency and (right) the number of IFN-\(\gamma\)+GM-CSF+ Th17 cells in spinal cords of Prop and Sal EAE rats. The frequency of spinal cord IFN-\(\gamma\)+GM-CSF+ Th17 cells was determined using FlowJo software version 7.8. (TreeStar Inc., Ashland, OR, USA). The data are shown as mean ± SEM (n = 6 rats/group). Horizontal bars in scatter plots indicate mean values. * \(p \leq .05\); ** \(p \leq .01\); *** \(p \leq .001\); ### \(p \leq .001\). # vs Sal.
differences in EAE models in respect of immunization protocol, rat strain, propranolol dosage and/or duration of the drug administration (Chelmicka-Schorr et al., 1989).

4.2. Propranolol administration over the effector phase of EAE moderates the disease course by increasing immunomodulatory/protective capacity of microglia

Our further research was focused on microglia. To justify this approach, in accordance with some other studies (Tanaka et al., 2002; Hertz et al., 2010), β2-adrenoceptor was detected on the surface of microglia. Additionally, β2-adrenoceptor expression on microglia increased with EAE development. This was consistent with data indicating that local decrease in noradrenaline concentration leads to upregulation of β2-adrenoceptor expression on immune cells (Lorton and Bellinger, 2015). Several other facts strengthened our interest in microglia. Firstly, various stress paradigms induce microglial activation and upregulation of expression of proinflammatory cytokines and chemokines, and thereby exaggerate inflammatory response (Blandino Jr. et al., 2006). Secondly, these effects of stress involve catecholamine-dependent mechanisms (Wohleb et al., 2015). Thirdly, stress-induced proinflammatory microglial changes are preventable by propranolol administration (Wohleb et al., 2011). Additionally, stress is shown to decrease the expression of CX3CR1 (Wohleb et al., 2014), the key immunoregulatory molecule in neuron-microglial cell cross-talk (Biber et al., 2007). Consistently, propranolol administration to EAE rats increased the proportion of CX3CR1-expressing cells in microglia. CX3CR1 deficiency confers exacerbated EAE, as shown by severe inflammation and neuronal loss (Cardona et al., 2018). Thus, the increase in the frequency of CX3CR1-expressing cells among microglia from Prop rats was fully consistent with the greater expression of mRNA for Nr2f2 in their mononuclear spinal cord cells (Castro-Sánchez et al., 2019). To corroborate the previous notion, rapid development and more severe clinical presentation of EAE were associated with greater microglial activation followed by downregulation of Nr2f2 (Johnson et al., 2010). Furthermore, augmented phagocytic capacity of microglia from Prop rats could be related to the increased expression of Nr2f2, as it was shown to upregulate TAM receptor expression (Castro-Sánchez et al., 2019). To additionally corroborate our findings, impaired phagocytic activity of microglia was found in the absence of CX3CR1 expression in cuprizone model of demyelination (Lampron et al., 2015). However, the analysis of the effects of arterenol on phagocytic capacity of microglia in vitro suggested that noradrenaline, acting through β-adrenoceptor, could diminish microglial phagocytosis in a CX3CR1-independent manner, as well. Indeed, catecholamines are shown to impair splenic macrophage phagocytosis in vitro (Roy and Rai, 2004). Additionally, as propranolol counteracted arterenol-induced down-regulation of Nr2f2 expression in LPS-stimulated spinal cord mononuclear cell cultures, it may be assumed that propranolol effect on phagocytosis was mediated by Nr2f2. This assumption is consistent with findings obtained in several other studies. Carvedilol, a third-genera-

β-blocker, activated Nr2f2 signaling pathway in HT22 murine hippocampal neuronal cell line (Ouyang et al., 2013) and PC12 pheochromocytoma cell line (Wang et al., 2014). Additionally, in the rat model of sepsis, propranolol induced the expression of the gene encoding HO-1 (Wilson et al., 2013), often used as a marker of Nr2f2-dependent anti-inflammatory response (Lastres-Becker et al., 2014).

In accordance with the increase in phagocytic capacity of microglia (A-Gonzalez et al., 2017), the expression of CD163 was upregulated on microglia from Prop rats. To add extra weight to this finding are data indicating that the increased frequency of CD163+ microglial cells is associated with down-modulation of neuroinflammation in acute model of EAE, and consequent recovery from paralysis (Ahn et al., 2012). In accordance with enhanced phagocytic capacity of microglia, the mannose-receptor-mediated endocytosis by microglia from Prop rats was enhanced. Namely, phagocytizing cells are shown to upregulate not only CD163 expression, but also that of Mrcl gene (encoding for CD206, the mannose receptor) (A-Gonzalez et al., 2017; Mammana et al., 2018). Moreover, the enhanced phagocytosis by microglial cells from Prop rats correlated with upregulation in CD83 expression (Fehr et al., 2013). The latter could be associated with acquisition of regulatory/regenerative phenotype by microglia (Olah et al., 2012) and down-modulation of Th cell-initiated tissue damage (Fujimoto and Tedder, 2006; Stojić-Vukančić et al., 2018).

Next, enhanced expression of the components of CX3CR1-Nr2f2 axis correlated with upregulation of HO-1-encoding gene in Prop rats (Lastres-Becker et al., 2014; Castro-Sánchez et al., 2019). Consistently, the proportion of microglia expressing anti-inflammatory IL-10 was increased in Prop rats (Dinkova-Kostova et al., 2018). It is of note that IL-10 itself is capable of inducing HO-1 production, thereby forming a positive feedback circuit to amplify the anti-inflammatory response (Lee and Chau, 2002). Propranolol-induced changes in CX3CR1-Nr2f2 axis could also be linked with the decrease in the proportion of microglia expressing proinflammatory IL-1β and IL-23 cytokines (Cuadrado et al., 2014; Lastres-Becker et al., 2014; Castro-Sánchez et al., 2019). The former is particularly important as microglial cell-derived IL-1β is a key mediator of stress response in the CNS (Blandino Jr. et al., 2006; Wohleb et al., 2011; Frank et al., 2019). In this context, it is noteworthy that: i) stress-induced IL-1β elevation can be prevented by propranolol (Johnson et al., 2005), and ii) β-AR activation is shown to augment microglial IL-1β production (Tomozawa et al., 1995; Wang et al., 2010). Antagonizing action of propranolol on arterenol effects in LPS cultures further supports CX3CR1-independent action of propranolol on Nr2f2 expression, as IL-10 and IL-1β are important targets of Nr2f2/HO-1 pathway (Ambegaokar and Kolson, 2014). Moreover, propranolol downregulated IL-6 mRNA expression in spinal cord tissue. This could be ascribed to lower IL-6 expression not only in microglia (Tomozawa et al., 1995; Wang et al., 2010), but also in astrocytes, due to increased frequency of CX3CR1+ microglia (Limatola and Ransohoff, 2014).

In accordance with the shift towards a more anti-inflammatory microglial phenotype, iNOS/Arg-1 gene expression ratio was shifted towards Arg-1 expression in Prop rats compared with controls. This is consistent with upregulation of iNOS concomitant with downregulation of Arg-1 in microglia from Nr2f2-deficient mice (Rojo et al., 2010).

In accordance with the decreased expression of MCP-1/CCL2 in spinal cord cells, fewer CD4+ T lymphocytes were recovered from spinal cord of Prop rats (Semple et al., 2010). Additionally, the shift towards more anti-inflammatory phenotypic and functional properties of microglia from Prop rats correlated with fewer activated/proliferating cells among CD4+ T lymphocytes compared with controls (Schetters et al., 2018). Specifically, CX3CR1 upregulation on microglia is associated with impaired T-cell proliferation (Krasemann et al., 2017). Additionally, suppressive effect of propranolol on T-cell re-activation/proliferation could also be partly associated with the increased microglial IL-10 production and CD83 expression (Lobo-Silva et al., 2016; Stojić-Vukančić et al., 2018). A less efficient activation of CD4+ T cells is shown to render them more susceptible to apoptosis (Rogers et al., 2001). The lack of differences in the frequency of apoptotic cells among spinal cord CD4+ T cells from Prop and control rats could be linked with the increased microglial phagocytic capacity, and consequently more efficient removal of apoptotic cells in Prop rats.

