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Abstract
Heteropolyacids and their salts comprise catalytic centers for the production of ethylene, one of the most important con-
stituents in the chemical industry. The paper emphasizes different synthesis routes of hybrid materials consisting of dode-
catungstophosphoric acid silver salt (AgPW) and β zeolite—stepwise wet impregnation, silver-exchange in β zeolite, and 
dry mixing of precursors. Composite preparation procedures induced minor effects on the weak acid sites, while strong acid 
sites were increased significantly. β/AgPW composites prepared by two-steps wet impregnation and ion-exchange procedures 
have strong acid sites content and total acidity higher in comparison to the pure AgPW salt and β zeolite. This is a result of 
precursors synergetic effect—cumulative strong acidic sites are generated in the presence of well-dispersed Keggin ions on 
the zeolite network. Composite samples with a higher content of strong acid centers exhibit higher conversion in the ethanol 
dehydration reaction, i.e., the ion-exchanged βAgPW sample has attained a conversion over 81%, while the wet-impregnated 
sample has a significant 86%. The distribution and presence of AgPW active phase are found to be crucial for both stable 
conversion and high selectivity results in ethylene production from ethanol, which is regarded as one of the most significant 
processes in environmental and sustainable industrial chemistry.
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Introduction

Ethylene has one of the largest yields in the field of pet-
rochemical products worldwide and is recognized as one 
of the key constituents in the chemical industry. Approxi-
mately three-quarters of products obtained in the petro-
chemical industry are ethylene-based. Moreover, ethylene 
is a monomer in a whole range of polymerization pro-
cesses for plastics production (Zhang and Yu 2013). Eth-
ylene production through catalytic dehydration of alcohols 
is more economically reasonable then ethylene production 
from petroleum. A coherent strategy for catalysts prepara-
tion that is employed in selective alcohols conversion to 
olefins is fundamental, as there is a competitive reaction 
with etherification products. Austin et al. (2018) reported 
that silver-containing metal oxide clusters with struc-
tural curvature show unfavorable etherification chemis-
tries while favoring the olefin production. Thus, catalysts 
containing strong Lewis acid sites are found to be highly 
active and selective in aforesaid reactions.

It is known that heteropolyacids and their salts com-
prise catalytic centers for ethanol dehydration—Lewis and 
Brønsted acid sites, where Brønsted acids are efficient at 
lower temperatures (Gallo et al. 2014). When the pristine 
silver salt of dodecatungstophosphoric acid, Ag3PW12O40 
(AgPW) is investigated, the catalyst was found to be 
highly efficient and selective for ethylene production 
(Matachowski et al. 2012). There is, however, a question 
of catalyst stability at a given reaction temperature, with 
partial or substantial solubility, which is often noted as 
an obstacle for heteropolyacids and related compounds 
applications (Gallo et al. 2014). Many aluminosilicate 
compounds are assessed as commercial-grade catalysts for 
dehydration reaction, among which zeolites are often part 
of the research targets (Madeira et al. 2009; Ramasamy 
and Wang 2014; Jović et al. 2017; Clemente et al. 2019). 
If the aim is to combine two excellent catalytic materials, 
can enhanced catalytic performance be expected? System-
atic upgrade of zeolites with organic and inorganic active 
phase molecules and structures has proved to be a valuable 
approach for manufacturing upgraded materials for various 
environmental applications (Milojević-Rakić et al. 2013, 
2018; Jović et al. 2017, 2018; Bajuk-Bogdanović et al. 
2017; Jevremović et al. 2019, 2020). MFI zeotype excels 
by far in this catalysts search, but the present study aims 
to show that BEA zeotype (β) with larger pores and higher 
acid stability may be a better choice for ethanol dehydra-
tion. Superb adsorption and catalytic performances have 
already been established for β based hybrid materials, 
but an important improvement of considered materials 
lies especially in silver ion introduction. Antimicrobial 
activity of silver incorporated in heteropolyacid/zeolite 

