FarFaR - Pharmacy Repository
University of Belgrade, Faculty of Pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Polyaniline and its composites with zeolite ZSM-5 for efficient removal of glyphosate from aqueous solution

Authorized Users Only
2013
Authors
Milojević-Rakić, Maja
Janošević, Aleksandra
Krstić, Jugoslav
Nedić-Vasiljević, Bojana
Dondur, Vera
Ćirić-Marjanović, Gordana
Article (Published version)
Metadata
Show full item record
Abstract
Nanostructured and granular polyanilines (PANIs) and their composites with zeolite ZSM-5, synthesized by the oxidative polymerization of aniline in water and aqueous solution of sulfuric acid, are evaluated as adsorbents of the organic herbicide glyphosate [N-(phosphonomethyl)glycine] in aqueous solution. The protonated and deprotonated forms of synthesized materials were characterized by elemental and thermogravimetric analysis, scanning electron microscopy, FTIR, Raman and UV-Vis spectroscopies, X-ray powder diffraction, and nitrogen physisorption measurements. The adsorption isotherms of glyphosate on studied materials were best fitted by Freundlich and Langmuir-Freundlich models. The adsorption characteristics of the investigated PANIs and PANI/ZSM-5 composites were found to be much more influenced by the oxidation state and protonation level of PANI in the adsorbents then by the textural and morphological properties of materials. The highest adsorption of glyphosate among all inve...stigated PANI and PANI/ZSM-5 samples, as well as pure ZSM-5, exhibited the deprotonated granular PANI which was synthesized in sulfuric acid medium (98.5 mg/g). High adsorption capacity also showed the deprotonated PANI/ZSM-5 composite with similar to 50% of zeolite (61.9 mg/g) and the protonated nanostructured PANI (59.9 mg/g), both materials prepared in water without added acid.

Keywords:
Polyaniline / Zeolite / Glyphosate / Adsorption / Herbicide
Source:
Microporous and Mesoporous Materials, 2013, 180, 141-155
Publisher:
  • Elsevier Science BV, Amsterdam
Funding / projects:
  • Electroconducting and redox-active polymers and oligomers: synthesis, structure, properties and applications (RS-172043)

DOI: 10.1016/j.micromeso.2013.06.025

ISSN: 1387-1811

WoS: 000324659200019

Scopus: 2-s2.0-84880366514
[ Google Scholar ]
50
37
URI
https://farfar.pharmacy.bg.ac.rs/handle/123456789/1867
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Pharmacy
TY  - JOUR
AU  - Milojević-Rakić, Maja
AU  - Janošević, Aleksandra
AU  - Krstić, Jugoslav
AU  - Nedić-Vasiljević, Bojana
AU  - Dondur, Vera
AU  - Ćirić-Marjanović, Gordana
PY  - 2013
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/1867
AB  - Nanostructured and granular polyanilines (PANIs) and their composites with zeolite ZSM-5, synthesized by the oxidative polymerization of aniline in water and aqueous solution of sulfuric acid, are evaluated as adsorbents of the organic herbicide glyphosate [N-(phosphonomethyl)glycine] in aqueous solution. The protonated and deprotonated forms of synthesized materials were characterized by elemental and thermogravimetric analysis, scanning electron microscopy, FTIR, Raman and UV-Vis spectroscopies, X-ray powder diffraction, and nitrogen physisorption measurements. The adsorption isotherms of glyphosate on studied materials were best fitted by Freundlich and Langmuir-Freundlich models. The adsorption characteristics of the investigated PANIs and PANI/ZSM-5 composites were found to be much more influenced by the oxidation state and protonation level of PANI in the adsorbents then by the textural and morphological properties of materials. The highest adsorption of glyphosate among all investigated PANI and PANI/ZSM-5 samples, as well as pure ZSM-5, exhibited the deprotonated granular PANI which was synthesized in sulfuric acid medium (98.5 mg/g). High adsorption capacity also showed the deprotonated PANI/ZSM-5 composite with similar to 50% of zeolite (61.9 mg/g) and the protonated nanostructured PANI (59.9 mg/g), both materials prepared in water without added acid.
PB  - Elsevier Science BV, Amsterdam
T2  - Microporous and Mesoporous Materials
T1  - Polyaniline and its composites with zeolite ZSM-5 for efficient removal of glyphosate from aqueous solution
VL  - 180
SP  - 141
EP  - 155
DO  - 10.1016/j.micromeso.2013.06.025
ER  - 
@article{
author = "Milojević-Rakić, Maja and Janošević, Aleksandra and Krstić, Jugoslav and Nedić-Vasiljević, Bojana and Dondur, Vera and Ćirić-Marjanović, Gordana",
year = "2013",
abstract = "Nanostructured and granular polyanilines (PANIs) and their composites with zeolite ZSM-5, synthesized by the oxidative polymerization of aniline in water and aqueous solution of sulfuric acid, are evaluated as adsorbents of the organic herbicide glyphosate [N-(phosphonomethyl)glycine] in aqueous solution. The protonated and deprotonated forms of synthesized materials were characterized by elemental and thermogravimetric analysis, scanning electron microscopy, FTIR, Raman and UV-Vis spectroscopies, X-ray powder diffraction, and nitrogen physisorption measurements. The adsorption isotherms of glyphosate on studied materials were best fitted by Freundlich and Langmuir-Freundlich models. The adsorption characteristics of the investigated PANIs and PANI/ZSM-5 composites were found to be much more influenced by the oxidation state and protonation level of PANI in the adsorbents then by the textural and morphological properties of materials. The highest adsorption of glyphosate among all investigated PANI and PANI/ZSM-5 samples, as well as pure ZSM-5, exhibited the deprotonated granular PANI which was synthesized in sulfuric acid medium (98.5 mg/g). High adsorption capacity also showed the deprotonated PANI/ZSM-5 composite with similar to 50% of zeolite (61.9 mg/g) and the protonated nanostructured PANI (59.9 mg/g), both materials prepared in water without added acid.",
publisher = "Elsevier Science BV, Amsterdam",
journal = "Microporous and Mesoporous Materials",
title = "Polyaniline and its composites with zeolite ZSM-5 for efficient removal of glyphosate from aqueous solution",
volume = "180",
pages = "141-155",
doi = "10.1016/j.micromeso.2013.06.025"
}
Milojević-Rakić, M., Janošević, A., Krstić, J., Nedić-Vasiljević, B., Dondur, V.,& Ćirić-Marjanović, G.. (2013). Polyaniline and its composites with zeolite ZSM-5 for efficient removal of glyphosate from aqueous solution. in Microporous and Mesoporous Materials
Elsevier Science BV, Amsterdam., 180, 141-155.
https://doi.org/10.1016/j.micromeso.2013.06.025
Milojević-Rakić M, Janošević A, Krstić J, Nedić-Vasiljević B, Dondur V, Ćirić-Marjanović G. Polyaniline and its composites with zeolite ZSM-5 for efficient removal of glyphosate from aqueous solution. in Microporous and Mesoporous Materials. 2013;180:141-155.
doi:10.1016/j.micromeso.2013.06.025 .
Milojević-Rakić, Maja, Janošević, Aleksandra, Krstić, Jugoslav, Nedić-Vasiljević, Bojana, Dondur, Vera, Ćirić-Marjanović, Gordana, "Polyaniline and its composites with zeolite ZSM-5 for efficient removal of glyphosate from aqueous solution" in Microporous and Mesoporous Materials, 180 (2013):141-155,
https://doi.org/10.1016/j.micromeso.2013.06.025 . .

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB