# Biocompatible nanoemulsions as a tool for preclinical testing of CW-02-79, a pyrazoloquinolinone modulator of sigma-2 receptors: preformulation and formulation studies



## Tanja Ilić<sup>1</sup>, Tijana Stanković<sup>1</sup>, Jelena Mitrović<sup>1</sup>, Ivana Pantelić<sup>1</sup>, Vladimir Dobričić<sup>2</sup>, James M. Cook<sup>3</sup>, Miroslav Savić<sup>4</sup>, Snežana Savić<sup>1</sup>



<sup>3</sup> University of Wisconsin- Milwaukee, Milwaukee Institute for Drug Discovery, Wisconsin, United States <sup>4</sup>University of Belgrade-Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Belgrade, Serbia



Methods

tanja.ilic@pharmacy.bg.ac.rs

# Conclusion

NanoCellEmoCog

Athough the formulation with 30% of the oil phase had satisfying physicochemical properties, its relatively high viscosity can restrict syringeability and injectability. On the other hand, owing to satisfying solubilization capacity for CW-02-79 as well as small and uniform droplet size and low viscosity, NE prepared with 20% oil phase represents a promising carrier worth exploring further to support the preclinical progress of CW-02-79.

## Introduction

Recently, we hypothesized that novel patent-protected ligand of the pyrazoloquinolinone chemotype (CW-02-79) with a substantial binding affinity for sigma-2 receptors in the brain may have a distinct pharmacological profile useful for the treatment of psychiatric and neurodegenerative disorders. However, very low water solubility hinders its administration and reliable efficacy and safety in vitro/in vivo evaluation. Therefore, this study aimed to develop biocompatible nanoemulsions (NEs), as carrier for CW-02-79, using high homogenization (HPH) method. Firstly, preformulation studies Figure 1. Chemical structure were performed to obtain insight into the key properties of CW-02-79 required for further stages of formulation development. During NE preparation, the influence of formulation /process parameters was investigated to obtain NEs with small and uniform particle size suitable for parenteral administration.

### Results and disscusion



Substance CW-02-79 appeared as a yellow Figure 2. Representative polarization powder, with broad particle size distribution. Results of the solubility study revealed the highest solubility of CW-02-79 in a MCT-castor mixture (1:1, w/w) which was chosen as the oil phase for NE development. The developed NEs exhibited size in the nanometer range nm), narrow size distribution (<0.15) and relativery high surface charge (>-30 mV), irrespective of the oil content, indicating good stability of the system.

Figure 4. The impact of the number of homogenization cycles on droplet size (Z-ave) and polydispersity index (PDI)



#### REFERENCES

- 1. Chen AF, Ma WH, Xie XY, Huang YS. Sigma-2 Receptor as a Potential Drug Target, Curr. Med. Chem. 28, 4172-4189 (2021).
- 2. Pinheiro RGR et al. Nanoparticles for Targeted Brain Drug Delivery: What Do We Know? Int. J. Mol. Sci. 22, 11654 (2021)
- 3. Müller RH et al. Development of industrially feasible concentrated 30% and 40% nanoemulsions for intravenous drug delivery, Drug Dev. Ind. Pharm. 38, 420-30 (2012).

oil phase (20%/30%, w/w) and process parameters (number of homogenization cycles), using hot HPH at 800 bar and 50°C. The tested formulations were characterized regarding the droplet size (Z-ave), size distribution, zeta potential (ZP), pH and electrical conducitivity.

After the preformulation evaluation of CW-02-79 (e.g., solubility,

physical state), NEs were prepared by varying the content of the

#### Preformulation evaluation of CW-02-79



of CW-02-79



Table 1. Solubility of CW-02-79 in the investigated solvents

| Excipients                | Solubility<br>(mg/ml) |
|---------------------------|-----------------------|
| MCT                       | 0.499±0.043           |
| Castor oil                | 0.280±0.074           |
| MCT:castor oil 1:1 w/w    | 2.184±0.302           |
| Soybean oil               | 0.659±0.043           |
| MCT:soybean oil 1:1 w/w   | 0.414±0.043           |
| Fish oil                  | 0.342±0.015           |
| 0.1 M hydrochloride acid  | 0.123±0.016           |
| Phosphate buffer (pH 7.4) | 0.118±0.007           |
| Isopropanol               | 5.746±0.458           |
| Methanol                  | 0.939±0.135           |
| Ultrapure water           | 0.117±0.007           |
| Dimethyl sulfoxide        | >30                   |

micrograph of CW-02-79



Figure 3. DSC thermogram of CW-02-79

Table 2. The physicochemical parameters of the tested CW-02-79-loaded nanoemulsions (mean ± SD, n=3)

| Parameters                      | CW-NE20%    | CW-NE30%    |
|---------------------------------|-------------|-------------|
| Z-ave ± SD (nm)                 | 139.7±0.7   | 142.4±5.0   |
| PDI ± SD                        | 0.097±0.032 | 0.122±0.022 |
| ZP ± SD (mV)                    | -50.9±0.9   | -53.6±0.9   |
| рН                              | 5.71±0.02   | 5.56±0      |
| Electrical conductivity (µS/cm) | 114.1±0.2   | 143.1±1.6   |

#### **ACKNOWLEDGEMENT**

This research was supported by the Science Fund of the Republic of Serbia, Grant No. 7749108, Neuroimmune aspects of mood, anxiety and cognitive effects of leads/drug candidates acting at GABAA and/or sigma-2 receptors: In vitro/in vivo delineation by nano- and hiPSC-based platform — NanoCellEmoCog.