materials was proved recently (Janićijević et al. 2020) 
which extended their usual application as efficient adsor-
bents (Bajuk-Bogdanović et al. 2017; Nedić Vasiljević 
et al. 2019). The idea behind the design of these materials 
lies in the ease of synthesis and fine-tuning of preparation 
procedures that can influence success in targeted applica-
tions, particularly in the field of environmental science. 
Spectroscopic analysis of AgPW active phase interaction 
with zeolite structure demonstrated the uniform distribu-
tion of active sites, which proved to be of utmost impor-
tance for pollutants adsorption. As active sites distribution 
and strength are essential for catalysis, for which adsorp-
tion is a required initial stage in heterogeneous catalysis, 
we expect that these hybrid materials will be highly effi-
cient catalysts. That is why this contribution is dealing 
with ethanol dehydration, as it is regarded as one of the 
key processes in environmental and sustainable industrial 
chemistry.

Hybrid materials consisting of β zeolite and AgPW were 
prepared with varying synthesis strategies. Different charac-
terization methods were employed to investigate active cent-
ers in view of catalytic performance: infrared spectroscopy 
(FTIR), atomic force microscopy (AFM), thermogravimetry 
(TG), and ammonia temperature-programmed desorption. 
So far, this is the first contribution of silver tungstophos-
phate/zeolite hybrid materials in the catalytic dehydration 
of ethanol.

Experimental

Materials

Zeolite β (Si/Al mole ratio is 12.5; in an ammonium form, 
and designated with a specific surface of 680 m2g−1) was 
purchased from Zeolyst International. Thermal treatment 
for 5 h at 550 °C transformed zeolite into its hydrogen form 
(Hβ) (Kunkeler et al. 1998). Hβ zeolite was subjected to 
an ion-exchange procedure using silver-nitrate (Centrohem, 
Serbia) to obtain silver ion in zeolite extra-framework posi-
tions (Agβ). The sample was filtered, washed, and dried for 
3 h at 110 °C.

12-Tungstophosphoric acid, H3[PW12O40]·6H2O, denoted 
as HPW, was synthesized in agreement with the literature 
(Rosenheim and Jaenicke 1917; De Oliveira et al. 2014). The 
obtained hexahydrate sample was kept in a desiccator with 
silica gel before measuring mass. Further on, a silver salt of 
HPW (AgPW) was prepared through a titration procedure, 
and the sample was formed by evaporation at 110 °C and 
calcination at 300 °C.

The detailed sample preparation procedure was given pre-
viously (Janićijević et al. 2020). Briefly, hybrid materials 
were prepared at a fixed AgPW mass fraction of 20 wt%, 
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but in varying synthesis procedures—wet impregnation in 
two steps, Ag ion-exchange, and dry mixing, denoted to as 
procedures WI, IE, and DM, in that order.

WI method—a solution of AgNO3 was mixed with Hβ 
in suspension for the first 2 h and then left to age for 24 h. 
The second step comprised the addition of HPW, followed 
by stirring, aging, evaporation, and calcination at 300 °C. 
The sample obtained in this way was marked as βAgPW-WI.

IE method—Agβ sample was mixed with 0.1 M HPW 
(solution volume was chosen to gain Hβ/AgPW mass ratio of 
4). The suspension was subjected to stirring, aging, evapora-
tion, and calcination at 300 °C. The sample obtained in this 
way was marked as βAgPW-IE.

DM method—analogous to the two mentioned methods, 
certain quantities of Hβ and pre-prepared AgPW (in mass 
ratio 4) were mixed solvent-free, in a mortar with a pes-
tle and calcinated at 300 °C. The sample was marked as 
βAgPW-DM.

Methods

Atomic force microscopy (AFM) was performed on NTE-
GRA Prima microscope (NT-MDT Spectrum Instruments) 
in tapping-mode. Samples were arranged in the form of a 
thin layer by air-drying after preparation of water dispersion, 
in ambient conditions. An AFM probe consisting of N-type 
doped silicon coated with aluminum with 3.5 N m−1 force 
constant, and 75 kHz resonant frequency was employed. 
Scanning resolution was 512 data points per scan and oper-
ating program Nova Px with the included ScanT module was 
used. Data Processing P9 software was applied for image 
analysis.

The FTIR spectra were recorded on a Nicolet iS20 FT-IR 
spectrophotometer with 64 scans and 2 cm−1 resolution.