In accordance with the decrease in IL-1β, IL-6 and IL-23 production/expression, the frequency of spinal cord Th17 cells, and the most pathogenic IFN-γ+ GM-CSF+ Th17 ones, was reduced in Prop rats compared with controls (Mufazalov et al., 2017). Thus, this could also contribute to neurologically milder disease.

In conclusion, this study provided novel data contributing to our understanding of the role of β-adrenoceptor-mediated action of central noradrenaline in the development of clinical EAE. It indicates that noradrenaline, through β-adrenoceptor, may modulate microglial functional properties via both CX3CR1-dependent and possibly
CX3CR1-independent mechanisms, and consequently severity of neurological deficit in EAE. The putative clinical implications of these findings are two-fold. Firstly, they suggest that microglial CX3CR1-Nrf2/TAM(HO-1) signaling pathways should be considered as a possible therapeutic target not only in neurodegenerative diseases (Jazwa and Cuadrado, 2010), but also in MS. In this respect, pranoproanol, as a drug with safe pharmacological profile, could be a putative therapeutic option. Secondly, the differences between herein described central and previously reported peripheral effects of pranoproanol on immune cells (Vujnović et al., 2019) suggest that caution is needed when the use of blood-brain barrier-penetrating β-adrenoceptor targeting drugs in therapy of MS is considered.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.nbd.2019.104665.

Funding
This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia [grant number 17050].

The funding source has not been involved in any way in the study design, collection, analysis and interpretation of data, writing of the manuscript and the decision to submit the manuscript for publication.

Declaration of competing interest
None.

References
Ahn, M., Yang, W., Kim, H., Jin, J.K., Moon, C., Shin, T., 2012. Immunohistochemical findings are two-fold. Firstly, they suggest that microglial CX3CR1-independent mechanisms, and consequently severity of neurodegenerative diseases (Jazwa and Cuadrado, 2010), but also in MS. In this respect, pranoproanol, as a drug with safe pharmacological profile, could be a putative therapeutic option. Secondly, the differences between herein described central and previously reported peripheral effects of pranoproanol on immune cells (Vujnović et al., 2019) suggest that caution is needed when the use of blood-brain barrier-penetrating β-adrenoceptor targeting drugs in therapy of MS is considered.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.nbd.2019.104665.

Funding
This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia [grant number 17050].

The funding source has not been involved in any way in the study design, collection, analysis and interpretation of data, writing of the manuscript and the decision to submit the manuscript for publication.

Declaration of competing interest
None.

References
Ahn, M., Yang, W., Kim, H., Jin, J.K., Moon, C., Shin, T., 2012. Immunohistochemical findings are two-fold. Firstly, they suggest that microglial CX3CR1-independent mechanisms, and consequently severity of neurodegenerative diseases (Jazwa and Cuadrado, 2010), but also in MS. In this respect, pranoproanol, as a drug with safe pharmacological profile, could be a putative therapeutic option. Secondly, the differences between herein described central and previously reported peripheral effects of pranoproanol on immune cells (Vujnović et al., 2019) suggest that caution is needed when the use of blood-brain barrier-penetrating β-adrenoceptor targeting drugs in therapy of MS is considered.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.nbd.2019.104665.

Funding
This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia [grant number 17050].

The funding source has not been involved in any way in the study design, collection, analysis and interpretation of data, writing of the manuscript and the decision to submit the manuscript for publication.

Declaration of competing interest
None.

References
Ahn, M., Yang, W., Kim, H., Jin, J.K., Moon, C., Shin, T., 2012. Immunohistochemical findings are two-fold. Firstly, they suggest that microglial CX3CR1-independent mechanisms, and consequently severity of neurodegenerative diseases (Jazwa and Cuadrado, 2010), but also in MS. In this respect, pranoproanol, as a drug with safe pharmacological profile, could be a putative therapeutic option. Secondly, the differences between herein described central and previously reported peripheral effects of pranoproanol on immune cells (Vujnović et al., 2019) suggest that caution is needed when the use of blood-brain barrier-penetrating β-adrenoceptor targeting drugs in therapy of MS is considered.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.nbd.2019.104665.

Funding
This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia [grant number 17050].

The funding source has not been involved in any way in the study design, collection, analysis and interpretation of data, writing of the manuscript and the decision to submit the manuscript for publication.

Declaration of competing interest
None.

References

I. Pilipović, et al.