Thermogravimetric analysis (TG) and differential ther-
mal analysis (DTA) of prepared hybrid materials were 
executed on an TA SDT 2690 microbalance, with 90-µL 
platinum sample pans. Samples were stored at 23% rela-
tive humidity before measurement. Heating was performed 
in the 25–750 °C range with 10 °C min−1 rate, in the air 
atmosphere.

Temperature-programmed desorption of ammonia 
(TPD-NH3) was carried out with an instrument used for 
thermal analysis: Mettler TGA/SDTA 851/LF/1100 thermo 
analyzer. The thermal analysis system was coupled with a 
Pfeiffer–Vacuum–Thermo Star mass spectrometer by silica 
capillary at a temperature of 473 K. About 20 mg samples 
were used for measurements in stainless steel crucibles of 
150 µL.

Before TPD studies at 373 K, the sample was treated at 
573 K for 15 min by passing pure air and then cooling from 
573 to 373 K, under nitrogen flow (step 1). After pre-treat-
ment, a stream of 50 mL min−1 consisting of nitrogen and 

NH3 and H2O vapors (obtained by passing the nitrogen over 
25 wt.% ammonia solution at room temperature) was blown 
over solid sample until its constant weight was reached 
(75 min) (step 2). Subsequently, the sample was flushed 
with nitrogen for 45 min at the same temperature to remove 
physisorbed ammonia (step 3). The ammonia desorption is 
followed by non-isothermal heating from 373 to 873 K at 
10 K min−1, under N2 flow (50 mL min−1) (step 4). TPD of 
ammonia was employed to measure the amount and strength 
of the acidic sites of the samples. The strength of acid sites 
is related to the corresponding desorption temperature. The 
amount of NH3 evolved was calculated from the mass loss 
of the samples observed on TG curves. First, the mass losses 
associated with water and ammonia desorption from the 
acid sites were determined. Then, the second experiment of 
adsorption–desorption of water was done. The subtraction of 
the normalized masses [Sample with ammonia (solution of 
25% NH3 in water)—Sample with water] gives the adsorbed 
ammonia on the solid sample. Each mass loss related to des-
orption of ammonia from acid sites was converted to express 
the number of millimoles of ammonia adsorbed on such sites 
per millimole of an anhydrous sample.

Catalytic test

The catalytic activities of the samples were tested for vapor 
phase ethanol dehydration reaction under atmospheric pres-
sure at 300 °C. A differential tubular stainless steel flow 
reactor placed into a tubular furnace was used. Typically 
100 mg of the catalyst was placed in the middle of the reac-
tor supported by quartz from both ends. Liquid ethanol was 
pumped by a syringe pump at a flow rate of 1.2 mL h−1 
into the evaporator (heated to 150 °C) where it was mixed 
with nitrogen and air at a ratio of EtOH:N2:O2 = 1:3.5:0.4. 
The total flow rate of the vapor stream was kept constant at 
30 mL min−1. The products were analyzed using a Hewlett 
Packard 5890 GC gas chromatograph equipped with a flame 
ionization detector (FID) and Porapak QS column. A typi-
cal space velocity (WHSV) of 9.5 h−1 (grams of ethanol per 
hour per gram of catalyst) was calculated at 298 K.

Results and discussion

AFM surface morphology investigation

The AFM technique was carried out to investigate the sur-
face morphology of prepared samples. The three-dimen-
sional images with a scan area of 10 × 10 µm for the precur-
sors β zeolite and AgPW, 3 × 3 µm for the βAgPW-WI, and 
5 × 5 µm for the βAgPW-IE are presented in Fig. 1.

The AFM picture of AgPW shows aggregates of irregu-
lar cubic and dodecahedron shape with average sizes about 
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500 nm. The morphology of the particles of heteropoly 
salts depends on counter-ions, temperature, aging and other 
experimental procedures applied during the synthesis (Oka-
moto et al. 2007). On the other hand, for β zeolite, it is obvi-
ous that the surface is composed of rugged layers. As one 
can see from Fig. 1c, d, composites that were made accord-
ing to the two-step wet impregnation and ion-exchange 
procedures have comparable surface characteristics as pris-
tine β. The results show that in these samples, AgPW salt 
is homogeneously dispersed on the surface of the β zeolite 
without visible large salt agglomerates in the samples.

FTIR

Figure 2a shows FTIR spectra of the AgPW salt. The set of 
peaks observed between 1080 and 524 cm−1 originates from 
the bands associated with metal–oxygen skeletal modes of 
the Keggin unit. The bands at 1080, 983, 888 and 808 cm−1, 
correspond to asymmetric stretching vibrations, (P–Oa), 
(W=Od), (W–Ob–W) and (W–Oc–W), respectively, while 
the bands at 594 and 524 cm−1 originate from deformation 

asymmetric (Oa–P–Oa) vibrations (Rocchiccioli-Deltcheff 
et al. 1983; Ratajczak et al. 2001). The deformation band of 
non-protonated water at 1618 cm−1 and bands at 3520 and 
3471 cm−1 in the region of the stretching (O–H) vibrations 
are weak, in accordance with the low degree of hydration of 
the calcined sample.

The FTIR spectra of β (Fig. 2e) exhibit a band charac-
teristic for isolated bridging hydroxyl groups (Si–O(H)–Al, 
Brønsted type acid site) at 3644 cm−1 and bands attributed 
to physically adsorbed water, at 3447 with a shoulder at 
3212 cm−1, and at 1635 cm−1 (Van Bekkum et al. 2001). In 
addition to these bands, vibrational frequencies of internal 
tetrahedra of the β zeolite lattice are observed at 1228 and 
1089 cm−1 (asymmetric stretching vibration) and the band at 
around 789 cm−1 (symmetric stretching vibration). Also, the 
bands at 618, 572 and 520 cm−1 (external linkages, double 
ring modes), 460 and 428 cm−1 [internal tetrahedra, (T–O) 
bending vibration] are evident (Flanigen et al. 1974).

The bands of the β precursor appear in the FTIR spectra 
of the composites, while the bands of the AgPW salt are 
barely visible in the spectra, due to the overlap with the 

Fig. 1   AFM images of precursors and composites: a β zeolite, b AgPW, c βAgPW-WI and d βAgPW-IE
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bands of the mass-dominant zeolite precursor. As can be 
seen from Fig. 2e (right) in the 1000–850 cm−1 region, β has 
no pronounced bands, while AgPW (Fig. 2a) exhibits bands 
at 983 (W=Od) and 888 cm−1 (W–Ob–W).

The spectrum of sample βAgPW-WI (Fig. 2b) in the 
(W=Od) vibration region possesses a broadened band at 
962 cm–1. When compared to the spectrum of the AgPW 
sample, the W=Od band is wider and red-shifted for 21 cm–1, 
indicating that the W=Od bond is weaker in composites. The 
appearance of a shoulder on this band at 983 cm–1 which 
corresponds to (W=Od) vibration in bulk AgPW, where the 
primary Keggin units are linked to each other by hydrogen 
bonds, indicates the existence of Keggin anions which are 
not in direct contact with β zeolite. The (W–Ob–W) band 
is less intense than in AgPW and is blue-shifted for about 
6 cm–1. The mentioned changes in the band positions sug-
gest that Keggin anion distortion occurs as a consequence 
of the interaction between oxygen atoms in anion and extra-
framework cations, H+ or Ag+, on the β zeolite surface.

The spectrum of βAgPW-IE (Fig. 2c) is very similar to 
the spectrum BAgPW-WI, but the band of (W=Od) vibration 
of bulk AgPW is not present. This is an obvious indication 
that the Keggin anions are evenly distributed on the zeolite 
surface without agglomeration formation.

On the other hand, the spectrum of sample βAgPW-DM 
(Fig. 2d) is different from the spectra of the other two com-
posites, with the more intense two bands in this region with 
unchanged positions. This indicates that the applied proce-
dure leaves the Keggin anions intact, i.e., that there is no 
interaction in the absence of solvents in the reaction mixture.

TG/DTA

A gradual loss of adsorbed and structural water molecules 
in the temperature range up to ca. 250 °C was formerly 

reported for HPW and its salts (Bajuk-Bogdanović et al. 
2017; Nedić Vasiljević et al. 2019). As investigated com-
posites aim to be anhydrous catalysts with preserved Keggin 
structure (Mioč et al. 2005; Bajuk-Bogdanović et al. 2017) 
and reactivity without water molecules shielding active sites, 
samples were subjected to calcination 300 °C during the 
preparation procedure.

The effect of the preparation procedure on the thermal 
stability of synthesized βAgPW composites was investi-
gated and comparative results against starting components 
are given in Fig. 3.

The most complex thermal profile is observed for the 
AgPW sample, as there are two endo- and one exothermic 
peak. The endothermic events recorded for AgPW salt at 
100 and 253 °C are assigned to physisorbed (mass loss of 
only 0.4 wt.%) and structural water loss (~ 1.5 wt.%), in that 
order. This is in line with literature data, as it is known that 
the Ag salt is more stable than HPW itself as its structural 
water is released up to 100 °C (Holclajtner-Antunović et al. 
2015a). When the AgPW curve is inspected, there is no 
deprotonation step over 400 °C that typically occurs for pure 
acid which is related to water molecules formed from loose 
hydrogens and oxygens in the Keggin structure. This is the 
evidence of complete, neutral salt formation in our prepara-
tion procedure. An exothermic process at 608 °C matches 
the transformation of the crystal structure to tungsten/phos-
phorus bronze phase (Mioč et al. 1994).

Thermal profiles for composite samples lie between 
those recorded for AgPW and β zeolite. The minimum on 
the DTA curve shifts to higher temperatures in composite 
samples compared to pristine zeolite. These endothermic 
events point to changed hydrophilicity of composites as 
a result of a different distribution of AgPW active phase 
over zeolite surface. The sample βAgPW-DM retained 
the lowest amount of water (~ 7 wt.%), while βAgPW-WI 

Fig. 2   FTIR spectra in the 
4000–400 cm−1 (left) and in the 
1000–850 cm−1 (right) region 
of: a AgPW, b βAgPW-WI, c 
βAgPW-IE, d BAgPW-DM and 
e β zeolite
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and βAgPW-IE have had higher moisture content before 
TG analysis, 12.6 and 13.2 wt.%, in that order. Similar 
water content is found for β zeolite (~ 13 wt.%), while its 
comparison to composites thermal profile reveals the less 
gradual release of water molecules. The absence of the 
exothermic process at cca. 600 °C in the composites may 
be related to the increased thermal stability of the Keggin 
anion in AgPW/ β materials.

The effect of AgPW phase distribution over the zeolite 
network in βAgPW-WI and βAgPW-IE composites did not 
affect significantly prevailing hydrophilicity of zeolite. On 
the other hand, a noticeable difference can be observed for 
the sample prepared by dry mixing, βAgPW-DM, where 
the thermal profile may suggest the existence of unsup-
ported AgPW phase.

An intriguing finding is DTA peaks recorded at 252 and 
265 °C for AgPW and β samples, in that order, which are 
missing in composite profiles. The explanation may lie 
in crystal water occluded in AgPW bulk phase as noted 
in TG results and analogous, existing water molecules in 
the zeolite cages. These active sites in both, AgPW and β, 
require higher temperature to be released in comparison 
to physisorbed water at the surface. After composites are 
prepared, there is no crystal water able to escape samples, 
as the zeolite surface is covered uniformly with AgPW (no 
bulk salt phase) blocking pore openings.

TPD‑NH3

The ammonia adsorption–desorption technique was used 
for the determination of the amounts of acidic sites and 
the strength of acid sites present on the sample surface, 
together with the total acidity. The NH3-TPD experi-
ments were recorded as TG/DTG and DTA curves. The 
various steps of a TGA-TPD experiment for AgPW salt 
conducted using ammonia base is shown in Fig. 4 (see 

Fig. 3   TG (left) and DTA (right) results for: a AgPW, b βAgPW-WI, c βAgPW-IE, d BAgPW-DM and e β zeolite
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experimental part for details). This method was used pre-
viously by Sasca et al. (2010) for studying the acidities 
of 12-tungstophosphoric acid and its Cs salts using the 
TPD of ethanol and TPD of n-butyl amines (Verdes et al. 
2012) and for studying the acidities of different Cs salts 
of molybdophosphoric acid supported on SBA-15 or Co 
salts of molybdophosphoric acid supported on modified 
mesoporous silica using the TPD of ammonia (Popa et al. 
2014, 2018).

Generally, the strength of acid sites is related to the 
corresponding desorption temperature. Usually, the acid 
sites at 150–300 °C are defined as weak, at 300–450 °C as 
medium and at 450–600 °C as strong acid sites (Jing et al. 
2013) However, this is not standardized in the literature, 
for example, from Sundaramurthy et al. (2008) the acid 
sites are classified into the weak (≤ 200 °C), medium or 
moderate (200–350 °C) and strong (≥ 350 °C) acid sites. 
In this study, the desorbed amount of NH3 at temperatures 
below (260 ± 30) °C was defined as the number of weak 
acid sites and above this temperature as the number of 
strong acid sites.

For pure AgPW (Fig. 4, step 4) two NH3 desorption 
steps were observed that were ascribed to weak, medium 
or strong acidic sites, and a third step which is a decom-
position peak. The NH3 desorption for AgPW exhibits 
the first desorption rate maximum at 173 °C (weak acidic 
sites) while the second desorption rate maximum at 407 °C 
(strong acidic sites) is observed on the DTG curve, accom-
panied by two endothermic peaks on the DTA curve. The 
third desorption peak is observed at 578 °C and is ascribed 
to the decomposition of the AgPW salt.

The TG, DTG and DTA curves in the TPD-NH3 region 
for the non-isothermal heating in the range of 100–600 °C 
for β zeolite and composites are shown in Fig. 5.

Following previously mentioned, β zeolite profile has 
two desorption peaks ascribed to weak and strong acidic 
sites, and a third, small desorption step which could be 
related to acidic sites that arise from surface hydroxyl 
groups attached to Si and Al, Fig. 5d.

The βAgPW-WI and βAgPW-IE composites, Fig. 5a, b, 
have a thermal and adsorption–desorption behavior almost 
identical to β zeolite, while in βAgPW-DM, Fig. 5c, the 
properties of both precursors, zeolite and AgPW, can be 
differentiated.

The subtraction of mass loss for TPD of water from the 
mass loss for TPD of ammonia in water gives the amount 
of NH3, W(mg), that corresponds, stoichiometrically, to 
acidity. The acidity of a sample, reported in units of mil-
limoles of acid sites per gram of sample, is calculated by 
the following formula:

where mpretr. is the mass of the sample after pre-treatment 
(see experimental part for details). The calculated results 
are presented in Table 1.

The total acidity (mmol  g−1) of pure AgPW salt is 
increased when it was supported on β zeolite, which con-
tains the highest portion of weak acid sites and consider-
able overall acidity. Further on, the amount and distribution 
of acid sites and their strength in β/AgPW composites are 
significantly influenced by acidic properties of the β sup-
port. Composite samples have strong sites density and total 
acidity higher in comparison to the pure AgPW salt. For 
βAgPW-WI and βAgPW-IE composites, densities ascribed 
to strong acidic sites are higher than for β zeolite, which 
could be related to a synergetic effect induced by cumula-
tive strong acidic sites generated by the presence of well-
dispersed Keggin ions on the zeolite network. It has been 
shown earlier that the dispersion of heteropoly acid on the 
zeolites is an effective way to improve the accessibility of 
their acid sites (Freitas et al. 2018). For this reason, we 
found that an adequate AgPW dispersion over the zeolite 
surface is crucial to increase the acidity in the composites.

There is an exception of βAgPW-DM composites, which 
have both, strong sites density and total acidity lower than β 
zeolite has, which is in accordance with the previous charac-
terization, pointing to unsupported salt phase in the material 
prepared by dry mixing. Composite preparation procedures 
induced minor effects on the weak acid sites, on the other 
hand, strong acid sites were affected significantly which led 
to overall acidity rising, in comparison to AgPW.

Catalytic study

Composite samples with a higher content of strong acid 
centers (βAgPW-WI and βAgPW-IE) exhibited higher con-
version compared to the composite with a lower proportion 
of strong acid sites, βAgPW-DM. βAgPW-IE has retained 
a conversion over 81% while βAgPW-WI after 700 min of 
reaction has significant 86% (Fig. 6) which is the best result 
ever obtained for Ag-containing heteropolyacids alone and 
anchored to various carriers (Holclajtner-Antunović et al. 
2015b). An interesting result is the inflection point before 
350 min, when conversion in the presence of βAgPW-WI 
remains constant and stable, while one recorded for 
βAgPW-IE descends below βAgPW-WI, even though it was 
slightly higher at the beginning of the reaction (98%). A pos-
sible reason for the ethanol conversion decreases with time 
on stream is the cokes formation which leads to blocking 
the acidic centers responsible for ethylene formation (Popa 
et al. 2018; Verdes et al. 2019). Introduction of Ag leads to 

(1)Acidity = W(mg) ×

(

1

17gmol−1

)

mpretr.(g)
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increase in conversion stability when compared to pure HPW 
acid, although the initial value for acid (87%) is much higher 
than for salt (47%), after 300 min it drops below 50%, as 
seen previously in the contribution by Holclajtner-Antunović 

et al. (2015a). The decrease in conversion in the βAgPW-IE 
sample is directly related to the less efficient formation of 
Ag salt, i.e., the presence of HPW on the zeolite surface. 
The portion of isolated protons from HPW is also indicated 

Fig. 5   The TG, DTA and DTG 
curves in TPD-NH3 region: a 
βAgPW-WI, b βAgPW-IE, c 
βAgPW-DM and d β zeolite
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Table 1   The mass loss for 
TPD–NH3 and calculated 
acidity of samples

Sample Mass loss I (mg) Mass loss II (mg) Weak acid 
site density 
(mmol g−1)

Strong acid 
site density 
(mmol g−1)

Total acidity 
(mmol g−1)

β 0.4413 0.3288 1.42 1.05 2.47
AgPW 0.3238 0.2734 0.96 0.81 1.78
βAgPW-WI 0.4044 0.4775 1.32 1.56 2.88
βAgPW-IE 0.3966 0.5193 1.35 1.77 3.12
βAgPW-DM 0.3781 0.3109 1.21 0.99 2.20
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by the higher density of strong acid sites in βAgPW-IE than 
in βAgPW-WI composite. Lower efficiency in ethylene 
production can be seen for βAgPW-DM and pure β zeolite 
73.5–69.6%. Inflection is also seen in the corresponding 
moment, the middle of the monitored reaction period when 
βAgPW-DM samples achieve higher conversion than pure 
β zeolite. This moment can be regarded as a point when 
present Ag ions become dominant conversion sites in the 
investigated materials.

A curiosity seen in this reaction is that HPW itself is 
found to be more efficient catalyst than its Ag salt form only 
during the first 100 min of the reaction after that conver-
sion drops significantly (Holclajtner-Antunović et al. 2015a). 
What’s more, supporting increases conversion efficiency and 
selectivity when both HPW (Jović et al. 2017) and AgPW 
(Holclajtner-Antunović et al. 2015a) are in question. The 
advantage of impregnation procedure for preparation of 
βAgPW-WI material is clearly seen in selectivity assess-
ment. The highest selectivity toward ethylene production, 
stable over a reaction period of 700 min, is observed for 
the βAgPW-WI sample. Takahara et al. (2005) reported that 
ethylene yield is substantial in the presence of stronger acid 
sites, while ether production occurs on the weak sites. Again, 

as the βAgPW-WI sample has significant, but not the highest, 
detected share of strong acid sites (found for βAgPW-IE), 
a conclusion can be drawn—distribution and presence of 
AgPW active phase is crucial for both stable conversion and 
high selectivity results in ethylene production.

The observed high catalytic activity of βAgPW com-
posites is attributed to the presence of both Brønsted and 
Lewis acid sites. Solid tungstophosphoric acid (H3PW12O40) 
and its acidic salts are pure Brønsted acids (Luzgin and 
Stepanov 2014), but the acidic properties of heteropoly salts 
in the solid-state are sensitive to counter-cations. Since the 
Ag3PW12O40 salt is neutral, its catalytic activity is due to 
the Lewis acidity (Misono 1987), or the salt may also con-
tain the residual protons in the solid lattice. The presence 
of protons in the Hβ zeolite is related to Brønsted acidity. 
According to Kito-Borsa and Cowley, the dehydration of 
ethanol to ethylene requires two adjacent Lewis acid sites or 
a strong Brønsted acid site, while the dehydration of ethanol 
to diethyl ether requires only a single Lewis acid site (Kito-
Borsa and Cowley 2004), pointing to our results in this reac-
tion as experimental evidence for the type of acid centers 
present in the AgPW/β composites. Protons present in the 
zeolite part of the composite are consumed when engaged 

(a) (b)

(c) (d)

Fig. 6   a The graphic view of weak and strong acid site density, b Ethanol conversion c Selectivity of ethylene, and d Selectivity of diethyl ether 
vs. time of streaming obtained at 300 °C
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in interaction with the Keggin ion, while they are available 
to ethanol molecule as Brønsted sites only when they are not 
engaged in interaction with a polyanion. These unaffected 
zeolite protons give rise to Brønsted acidity which accompa-
nies Lewis sites of the AgPW phase, thus producing highly 
efficient composite catalysts in ethanol dehydration.

Although significant endeavor and improvement in eth-
ylene production research are made, in order to meet all the 
needs for this precursor we are still lacking in the fossil fuels 
processing area as there is no new method that could replace 
current procedures on an industrial scale. Current efforts 
for accomplishing low reaction temperatures and substan-
tial ethylene yield in catalytic processes have discovered a 
considerable number of materials that may find application 
in industry, where promising ones are definitely zeolites 
and heteropoly compounds (Fan et al. 2013). Recently, Wu 
proposed that ZSM-5 catalyst dealumination results in its 
upgraded catalytic performance in ethanol dehydration at 
low temperature (Wu and Wu 2017). Matachowski et al. 
(2012) published that AgPW salt is considered to be an envi-
ronmentally friendly catalyst with perspective in industrial 
implementation for ethylene production under mild experi-
mental conditions (Gurgul et al. 2011). The ability of our 
new βAgPW composites to catalyze the dehydration of etha-
nol to ethylene at relatively low temperatures (300 °C), with 
stable conversion and high selectivity, as well as low cost 
due to the small proportion of the active phase, has made it 
potentially commercially valuable.

Conclusion

This work deals with the preparation, characterization and 
catalytic application of hybrid materials consisting of the 
silver salt of dodecatungstophosphoric acid (AgPW) and 
β zeolite. The complete formation of neutral AgPW salt, 
homogeneously dispersed on the surface of the zeolite, both 
in wet-impregnated and ion-exchanged βAgPW composites, 
was confirmed. Keggin anion distortion occured as a con-
sequence of the interaction between oxygen atoms in het-
eropoly anion and extra-framework cations, H+ or Ag+, on 
the β zeolite surface, in composites prepared by two-steps 
wet impregnation and ion-exchange procedures, while dry 
mixture of β zeolite and AgPW provided no interaction in 
the absence of solvents during the synthesis.

Composite preparation procedures induced a minor effect 
on the weak acid sites, while strong acid sites were increased 
significantly, and β/AgPW composites have strong acid sites 
density and total acidity higher in comparison to the pure 
AgPW salt. For wet-impregnated and ion-exchanged com-
posites, densities ascribed to strong acidic sites are higher 
than found for β zeolite, which is related to a synergetic 
effect induced by cumulative strong acidic sites generated 

by the presence of well-dispersed Keggin ions on the zeolite 
network.

The catalytic performance of the composites was tested 
in ethanol dehydration where samples with higher content 
of strong acid centers exhibited higher conversion compared 
to composite with a lower proportion of strong acid sites, 
obtained by dry mixing. The ion-exchanged βAgPW sample 
has attained a conversion over 81%, while the wet-impreg-
nated sample has significant 86%, which is the best result 
ever reported for Ag-containing heteropolyacids alone and 
anchored to various carriers.

The advantage of the impregnation procedure for com-
posite preparation is found to be crucial for selectivity 
toward ethylene production. Concerning all comprehensive 
findings, this work proved that distribution and presence of 
AgPW active phase is crucial for both stable conversion and 
high selectivity results in ethylene production from ethanol, 
which is regarded as one of the most significant processes in 
environmental and sustainable industrial chemistry.
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